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Eusociality is a rare but successful life-history strategy that is
defined by the reproductive division of labour. In eusocial
species, most females forgo their own reproduction to support
that of a dominant female or queen. In many eusocial insects,
worker reproduction is inhibited via dominance hierarchies or by
pheromones produced by the queen and her brood. Here, we
consider whether these cues may act as generic ‘environmental
signals’, similar to temperature or nutrition stress, which induce a
state of reproductive dormancy in some solitary insects. We
review the recent findings regarding the mechanisms of
reproductive dormancy in insects and highlight key gaps in our
understanding of how environmental cues inhibit reproduction.
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Introduction

Insects, such as most animals, are adapted to cope with
adverse environmental conditions, including poor resource
availability, decreased day length or falling temperatures.
One strategy that insects have evolved to deal with these
adverse conditions is dormancy: a state of suppressed de-
velopment, reproduction or metabolism [1-4].

There are two types of dormancy: quiescence and dia-
pause [1]. Diapause is an adaptive response to an en-
vironmental cue (e.g. day length) that is predictive of

upcoming unfavourable environmental conditions [1] and
involves distinct ecophysiological phases [2]. In contrast,
quiescence is considered an immediate or direct response
to unfavourable conditions (e.g. deficiency in nutrition)
and may, or may not be, adaptive [2]. Throughout this
article, we use ‘dormancy’ as a general term to encompass
both quiescence and diapause [1,2]. This general term
reflects that some examples of dormancy, particularly in
adult Drosophila melanogaster, are not easily classified as
either quiescence or diapause [1,2,4]. This general term
also reflects that there are some similarities in the un-
derlying physiology, mechanisms and phenotypes of both
quiescence and diapause [1,2,4,5].

Dormancy can affect different insect-life stages by ar-
resting or slowing the development of the embryo,
larvae or pupae [6]. In adults, unfavourable environ-
mental conditions can result in a temporary pause in
reproduction, a phenomenon known as reproductive
dormancy [3]. Reproductive dormancy allows insects to
tailor their reproductive strategy to the prevailing con-
ditions enhancing survivability and long-term fitness [5].
In this article, we focus on reproductive dormancy.

Neuroendocrine control of reproduction in
female insects

Reproduction in female insects, such as in other animals,
is under the exquisite control of the neuroendocrine
system. The core neuroendocrine system in insects
consists of neuropeptides, juvenile hormones (JH) and
20-hydroxyecdysone (20E) (reviewed in [7]). In D. mel-
anogaster, ecdysis-triggering hormone (ETH) is also a
key component of the neuroendocrine system regulating
oogenesis and female fecundity [8e¢]. These hormones,
together with biogenic amines and insulin signalling
[7,9,10], act to regulate oogenesis [11] (Figure 1). How-
ever, the exact roles of these components in oogenesis
vary widely among insect orders and even between
closely related species. For example, JH acts as a gona-
dotrophin in the bumblebee (Bombus terrestris) [12] but
not in the honeybee (Apis mellifera) [13].

In insects, biogenic amines (predominantly dopamine,
serotonin and octopamine) function as neurotransmitters
and as neurohormones that are transported within the
haemolymph and act on peripheral tissues, including the
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2 Development and regulation

Figure 1
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Oogenesis and neuroendocrine control of reproduction and reproductive dormancy in D. melanogaster. (a) Stages of oogenesis in D. melanogaster
[11] and the ovarian checkpoints that result in cell death in response to environmental cues [30,31]. (b) Major neuroendocrine signalling systems that
are known to respond to environmental signals and mediate reproduction in D. melanogaster [3,8¢¢,32¢ 39ee 40,46].

ovary and fat body [14,15]. These biogenic amines di-
rectly regulate oogenesis and oviposition in a range of
insects (e.g. [10,16-18]) and also indirectly affect oo-
genesis by regulating JH titres [19-21].

The species-specific differences in the neuroendocrine
signalling network mean it is impossible to come up with
a single general model of neuroendocrine regulation of
oogenesis in insects [22]. This highlights the need for a
detailed molecular understanding of neuroendocrine
control of oogenesis and reproduction in a wider range of
insects, particularly from phylogenetically diverse taxa.

Environmental cues affect reproduction
through altering neuroendocrine signalling
Environmental conditions such as temperature and
crowding cause alterations to these neuroendocrine sig-
nalling networks in insects, particularly biogenic amine,
ecdysone and JH signalling (reviewed in [23]). These
changes can occur rapidly (within 15min of an acute

environmental cue) and these rapid responses are collec-
tively known as the neuroendocrine stress response (or
‘generic stress response’). In Drosophila virilis, dopamine,
octopamine and tyramine levels are elevated 15 min after
exposure to an increased temperature [24]. Fast changes in
biogenic amine levels are also seen in response to different
environmental cues in diverse species, including mechan-
ical stress in honeybees (A. mellifera) [25], mechanical and
heat stress in a locust (Schistocerca gregaria) and a cockroach
(Periplaneta americana) [26]. These similarities in the re-
sponse to different environmental cues and between di-
verse species indicate that there are some evolutionarily
conserved aspects to neuroendocrine stress response. In D.
virilis and D. melanogaster, the increase in biogenic amine
levels precedes a rise in 20E [27] and a decrease in JH
degradation [19-21,28]. This rise in 20E is thought to
pause reproduction by activating the mid-oogenesis
checkpoint triggering cell death [29-31] (stage 7-9, Figure
la). Ecdysone, via ETH regulation of octopamine, also
inhibits ovulation [32¢] resulting in decreased fertility for
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several days following acute exposure to an elevated
temperature [28] (Figure 1b). The mid-oogenesis check-
point is activated in response to diverse acute environ-
mental cues in D. melanogaster and D. virilis [31], including
protein deprivation [33-35], heat stress [29], crowding [36]
and exposure to a parasitoid wasp [37].

But how much overlap is there between the neu-
roendocrine stress response (which governs the response
to acute environmental cues) and the neuroendocrine
regulation of reproductive dormancy (which occurs due
to more sustained or chronic environmental cues)?

We have the best molecular understanding of how re-
productive dormancy is regulated in D. melanogaster.
Reproductive dormancy can be induced in D. melano-
gaster by exposing flies for 7-11 days to low temperatures
and short photoperiods and it is rapidly reversible [38]. It
is proposed that, similar to the response to acute en-
vironmental cues, sustained environmental cues also
elevate the levels of biogenic amines, including dopa-
mine [39¢¢]. Enhanced dopamine and serotonin signal-
ling inhibit the production or release of insulin-like
peptides from insulin-producing cells [39¢¢]. Insulin
signalling is involved in the neuroendocrine stress re-
sponse [40] and reproductive dormancy in D. melanoga-
ster [38,41,42]. Reproduction in insects is sensitive to
nutrition (reviewed in [43]), and starvation conditions
result in reproductive dormancy in D. melanogaster [35].
It has been recently shown that insulin signalling and JH
are also key to this process in D. melanogaster [40,44¢].
Elevated biogenic amines likely act to reduce JH
synthesis or release and reduce 20E levels [45,46].
These changes to biogenic amines, JH and 20E, result in
reproductive dormancy via activation of the second
ovarian checkpoint, similar to that seen in response to
acute environmental cues in the neuroendocrine stress
response [47]. However, a recent study has indicated
that the reproductive repression seen in dormancy is
more complete than that seen in response to acute en-
vironmental cues. Reproductive dormancy causes arrest
of early oogenesis, a decrease in germ stem cell num-
bers and degeneration of oocytes from stage four of oo-
genesis [48e¢] (Figure 1a). This suggests that although
many environmental cues activate the mid-oogenesis
checkpoint in D. melanogaster, there may be additional
mechanisms or subtle differences in the response of this
checkpoint to specific environmental cues. This high-
lights a need to better understand how acute environ-
mental cues affect the first checkpoint to determine if
the activation of this first checkpoint is similar between
acute and chronic environmental cues.

That there are commonalities, both in hormone signal-
ling and the activation of ovarian checkpoints, between
the neuroendocrine stress response and reproductive
dormancy, suggest that, in D. melanogaster at least,
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reproductive dormancy may have evolved as an exten-
sion of the neuroendocrine stress response [47].

However, in contrast to acute environmental cues which,
in D. melanogaster, result in increased levels of 20E and
JH (Figure 1b), dormancy is associated with low levels of
both JH and 20E [49]. On the surface, this suggests
that fundamentally different mechanisms underpin the
acute neuroendocrine stress response and reproductive
dormancy in D. melanogaster. However, these differences
may, at least in part, be explained by the differential
regulation of octopamine. Octopamine is a key regulator
of the acute neuroendocrine stress response, but inhibits
dormancy [39¢¢]. Octopamine also regulates 20E and JH
titres [45,50]. These differences may also arise due to
differences in timing between acute and chronic ex-
posure to environmental cues. A possible mediator of
this temporal offset may be ETH, which causes the re-
lease of JH from the corpora allata [8ee]. The decreased
levels of E'TH associated with reproductive arrest may,
with a temporal delay, result in decreased JH levels as-
sociated with reproductive dormancy, however, this re-
mains to be tested.

Across a range of species, reproductive dormancy is as-
sociated with decreased JH, but the role of 20E is more
variable [42]. We, therefore, need a mechanistic under-
standing of how acute and chronic environmental cues
act to induce reproductive dormancy in a wide range of
species to determine the extent to which we can make
general predictions about how insects will respond to
environmental cues. Such predictions may be relevant to
assessing the response of insect species to rapidly
changing environments, identifying species that may be
at risk of decline/extinction or alternatively may have the
potential to become invasive. It is also crucial to un-
derstand how fundamentally different environmental
cues, such as temperature, mechanical stress and che-
micals, are detected and interpreted by the neuroendo-
crine system of different insects to give rise to
reproductive dormancy; do diverse environmental cues
result in the same alterations to the neuroendocrine
network and identical or different effects on reproduc-
tion in terms of checkpoint activation (Figure 2a).Also,
are these same systems responsive to an even wider
range of environmental signals, for example, social sig-
nals or pheromones? If so, could neuroendocrine-medi-
ated reproductive dormancy underpin the evolution of
different life-history strategies, such as eusociality?

Is reproductive constraint in eusocial insects
an example of reproductive dormancy?

Eusocial insects are defined by their reproductive divi-
sion of labour [51], with subordinates or ‘workers’ re-
maining reproductively inactive to support a
reproductive dominant or ‘queen’. The reduction of
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Figure 2
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Environmental cues and reproductive dormancy in insects. (a) A diverse range of environmental cues impact neuroendocrine signalling in insects.
However, there are key gaps in our knowledge regarding a) how different species are responding to environmental cues and stressors and b) how
these diverse stressors are read and interpreted to result in reproductive dormancy. (b) In the honeybee, reproduction in workers is repressed, at least
in part, by QMP. This is arguably the best-studied example of reproductive constraint in a eusocial inset, yet there are key gaps in our understanding of
how QMP is detected and how this signal is transmitted to the ovary to repress oogenesis [86,87].

reproductive capacity can be absolute, for instance, some
ant species lack ovaries altogether [52], or can be partial;
where workers retain some capacity to reproduce, as is
seen in the honeybee (A. meéllifera). The reduced re-
productive output of workers relative to queens arises
from behavioural and developmental mechanisms
termed ‘reproductive constraints’ [53]. The ability of
workers to produce offspring creates conflict within the
colony [54] and, as a result, the ability of workers to
reproduce is often conditional on external cues [53].

Although reproductive constraints could have evolved
via novel molecular pathways, it is thought that they are
more likely to have arisen through the co-option of
pathways that controlled reproductive and foraging pro-
cesses in solitary ancestors (ovarian ground-plan hy-
pothesis) or a conserved genetic ‘toolkit’ (reviewed in
[55]). From this perspective, can reproductive constraint,
which is crucial for the evolution of eusociality, be
considered analogous to reproductive dormancy in soli-
tary insects?

In primitively eusocial species, such as the bumblebee
(Bombus impatiens) (56|, Polistes spp. [57] and Ropalidia
marginata (58] paper wasps, colonies are often small.
Reproductive rights are therefore determined beha-
viourally through aggression and dominance hierarchies,
particularly in the early stages of colony development.
Dominance hierarchies are also important in some po-
nerine ants (e.g. Diacamma spp. and Dinoponera quad-
riceps), which have evolved to be queenless [59].

Biogenic amines mediate aggressive behaviour in various
insects, including D. melanogaster (e.g. [60-62]) and are
important in generating dominance hierarchies in pri-
mitively eusocial species. In bumblebees and the
queenless ant Streblognathus peetersi, brain octopamine
levels positively correlate with rank [63,64]. While in
Polistes wasps and ponerine ants, dopamine levels, rather
than octopamine levels, were associated with dominance
status [65-67]. However, elevated biogenic amines may
be a consequence rather than a cause of aggression in
some species. For example, in Diacamma sp., topical
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application of dopamine did not increase aggression [65],
and in Harpegnathos saltator, individual brain dopamine
levels were reduced by conspecific aggression [66].

Both JH and ecdysteroids are implicated in establishing
dominance hierarchies in some, but not all, primitively
eusocial insects (e.g. [68]). But, given the ovary is the
primary site for ecdysteroid biosynthesis in adult insects
[69,70], disentangling reproductive effects from aggres-
sion and dominance is difficult. In the ponerine ant D.
quadriceps, JH was found to regulate reproduction but
not aggression, suggesting that, in some species, JH and
reproduction are decoupled from dominance [71]. Al-
though there are species-specific differences in how
dominance hierarchies are determined, there is clear
involvement of the neuroendocrine signalling network
and more research needs to be done to determine what
commonalities, if any, exist between species.

Queen pheromones, neuroendocrine
signalling and reproductive dormancy

In large eusocial colonies, worker reproduction is cur-
tailed by pheromones produced by the queen or her
brood (reviewed in [72]). In Hymenoptera, where eu-
sociality has arisen independently at least 10 times, the
majority of queen pheromones are nonvolatile saturated
hydrocarbons [73] that may have evolved from ancestral
fertility signals [72,73]. The mechanism of action of
these pheromones and how they inhibit reproduction in
workers is, as yet, largely unknown. However, neu-
roendocrine signalling may play a key role, for example,
JH is associated with reproduction in the wasp Vespula
vulgaris [74] and dopamine has been found to correlate
positively with reproduction in queenless worker bum-
blebees, paper wasps and some ants (reviewed in [75]).
However, more studies are required to link pheromone
exposure with the underlying molecular mechanisms
that repress reproduction to determine how these
pheromones function and how they might have evolved.
Importantly, pheromone activity may be context-de-
pendent [76¢] and this should be considered when
testing the molecular function of pheromones.

The most well-characterised queen pheromone to date
is that from the honeybee A. mellifera. Honeybee queen
mandibular pheromone (QMP) acts to repress re-
production in workers [77] as well as inducing young
workers to feed and groom the queen and to perform
colony-related tasks [78]. Honeybee QMP differs con-
siderably in terms of chemical composition [78] (Figure
2b) from the queen pheromones of other hyme-
nopterans, which are primarily nonvolatile saturated
hydrocarbons [73]. However, despite decades of re-
search, it is not yet clear how QMP is detected by worker
honeybees (Figure 2b), although it is seemingly in-
dependent of olfaction [79]. QMP exposure affects brain
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dopamine levels, possibly through one of the specific
components, homovanillyl alcohol [80] and high levels of
dopamine are associated with reproduction in workers
(reviewed in [72,81,82]). Workers exposed to QMP also
have low levels of 20E [83] and high levels of JH [84].
"This is seemingly inconsistent with the model presented
for reproductive dormancy in D. melanogaster (Figure 1b).
However, JH has a more limited role in reproduction in
the honeybee, and there has been extensive rewiring of
the neuroendocrine network in honeybees [85]. How-
ever, like the reproductive dormancy response in D.
melanogaster [48°¢] (Figure 1b), QMP causes an arrest of
oogenesis in the germarium [86], and there is evidence
of apoptosis occurring in mid-late oogenesis [87]. To
fully determine if the honeybee response to QMP is
analogous to reproductive dormancy, it is critical to de-
termine if other components of the neuroendocrine
network that control reproduction in solitary species (e.g.
ecdysis-triggering hormone) are also responsive to
QMP, and also to functionally link the changes in brain
dopamine levels, the arrest of oogenesis in the ovary
(Figure 2b).

Understanding how QMP represses reproduction will
allow us to determine how this complex pheromonal
blend evolved. Some hints may be gleaned from the fact
that QMP, unlike other hymenopteran queen pher-
omones [88], represses oogenesis in virgin D. melanoga-
ster females [88,89]. This is perhaps surprising given that
honeybees and D. melanogaster last shared a common
ancestor ~340 million years ago [90] and QMP has only
evolved over the last 55 million years [91]. It has been
suggested that QMP has evolved to target an evolutio-
narily conserved mechanism, possibly derived from an
environmental signal linked to nutrition sensing [92], for
repressing reproduction. Nutrient sensing pathways
have been implicated in establishing and maintaining
reproductive skew in eusocial insects [93,94¢] and are
known to repress reproduction via neuroendocrine sig-
nalling in solitary insects (Figure 1b).

Concluding remarks and future perspectives

Reproduction in insects is exquisitely regulated by en-
vironmental cues (Figure 2a) via neuroendocrine sig-
nalling (Figure 1b). It is important to understand how
different environmental cues (e.g. temperature day
length, stress and social pheromones) are detected and
‘interpreted’ by the neuroendocrine system to give rise
to reproductive dormancy or arrest in a range of species
(Figure 2a). As discussed above, in D. melanogaster, there
are subtle differences in the way the neuroendocrine
system responds to acute and long-term environmental
cues (Figure 1b). If this is true for other insects, it will
have implications for understanding species adaptation
to changing environments, particularly in the context of
invasive species and insect declines.
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The evolution of eusociality represents one of the major
and most successful life-history transitions in animal
evolution. The key to this life-history strategy is the
reproductive division of labour. The evolution of queen
pheromones is key to the evolutionary success of highly
eusocial species such as the honeybee. Ancestral queen
pheromones are nonvolatile substances made up of cu-
ticular hydrocarbons. QMP is however unusual as it is
chemically distinct from the majority of queen pher-
omones. It has been hypothesised that this complexity
has arisen as a result of an evolutionary arms race be-
tween queens and workers over reproduction.
Determining how these pheromones are synthesised,
how they are detected and how they interact with neu-
roendocrine signalling, is critical to understanding how,
at a mechanistic level, eusociality has evolved.
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