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POLICY BRIDGE

Emissions of NOx from blending of hydrogen
and natural gas in space heating boilers

Madeleine L. Wright1 and Alastair C. Lewis2,*

As part of climate change commitments, the United Kingdom is considering an incremental transition from
natural gas to hydrogen for domestic heating, blending up to 20% of hydrogen (by volume) into the national
gas network.We consider the possible impacts of this policy on nitrogen oxides (NOx) emissions, a minor waste
by-product from combustion. A meta-analysis of changes in NOx emissions from hydrogen/natural gas blends
used in gas burners is undertaken, with focus on mixtures between 5% and 20% v/v. Literature reports are
highly variable: for a 5% hydrogen blend, changes in NOx emissions, when compared to burning pure natural
gas, vary over the range –12% to þ39%, with a mean change across 14 studies of þ8%. These estimates
required an important assumption to be made that, when not explicitly described, all literature data on
changes in NOx emissions and/or concentrations were suitably corrected for the reduced energy density
and heat output arising once hydrogen is added. A NOx increase can be rationalized through the increased
adiabatic flame temperature generated from hydrogen combustion.The associated range of plausible damage
costs of a 5% hydrogen blend is estimated to fall within the range –117 million GBP to þ362 million GBP per
year; 20% hydrogen (the maximum that could be accommodated with existing infrastructure) would lead to
a change in emissions in the range –50 to þ154% with a change in damage costs of between –467 million GBP
and þ1,146 million GBP per year.The mean change is estimated at 292 million GBP per year. For existing poor
performing boilers, an economic case can be made for scrappage and replacement based primarily on NOx

damage costs avoided. The response of older boilers to added hydrogen is a critical evidence gap that needs
filling before further decisions on hydrogen as a heating fuel are made.

Keywords: Net zero, Hydrogen, Space heating, Domestic combustion, Nitrogen oxides, Natural gas

Introduction
An ever-growing number of countries have announced net
zero greenhouse gas commitments to meet obligations
made in the Paris Agreement and broader objectives to
limit anthropogenic climate change. The transition away
from fossil fuels is complex with many possible techno-
logical pathways. One element of a decarbonization strat-
egy may be an increase in the production and use of
hydrogen as a fuel.

As an example, the United Kingdom has pledged net
zero emissions by 2050, a legal commitment set out in The
Climate Act (Climate Change Act, 2008). Its science advisory
body, The Committee on Climate Change (CCC), has recog-
nized the potential of hydrogen as a future energy source
and as a complementary technology to electrification (Com-
mittee on Climate Change, 2018). It emphasizes the need
for low-regret options to deploy hydrogen quickly, such that
it can be a significant part of the UK’s energy mix by 2050.

In 2019, the CCC emphasized the need for a “serious plan”
for decarbonizing space heating (Stark et al., 2019), one of

the most challenging sectors to decarbonize in many high-
income countries. Within the United Kingdom, space heat-
ing is responsible for 23% of all greenhouse gas emissions

and 73% of domestic emissions (Department of Business,
Energy and Industrial Strategy [BEIS], 2021a). The UK strat-
egy for decarbonization of homes, set out in the Govern-
ment’s Ten Point Plan to a Green Industrial Revolution, was
to support infrastructure that would enable up to 20%
blending of hydrogen into the existing natural gas distri-
bution network by 2023 (BEIS, 2020). Moving to low-
fraction hydrogen-natural gas (H2-NG) blends could offer

fast initial deployment of hydrogen with minimal infra-
structure change necessary in both distribution and end-
use processes. Transitioning to low-fraction H2-NG blends is

considered feasible without wholesale reengineering of
existing commercial or domestic gas boilers or cookers
where natural gas is used (Dadfarnia et al., 2019; Energy
Networks Association, 2020; HyDeploy, 2021).

Hydrogen can be deployed as an energy source in two
distinct ways: through combustion in boilers and engines
or in electrochemical fuel cells. The use of H2-NG blends for

domestic combustion deploys hydrogen as a combustion
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fuel, and for at least the 2020s and 2030s, this would be
the predominant application in the United Kingdom
(National Gird Electricity System Operator, 2019; BEIS,
2020, 2021a). While the major product of hydrogen com-
bustion is water vapor, a disadvantage is that combustion
can also lead to the formation of nitrogen oxides (NOx)
when the fuel is burned in air. This occurs via the Zel’dovich
mechanism (or sometimes described as thermal NOx),
whereby high temperatures in the flame lead to the split-
ting of atmospheric N2 and O2 into atomic N and O, which
then go on to react and form NO. By contrast, electroche-
mical fuel cells produce only water as a by-product.

In the United Kingdom, most domestic natural gas
appliances are combination boilers used for both space
heating and hot water. Although the use of gas for space
heating is restricted predominantly to cooler winter
months, boilers continue to be used in summer for hot
water. The annual split in terms of gas usage is approxi-
mately 80% for heating and 20% for hot water (Depart-
ment of Energy and Climate Change, 2013), and as
a consequence, boiler emissions of NOx do also occur
during summer months as well. Once emitted, NO quickly
reaches equilibrium with NO2 via reaction with O3 in air.
NOx in the presence of volatile organic compounds results
in the formation of tropospheric ozone, which estimates
suggest causes upwards of 1 million premature deaths
a year (Malley et al., 2017). NO2 itself causes a range of
direct adverse health and environmental impacts, and
direct NO2 damage costs are the focus in this article
(Adamkiewicz et al., 2010; Jonson et al., 2017); however,
a long-standing motivation for controlling NOx emissions
has been to limit tropospheric ozone concentrations.

National NOx emissions have been reducing in many
high-income countries over the last 20 years through suc-
cessful application of emissions control in the energy and
transport sectors. However, further reductions in NOx are
necessary, requiring actions beyond a business-as-usual
case. The World Health Organization has recently reduced
its air quality guidelines for NO2 by 75% (Defra, 2021b);
the most recent annual air quality assessment found that
the United Kingdom was noncompliant with annual mean
NO2 concentrations in 5 zones (Defra, 2021a). In addition,
international transboundary obligations require the
United Kingdom to further reduce NOx emissions by
18% between 2020 and 2030 (Defra, 2022). Although
domestic combustion only accounts for 4.5% of national
NOx emissions, its share can be up to 20% in urban areas
(National Atmospheric Emissions Inventory [NAEI], 2019a,
2019b). Although NOx abatement strategies for road trans-
port are well-established and increasingly effective, NOx

regulations for domestic natural gas boilers were only
introduced in 2018 (Commission Regulation [EU], 2013).
Hence, there is potential for a shift in the major sources of
NOx in some areas of the United Kingdom unless action is
taken to further reduce NOx emissions from domestic
combustion (Lewis, 2021b).

At the high temperatures of natural gas combustion
(above 1,600 K), most NOx is formed as thermal NO,
through the Zel’dovich (1946) mechanism. This
temperature-dependent NO also forms already during pure

natural gas combustion; however, the higher adiabatic flame
temperature of hydrogen (Choudhury et al., 2020) could
mean H2-NG blends burn under hotter conditions that
increase NOx emissions. A recent engineering review of
domestic boilers with potential to run on hydrogen con-
cluded that without individual testing, it was difficult to
predict the outcome for NOx emissions, due to the uncer-
tainty in the effect of the replacement of natural gas with
hydrogen on the flame temperature (Frazer-Nash Consul-
tancy, 2018). The uncertainty of outcomes was due to vary-
ing flame sizes and temperature distributions from different
appliance and burner designs and the effect of hydrogen
addition on flame propagation (Schaffert et al., 2020).

Although considerable research and policy attention has
been paid to how hydrogen might be produced in a net
zero economy (Marbán & Valdés-Solı́s, 2007; Kothari et al.,
2008; Stark et al., 2019; van Renssen, 2020; Ueckerdt et al.,
2021), less consideration has been given to effects at point
of use. The most “optimistic” technological solution is green
hydrogen from renewable energy being used in fuel cells.
As can be seen from UK plans however, setting aside the
question of production method, combustion appears the
likely short-term end use. Lewis (2021a) highlighted that
the adoption of hydrogen as a combustion fuel, if applied
using only existing appliance emissions regulations, would
not deliver optimal air quality cobenefits and could increase
air pollution inequalities in cities (Lewis, 2021b).

This article examines in more detail the potential out-
comes for NOx emissions of low-fraction H2-NG blends if
applied in residential gas burners. It generates a meta-
analysis of existing evidence on NOx emissions from H2-
NG blends when combusted. We estimate that the range
of plausible NOx emissions changes if low-fraction H2-NG
blends were applied in the United Kingdom for domestic
combustion, using existing appliances without modifica-
tion or additional regulation on emissions. Based on liter-
ature emissions, best, worst, and mean air quality damage
costs (and savings) are estimated to indicate the possible
scale of impacts in economic terms. Effects of different
NOx scenarios are also considered on both a single house-
hold scale and an urban budget. We include data from
a range of domestic burner end uses in our meta-
analysis, since these would all be affected by hydrogen
blending in gas networks. However, discussion is focused
on space heating since other appliances, such as gas coo-
kers and gas fires, are more likely to be replaced by electric
equivalents. Widespread deployment of electric heat
pumps, the electrification alternative to gas boilers, may
be constrained in the United Kingdom by available elec-
trical power in winter and high consumer installation
costs (Bell et al., 2016; Rendali et al., 2021), so hydrogen
remains a plausible approach for homes decarbonation.

Literature review
A literature review was conducted to (1) identify studies
and experiments estimating NOx emissions from combus-
tion systems analogous to those of domestic burners,
where the H2-NG composition was varied; and (2) extract
data and reported relationships between fractional hydro-
gen content in the fuel and reported changes in NOx

Art. 10(1) page 2 of 15 Wright and Lewis: NOx emissions from domestic combustion of hydrogen and natural gas blends
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emissions, relative to a 100% natural gas or methane
base case.

Aside from hydrogen fraction in the combustion fuel,
several other experimental factors are found to affect
flame temperature and therefore NOx. These include
equivalence ratio (j, the ratio of fuel to air), burner geom-
etry, and the degree of fuel and air premixing (Ilbas et al.,
2005a; Dutka et al., 2015). Each has a different effect on
the temperature of combustion. The higher adiabatic
flame temperature of hydrogen is expected to increase
thermal NO emissions relative to methane. However, these
other factors could act to either diminish or exacerbate
this effect. Should hydrogen be blended into existing gas
networks, the response of individual appliances will be
highly dependent on these factors and are difficult to
anticipate in advance.

For nonpremixed flames, most literature indicates that
increasing hydrogen fraction leads to increased NOx emis-
sions. However, there is disagreement regarding which
process is responsible. Aside from the Zel’dovich mecha-
nism, the other main route to NO is the Fenimore mech-
anism. This forms prompt NO and is highly dependent on
the concentration of CH radicals in the flame front (Ilbas
et al., 2005a; El-Ghafour et al., 2010). Some studies found
an augmented Zel’dovich mechanism to be responsible,
due to correlation of NOx and temperature profiles
(Choudhuri and Gollahalli, 2000; Cozzi and Coghe,
2006). Others attributed the NOx increase at low hydrogen
compositions (0%–50% v/v) to prompt NO, from correla-
tion of CH and NO radical profiles (Rortveit and Hustad,
2003; El-Ghafour et al., 2010). Although it has been sug-
gested that NOx emissions can be controlled by fixing the
equivalence ratio in nonpremixed flames (Leicher et al.,
2022), results from the literature discussed do not find
this to be the case.

Other studies found little change or a slight decrease in
NOx emissions. This was often the result when premixed
or partially premixed flames were used (Zhao et al., 2019a,
2019b) and/or lack of combustion control meant equi-
valence ratio was not kept constant (Kim et al., 2009;
Kippers et al., 2011; Nitschke-Kowsky and Wessing,
2012). As hydrogen is added to these systems, the increas-
ingly fuel-lean conditions can act to suppress the expected
temperature increase. However, this has an inherent effect
on the efficiency of an appliance (Lewis, 2021a), and
derating has been observed on hydrogen addition (Gran-
ville et al., 2022). It is also possible that combustion con-
trol in premixed burners does not respond properly to
hydrogen addition, such that NOx emissions are not
reduced (Leicher et al., 2022).

A review as part of the Testing Hydrogen admixture for
Gas Applications (THyGA) project found that NOx emis-
sions from boilers burning H2-NG blends were similar to
those of natural gas combustion (Schaffert et al., 2020).
However, data from recently developed ultra-low-NOx boi-
lers (yet to be widely installed) predominated in this
review and may have steered this conclusion. In addition,
not all studies considered had their results corrected for
energy equivalence. Hence, this conclusion may not be
applicable to evaluating the impacts of hydrogen fuel

policy when considering older preexisting boilers. In the
recently published intermediate testing report, the THyGA
project tested a range of domestic gas combustion appli-
ances (Schweitzer, 2022). Although NOx emissions gener-
ally decreased for 0%–60% hydrogen addition, the
observed reduction in heat input resulted in increased
time to heat water when testing a cooker. This has been
observed by other studies on 3 different boiler designs,
who suggest that this reduction in load is enough to sig-
nificantly increase consumer complaints (Nitschke-Kowsky
and Wessing, 2012).

Literature sources come to very different conclusions
about the impact of hydrogen fraction in H2-NG blends
on NOx emissions. Since this relationship is complex
(Granville et al., 2022), the discrepancy is most likely due
to experimental variation between studies. Another con-
sideration is whether the burner studied is designed spe-
cifically for research or for domestic end use. It is possible
that more research burners see an increase in NOx than
domestic burners, but this is not always the case and other
experimental variation obscures this potential result. How
the age and year of production of the burner affects the
relationship between hydrogen fraction and NOx also suf-
fers from similar issues.

The testing procedures in many studies do not align
with UK Government ambitions of 20% volumetric hydro-
gen addition, with no data points between 0% and 70%
hydrogen in some cases (e.g., Cellek and Pınarbaşı, 2018;
Büyükakın and Öztuna, 2020). Some studies do not cor-
rect for the reduction in heat input observed on (volumet-
ric) hydrogen addition, which would be necessary for
providing consumers with a reliable and efficient energy
source. This article aims to provide information that is
directly relevant to real-world hydrogen blending, in
a UK context.

Here, we consider the range of plausible NOx emissions
outcomes that might occur, accounting for the unpredict-
able old stocks of gas boilers that may persist for many
years. Since so little is known about how preexisting boi-
lers may respond to a change in fuel blend, we use all
available literature sources to generate a representative
range of possible NOx impacts. Although some data sets
are based on research burners rather than end-use appli-
ances, these are included in further analysis to increase
our evidence base. Since there is no detailed information
on the number of different domestic burner types in the
United Kingdom, we do not consider any result more or
less likely but generate these to inform future policy-
making and illuminate the potential scale of effects.

Literature containing suitable emissions data was iden-
tified as part of the review and is presented in Table 1.
Papers reporting syngas combustion products were
excluded from Table 1 due to the presence of significant
amounts of CO in the fuel (Garcı́a-Armingol and Ballester,
2015; Brown et al., 2019; Pashchenko, 2020), which could
impact NOx emissions via the prompt formation mecha-
nism. (It is unlikely to influence combustion temperature
as both CO and hydrogen have an adiabatic flame tem-
perature of 2,400 K). Data sets with fewer than three
different H2-NG blends/compositions were excluded

Wright and Lewis: NOx emissions from domestic combustion of hydrogen and natural gas blends Art. 10(1) page 3 of 15
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Table 1. Summary of literature containing hydrogen-natural gas nitrogen oxides (NOx) emissions data used in this work. DOI: https://doi.org/10.1525/elementa.2021.00114.t1

Data Set Authors

Year of

Publication Title Data Location

Combustion

Type

Burner End

Use

Range of

H2 (%)

j
a (Fuel to

Air Ratio)

NOx With

Increasing H2

1 M. S. Cellek and A. Pinarbasi 2018 Investigations on performance and
emission characteristics of an
industrial low swirl burner while
burning natural gas, methane,
hydrogen-enriched natural gas, and
hydrogen as fuels

Fig. 12a N/A Research 0–100 (mass) 0.833 Increase

2 M. K. Buyukakin and S.
Oztuna

2020 Numerical investigation on hydrogen-
enriched methane combustion in
a domestic back-pressure boiler and
nonpremixed burner system from
flame structure and pollutants aspect

Fig. 9 Nonpremixed Domestic
boiler

0–75 (mass) 0.833 Increase

3 S. Choudhury, V. McDonell,
and S. Samuelsen

2020 Combustion performance of low-NOx and
conventional water heaters operated
on hydrogen enriched gas

Fig. 7b b Partially
premixed

Water storage
heater

0–30 (vol.) >1 Negligible

4 Y. Zhao, V. McDonell, and S.
Samuelsen

2019b Experimental assessment of the
combustion performance of an oven
burner operated on pipeline natural
gas mixed with hydrogen

Fig. 12a b Partially
premixed

Oven burner 0–25 (vol.) 1.55–1.4 Negligible

5 Y. Zhao, V. McDonell, and S.
Samuelsen

2019a Influence of hydrogen addition to
pipeline natural gas on the
combustion performance of a cooktop
burner

Fig. 12a Premixed Cooktop
burner

0–50 (vol.) 2–1.5 Decrease

6 S. A. A. El-Ghafour, A. H. E.
El-dein, and A. A. R. Aref

2010 Combustion characteristics of natural
gas-hydrogen hybrid fuel turbulent
diffusion flame

Fig. 5 c Nonpremixed Research 0–50 (vol.) N/A Increase

7 F. Cozzi and A. Coghe 2006 Behavior of hydrogen-enriched
nonpremixed swirled natural gas
flames

Fig. 9 Nonpremixed Research 0–100 (vol.) 0.71-0.17 Increase

8a P. Rajpara, R. Shah, and J.
Banerjee

2018 Effect of hydrogen addition on
combustion and emission
characteristics of methane fueled
upward swirl can combustor

Fig. 12a N/A Research 0–10 (mass) 0.3 Increase

Downloaded from http://online.ucpress.edu/elementa/article-pdf/10/1/00114/709740/elementa.2021.00114.pdf by University of York user on 25 July 2022



8b P. Rajpara, R. Shah, and J.
Banerjee

2018 Effect of hydrogen addition on
combustion and emission
characteristics of methane fueled
upward swirl can combustor

Fig. 12b N/A Research 0–80 (vol.) 0.345–0.14 Increase

9 F. H. V. Coppens, J. De
Ruyck, and A. A. Konnov

2007 Effects of hydrogen enrichment on
adiabatic burning velocity and NO
formation in methane þ air flames

Fig. 6 N/A Research 0–35 (mol.) 1.25 Decrease

10 H. S. Kim, V. K. Arghode, and
A. K. Gupta

2009 Flame characteristics of hydrogen-
enriched methane–air premixed
swirling flames

Fig. 9e d Premixed Research 0–9 (mass) 0.717–0.694 Increase

11a P. Nitschke-Kowsky and W.
Wessing

2012 Impact of hydrogen admixture in
installed gas appliances

Fig. 10 Premixed Domestic
boiler

0–30 (vol.) N/A Decrease

11b P. Nitschke-Kowsky and W.
Wessing

2012 Impact of hydrogen admixture in
installed gas appliances

Fig. 11 Premixed Domestic
boiler

0–30 (vol.) N/A Decrease

12 M. J. Kippers, J. C. De Laat,
R. J. M. Hermkens, J. J.
Overdiep, A. van der
Molen, W. C. van Erp, and
A. van der Meer

2011 Pilot project on hydrogen injection in
natural gas on island Ameland in the
Netherlands

Fig. 9 Condensing
boiler

Domestic
boiler

0–20 (vol.) N/A Decrease

13 M. Ilbas, I. Yilmaz, N.
Vesiroglu, and Y. Kaplan

2005 Hydrogen as burner fuel: modeling of
hydrogen–hydrocarbon composite fuel
combustion and NOx formation in
a small burner

Table III Nonpremixed Research 0–100 (vol.) �1 Increase

14 S. Naha and S. K. Aggarwal 2004 Fuel effects on NOx emissions in partially
premixed flames

Fig. 12 Partially
premixed

Research 0–90 (vol.) N/A Negligible

aRanges are displayed in order of low to high hydrogen fraction.

bCorrection to 3% O2 has been chosen as data for use here, as this is most commonly used for stationary combustion. Authors suggest that correction to CO2 is affected by hydrogen rich fuels and may not be
a fair method here.

cData were taken from midburner and radial distance of 7 mm (2dj), as this is where maximum NOx emissions were measured. This is useful for considering a worst-case scenario.

dData were taken from midswirl strength and 2.5 mm from burner exit, as this is where maximum NOx emissions were measured. This is useful for considering a worst-case scenario.
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(Schefer et al., 2002; Colorado et al., 2017). H2-NG com-
positions ranging from 0 to at least 20 vol% were consid-

ered necessary for inclusion, so that there was a clear
trend within the range being considered in this article.
Data sets not covering this were excluded (Choudhuri and

Gollahalli, 2000; de Santoli et al., 2020). Data where the
temperature is kept constant across H2-NG compositions
through the use of a diluent are also excluded as this is
not how domestic boilers would operate in the real world

(Rortveit and Hustad, 2003). Both old and more recent
papers were included in Table 1, providing data for
a range of appliances, consistent with other current test-
ing programs (Schweitzer, 2022). This will allow us to

deduce the full range of outcomes for NOx emissions,
representing different rates of boiler replacement in the
United Kingdom.

Method
Literature reports of experiments of hydrogen and natural

gas/methane flames can express the blends used in a vari-
ety of units. Where necessary, hydrogen fraction was con-
verted from percentage by mass to percentage by volume
through Equation 1,

fv ¼
fm

fm þ 0:127ð1� fmÞ
; ð1Þ

where fv and fm are the volume and mass fractions of
hydrogen, respectively, and 0.127 is the ratio of densities
of hydrogen to methane at room temperature and pres-

sure. Natural gas is taken as 100% methane in this calcu-
lation. An example of natural gas composition was given
in Data Set 1 (Cellek and Pınarbaşı, 2018) as over 95%

methane, so this is taken to be a reasonable approxima-
tion. Fuel composition was expressed as vol.% to be
consistent with the policy description of future implemen-
tation within the Hydrogen Strategy (BEIS, 2021a) and

because it yields data points over a larger range of percen-
tages. Mole fraction data (Coppens et al., 2007) were
assumed equivalent to fv. A relative change in NOx emis-
sions compared to 100% natural gas was calculated for

each data set. The absolute amount of NOx emissions in
each literature study is not required, since we are consid-
ering only the relative change in emissions that may arise
from a change in fuel blend. Least squares regression

analysis was performed on each data set to give a simple
expression of change in NOx for different hydrogen frac-
tions. Although there is no simple expression that can

accurately describe the change in NOx across a range of
appliances, linear expressions were suitable in this case
since most R2 values were above .9 for all data sets in
Table 1 and all were above .75. Combining all relevant

literature studies and resulting linear expressions pro-
vided the span of possible effects on NOx emissions as
hydrogen fraction is changed.

Interpolation of experimental data from Ilbas et al.
(2005b) was carried out using accompanying numerical
data from modeling, to produce a more complete data
set. Figure S1 shows the calibration curve used.

The lower energy density of hydrogen compared to
natural gas means that, without correction for energy
equivalence, hydrogen addition results in a reduction
in heat output on combustion, which leads to reduced
thermal efficiency. Some of the studies accounted for this
by keeping the energy input of the fuel constant across
the different fuel compositions, but it was unclear in
many cases whether this had been accounted for. Due
to wide experimental variation across studies, further
corrections for energy equivalence were not applied.
Hence, it is possible that calculations based on this
meta-analysis are an underestimation due this lower out-
put effect.

For 5, 10, 15, and 20 vol.% hydrogen blends, NOx emis-
sions were evaluated as percentage changes compared to
a 100% natural gas base case. The literature evaluated
gave a wide range of possible outcomes with increasing
hydrogen fraction, from substantially increased NOx emis-
sions to some studies that reported modest reductions.
Three scenarios were considered in more detail:

1. A worst case (Ilbas et al., 2005b), where hydrogen
addition causes the greatest increase in NOx

emissions. This would correspond to a scenario,
in which current boilers respond poorly to H2-
NG blends and are not replaced by lower-NOx

technology.
2. A best case, where hydrogen addition causes the

greatest decrease in NOx emissions (Nitschke-
Kowsky and Wessing, 2012). This would relate to
a case where the United Kingdom sees wide-
spread adoption of boiler technology that
reduces NOx emissions without a decrease in
efficiency, at the time of hydrogen blending.

3. A mean value, corresponding to the average NOx

emissions from all data. The context of this lies
between best and worst cases, where a range of
burner technologies in homes results in a range
of NOx responses observed across appliances.

These three linear regressions were then considered in
further calculations of possible NOx response to 5%, 10%,
15%, and 20% hydrogen blends if applied in the United
Kingdom, a country heavily reliant on natural gas boilers
for domestic space heating.

Percentage change in emissions was converted to an
annual mass change in NOx emissions in tons, using the
most recent available data for NOx emissions from domes-
tic combustion of natural gas, provided by the NAEI
(2019a). This assumed a full replacement of natural gas
with a H2-NG blend right across the United Kingdom.
Potential changes in national annual emissions for differ-
ence slope scenarios and blends were then converted to
damage costs (in GBP) using latest UK Government
accounting values. See HM Treasury Green Book damage
costs (Birchby et al., 2020).

Damage costs are estimated using a complex method-
ology that accounts for the health economic impacts of
a pollutant via morbidity and mortality changes. Atmo-
spheric emissions are transformed into a change in
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concentration via a model and that change linked to
known disease or mortality concentration response func-
tions. Since different emissions lead to different changes
in concentrations and exposure, depending on where
a pollutant is released, a range of estimates of damage
costs exist. For example, 1 ton of road transport emissions
in a city center has greater health “cost” than the same
from a 50-m high rural power station stack. In the case of
NO2, a cost is attributed to the change in incidence in
mortality arising from exposure to an increment in con-
centration, recently updated in Committee on the Medical
Effects of Air Pollution (2018), and the change in inci-
dence in rates of asthma, diabetes, and lung cancer. Cost
estimates are then derived from quality-adjusted life years
lost, multiplied by a standardized value of a life year lost.
A detailed description of the underlying methodologies is
provided in Ricardo plc (2019). The values per ton of pol-
lutant are then incorporated into the UK Treasury Green
Book of damage costs (Birchby et al., 2020) used for policy
value-for-money assessments.

Three sensitivities of damage costs are published for
NOx emissions relevant to a domestic setting, accounting
for a range of potential geographies; 48,078 GBP per ton
of NOx, the high sensitivity damage cost, was used since
this was most representative value for emissions sources
occurring in or close to population centers, which is ulti-
mately where most of the UK population lives (83% urban
and 17% rural). In addition, this was the highest damage
cost so gives the fullest plausible range of potential
changes in NOx when multiplied by our three scenarios.

To consider the effect on a local scale, lifetime emis-
sions of a boiler were estimated, assuming a boiler is
replaced on average every 15 years (Aste et al., 2013; Vig-
nali, 2017) and that 23 million homes in the United King-
dom are connected to natural gas networks.

The NAEI (2019b) interactive map was used to analyze
the effect of H2-NG blends to annual NOx emissions in
a small city. A 11 � 13 km2 section of the city of York was
resolved in 1 km � 1 km squares. NOx emission from
“nonindustrial combustion plants” was calculated as an
average from 3 screen-grabs of the same 11 � 13 km2

section. Nonindustrial combustion plants were the most
appropriate emission reported sector available in the
interactive inventory for translation to domestic combus-
tion. All calculations were also carried out using NAEI
2019 NOx emissions from domestic combustion, as a com-
parison to current emissions.

To put NOx damage cost estimates into broader envi-
ronmental context, a similar financial accounting
approach was applied to carbon savings based on green
hydrogen displacement of natural gas. Each H2-NG blend
was converted to a natural gas saving, assuming hydrogen
is 3.5 times less energy-dense than natural gas (Staffell,
2011; BEIS, 2021b). In 2019, the CO2 emissions from res-
idential combustion of natural gas were 66.5 Mt and with
natural gas responsible for 86% of this (Bell et al., 2016;
BEIS, 2021c). The amount of carbon saved relative to this
was estimated for each H2-NG blend. Using the UK carbon
price for November 2021 of 60 GBP per ton (Ember,
2021), carbon savings in millions of GBP were calculated.

NOx emission changes for different H2-NG fuel
blends-Literature synthesis
The linearized response of NOx emissions from domestic
combustion of H2-NG fuel blends is presented in Figure 1.
The range of 0%–20% is considered as this is of interest
for initial blending policies in the United Kingdom and is
the range that is likely safely compatible with existing
boilers without any substantial modification. For 5%
hydrogen, this analysis suggests that NOx emissions could
change somewhere in the range –12 to þ39%. For a 20%
hydrogen blend, the span of effects increases, to the range
of –50 to þ154%.

There is no accurate information available regarding
weighted types of domestic boiler/combustion appliances
in use in the United Kingdom. The most useful informa-
tion available is that in 2020, and 76% of homes with
boilers have condensing boilers (Department for Levelling
Up, Housing and Communities, 2021). Since these are
often premixed, it could be implied from inspection
Table 1 that NOx emissions will follow a case somewhere
between the mean and best-case scenario. However, not
all studies used account for the reduced energy output
resulting from an increase in hydrogen fraction of H2-
NG, including the study representing the best-case sce-
nario. We also note the significant number of studies
which showed a large increase in NOx emissions. Hence,
we cannot rule out with any certainty any of the given
scenarios. The large differences between studies originate
from different flame burner designs and experimental
conditions used; equally, a wide range of different boilers
and designs are likely in use currently in UK homes (Ven-
field and Brown, 2018). Hence, a mean regression scenario
is reasonable to consider, shown in Figure 1 in dashed red
and used in our later analyses. Taking all relevant literature
values and weighting equally give a mean NOx emission
increase of 7%–30% for blends of over the range 5%–
20% hydrogen by volume. It is possible that this average
scenario is a slight overestimation due to the inclusion of
research burners in literature, but the inclusion of data
from papers that may not have corrected for energy equiv-
alence will balance this out to some degree. The annual
UK NOx emissions damage costs of different H2-NG blends
are shown in Figure 2 and are compared against the
current estimated damage cost from natural gas domestic
combustion of approximately 940 million GBP per year.
Analysis of hydrogen effects is relative to a business-as-
usual natural gas scenario to highlight the impact of an
H2-NG blending policy in isolation. We do not attempt to
account for other parallel policy interventions, such as
increased buildings insulation, or the adoption of alterna-
tive low carbon technologies, such as heat pumps.

By increasing hydrogen fraction from 0% to 20%, dam-
age costs would almost halve to 470 million GBP per year
should emissions follow the best-case scenario (e.g., the
most optimistic literature report), suggesting that with the
right burner condition, hydrogen addition could be sub-
stantially beneficial for NOx, when compared to natural
gas. The mean (and likely most plausible) case indicates an
increase in NOx emissions and associated damage costs,
rising by 292 million GBP per year compared to business
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Figure 1. Nitrogen oxide (NOx) emissions for hydrogen-natural gas fuel blends in domestic burners. Summary
of reported effects of adding hydrogen to natural gas in domestic burners and resulting NOx emissions. Numbers in
the legend reference papers in Table 1, from which raw data were extracted. Presented here are the linear regression
analyses of raw data from each study. NOx emissions are presented relative to a pure natural gas or methane base case.
The mean relationship (red, dashed) of all studies is also presented, weighting all studies equally. DOI: https://
doi.org/10.1525/elementa.2021.00114.f1

Figure 2. Annual nitrogen oxide (NOx) emissions damage costs. Calculated for best (orange), mean (gray), and
worst-case (yellow) scenarios derived from Figure 1. Natural gas domestic combustion 2019 (blue) is the current
annual damage cost of NOx emissions arising from domestic combustion of natural gas in 2019 (National Atmospheric
Emissions Inventory, 2019a), presented here for comparison. DOI: https://doi.org/10.1525/elementa.2021.00114.f2
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as usual with 100% natural gas. A significant increase in

damage costs of 1,146 million GBP per year is estimated
for the worst-case scenario (the least optimistic published
raw data). These savings/costs are potentially large; how-
ever, the lack of directly relevant data and the sensitivity of
outcomes to individual burner designs mean that the

impacts are very difficult to predict with any certainty. This
work can however provide some informative and
evidence-based bounds to the possible scale of effect.

Figure 3 shows mass-based carbon savings from a H2-
NG blending policy of up to 20% hydrogen. Due to the
lower energy density of hydrogen compared to natural gas,
a nationwide blending of 20% hydrogen would only reduce

CO2 emissions by 5.7% (3.3 Mt). If hydrogen blending is to
become a mechanism for substantial national carbon emis-
sions reduction, then the transition to higher hydrogen
fraction fuels (beyond 20%) would need to occur relatively
quickly after the infrastructure for blending is established.

Comparing NOx damage costs to carbon impacts,
expressed in economic terms in Figure 3, allows for an
accounting-based estimate to be made of the overall

environmental damage saving/cost of the policy to be
evaluated. We acknowledge that NOx damage cost and
carbon pricing are not directly equivalent scientific
metrics, the latter market-derived, the former a fixed
value based on expert assessment. However, in policy-

making apples versus oranges comparisons are fre-
quently made when placed in an economic context. In
addition, possible NOx or indeed greenhouse gas emis-
sions from the hydrogen production process have not
been considered here. However, looking at the problem

from an “emissions accounting” perspective may be use-
ful for policy-makers to assess whether hydrogen-specific
NOx standards are needed. For the mean scenario of all
H2-NG compositions considered, the economic cost of the

small increase in NOx emissions is offset by about two
thirds by the carbon reduction arising from adding hydro-
gen to natural gas. However, when considering the worst-
case NOx emissions, carbon savings offset less than 16% of
additional NOx damage costs. In the most optimistic sce-
nario, there is a combined benefit of around 650 million
GBP per year for a 20% hydrogen fuel. Although the carbon
price can fluctuate significantly, this analysis shows that
best and worst cases lead to very different net outcomes
in environmental economic terms.

Even with a 5% blend, the smallest hydrogen fraction
fuel considered, the least optimistic scenario still brings
risk. If boilers were to respond poorly to blending, a dam-
age cost in the region of 300 million per year would be
plausible. However, should the response in the real world
follow the mean scenario then a small increase in NOx

damage cost could be anticipated, but offset to a large
degree by carbon savings, a close to neutral policy in
economic terms. Correcting for energy density, a 5% blend
only saves 1.4 vol.% of natural gas. Hence, it should be
considered whether this high risk for low reward is justi-
fied as a steppingstone to a long-term goal of full decar-
bonization of domestic combustion with hydrogen.

Impacts on NOx emissions from H2-NG blends
at appliance scale
The estimated impacts for NOx emissions from a single
boiler are presented in Figure 4. This follows the same
pattern as annual NOx emissions damage costs but
emphasizes effects on individual households. It is clear
from literature that it is feasible to engineer a gas boiler
to emit lower NOx from H2-NG blends, and regulation
would ideally require that. Assuming a relatively long ser-
vice lifetime of 15 years means it will likely be some time
until hydrogen boilers, or those specifically designed for

Figure 3. Carbon savings from addition of hydrogen into the United Kingdom natural gas network. Mass-based
carbon savings are presented on the left axis. An estimation of carbon savings as an economic metric is presented on
the right axis. This is based on a carbon price of 60 GBP/ton (Ember, 2021). DOI: https://doi.org/10.1525/
elementa.2021.00114.f3
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H2-NG blends, are deployed at scale. If hydrogen blending
is introduced in 2025, this would mean boilers supplied in
2010 would still be widely in use. Since regulations on
NOx from space heating were not introduced in the United
Kingdom until 2018 (Commission Regulation [EU], 2013),
these are unlikely to be the low-NOx boilers that have
been recently developed. Undoubtedly over time, the pos-
sible negative effects of hydrogen addition would dimin-
ish leaving only boilers designed for this fuel. However,
that transition could take upwards of 20 years to fully
complete, considering that hydrogen boilers are still in
prototype stages and natural gas boiler installations in
existing homes are not expected to be banned until
2035 (BEIS, 2021d). The effects here therefore represent
impacts on “day one” in a hydrogen fuel transition. Miti-
gation of NOx emissions effects, for example, through
accelerated boiler replacement, would not be necessary
in the best-case scenario. Should emissions follow the
worst-case scenario, there is potential for emissions per
boiler to increase to 32.3 kg in its lifetime if run on
20% hydrogen. Using the high sensitivity damage cost
values for emissions in the urban environment, 32.3 kg
of NOx would generate approximately 1,590 GBP in dam-
age costs over the 15-year lifetime of the boiler (5%
annual discount rate applied). Accounting for carbon sav-
ings (with the same discount rate) reduces the net cost to
approximately 750 GBP, suggesting boiler replacement
may not be necessary. If carbon savings are not considered,
however, assuming a new boiler price approximately 2,000
GBP, this would indicate an approximate 1.25-life cycle
payback based solely on NOx emissions avoided. This

suggests that an economic case for accelerated home boiler
replacement could be constructed largely around a justifica-
tion of “NOx avoided” rather than the perhaps more intu-
itive “carbon saved.”

Significance for an urban NOx budget
In locations where urban NOx emissions from road trans-
port are declining due to better regulation and fleet elec-
trification, it is valuable to consider what fraction of urban
emissions derive from domestic combustion and how
this might change in the future. The impacts on annual
NOx emissions in York, UK (population approximately
210,000, urban area approximately 140 km2, and total
area 270 km2) have also been considered using the 3 pos-
sible hydrogen scenarios.York was chosen to model a small
city whose major source of NOx emissions, aside from
transport, is domestic combustion. There are no large
industrial sources, energy production facilities, or other
sources such as shipping or aviation. Currently, annual
NOx emissions from nonindustrial combustion plants
from the 143 km2 area considered are 175 ton per year
or 14% of total city NOx emissions. Blending of 20%
hydrogen into the gas network in the city could see emis-
sions from this sector reduce to 88 ton or 8% of total NOx

in a best-case scenario, to the other extreme increase by
445 ton of NOx in the worst case, making up almost 30%
of total NOx emissions. Based on current projections, road
transport emissions in UK cities are estimated to fall by
a further 40% by 2030, which would leave domestic com-
bustion from a H2-NG making up 35% of emissions in
2030. With transport making up only 30% of NOx

Figure 4. Estimated nitrogen oxide (NOx) emissions for a single boiler over 15 years for different hydrogen-
natural gas fuel compositions. An average 15-year boiler lifetime is assumed. Calculated for best (orange), mean
(gray), and worst-case (yellow) scenarios determined from literature data in Figure 1. The natural gas domestic
combustion (NGDC) value is derived from national emission estimates with a denominator of households
connected to the gas network in the United Kingdom, estimated as 23,000,000 (Bell et al., 2016). NGDC 2019
(blue) is the current annual NOx emissions from domestic combustion of natural gas in 2019 (National
Atmospheric Emissions Inventory, 2019a). DOI: https://doi.org/10.1525/elementa.2021.00114.f4
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emissions in this scenario, domestic combustion could
become the dominant source of NOx emissions in the city.

Conclusions
In this article, we have conducted a meta-analysis of exist-
ing data on NOx emissions from the combustion of H2-NG
blends in gas boilers. This has allowed us to present the
range of possible changes in NOx emissions if hydrogen
was added into the natural gas network, a policy that has
significant political support in the United Kingdom (BEIS,
2021a). We consider only the impacts of blends up to 20
vol.% hydrogen, consistent with the short-term aims of
the UK Hydrogen Strategy, and a gas mixture that would
likely be safely compatible with existing equipment.
Despite the rapid development of test case deployments
and proposals for scale-up, we find remarkably little in the
way of quantitative assessment of how adding hydrogen
to natural gas may impact on NOx emissions, a crucial
component of air quality and public health.

A review of literature reveals a huge range of possible
changes in NOx emissions from H2-NG fuel blends, a result
of experimental and appliance variation in the original
literature. A key issue is the inconsistency regarding
whether the difference in energy density of hydrogen and
natural gas is accounted for in literature data. Nonethe-
less, this is the only firm evidence base available from
which estimates of effects or at least bounds on effect can
be made. Since we do not have information on the specific
types of domestic burner systems used in the United King-
dom, we do not propose any of our scenarios to be more
likely than another. But we do note that much of the
literature data indicates increasing NOx emissions as
hydrogen composition is increased. These limitations
deriving from the original literature mean our necessary
methodological assumptions are integrated within results
but have allowed us to present the full range of potential
outcomes for NOx. The primary aim of hydrogen blending
is not to reduce NOx emissions but to decarbonize domes-
tic combustion through a low-regret option. Analysis indi-
cates that hydrogen blends could indeed be low regret if
burned in favorable boilers and would generate a substan-
tial air quality cobenefit in addition to the primary carbon
reduction objective. However, our mean and worst-case
scenarios show sizable increases in NOx emissions, where
the damage costs begin to significantly outweigh carbon
savings. The air quality risk associated with hydrogen
blending should be considered, especially since the small
hydrogen fractions considered in this study result in car-
bon savings of less than 6%.

For boilers that perform poorly with H2-NG blends,
a positive economic case for investment in accelerated
scrappage and replacement can be constructed based on
the combined NOx and carbon reductions that might be
delivered from new custom designed boilers. Although
undoubtedly any introduction of hydrogen into a national
gas network would proceed slowly, and most likely only on
a regional basis initially, we estimate that even small %
blends could have notable impacts on NOx emissions and
that these may be significant at city scale in the wider
context of ever-reducing road transport emissions of NOx.

Our analysis should not be construed as either pro or anti-
hydrogen as a fuel. We raise only the issue of limited evi-
dence on the performance of the existing boiler
infrastructure and the possible effects on NOx emissions,
something which in turn may alter the economic case for
hydrogen as a net zero fuel for domestic combustion. A
program of testing of older representative appliances would
help resolve this important outstanding evidence gap, as
would the inclusion of NOx monitoring in field trials where
H2-NG gas is being deployed. This would allow our range of
NOx outcomes to be narrowed, potentially leading to more
certainty on the most likely NOx scenario as a result of H2-
NG blending in the United Kingdom.
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