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Simple Summary: Tumour progression in vivo was able to be well mimicked in 3D culture by
utilizing biodegradable 10 mm × 10 mm × 8 mm P(3HO-co-3HD) and P(3HB)-based 3D scaffolds
with a pore size of 30 to 300 µm. Both hard (MCF7 and MDA-MB-231) and soft (HCT116) tumour-
related cells were successfully grown on the scaffolds, and their growth patterns were studied for
5 days. MDA-MB-231 tend to grow in clusters, and MCF7 cells form an evenly dispersed layer, which
covered most of the 3D PHA scaffolds, while HCT116 formed large colonies within the pockets of
the 3D PHA scaffold. Epithelial mesenchymal transition (EMT) marker genes, including Wnt-11,
E-cadherin, Vim and Snail expression profiles, were like those seen in real tumour samples, which
confirmed that the cancer models were exhibiting real tumour-like characteristics with high fidelity.
These models are important in mimicking hypoxic tumours and in studying gene expression, cellular
signalling, angiogenesis and drug response for translational research.

Abstract: Tumour cells are shown to change shape and lose polarity when they are cultured in 3D,
a feature typically associated with tumour progression in vivo, thus making it significant to study
cancer cells in an environment that mimics the in vivo milieu. In this study we established hard
(MCF7 and MDA-MB-231, breast cancer) and soft (HCT116, colon cancer) 3D cancer tumour models
utilizing a blend of P(3HO-co-3HD) and P(3HB). P(3HO-co-3HD) and P(3HB) belong to a group
of natural biodegradable polyesters, PHAs, that are synthesised by microorganisms. The 3D PHA
scaffolds produced, with a pore size of 30 to 300 µm, allow for nutrients to diffuse within the scaffold
and provide the cells with the flexibility to distribute evenly within the scaffold and grow within the
pores. Interestingly, by Day 5, MDA-MB-231 showed dispersed growth in clusters, and MCF7 cells
formed an evenly dispersed dense layer, while HCT116 formed large colonies within the pockets
of the 3D PHA scaffolds. Our results show Epithelial Mesenchymal Transition (EMT) marker gene
expression profiles in the hard tumour cancer models. In the 3D-based PHA scaffolds, MDA-MB-231
cells expressed higher levels of Wnt-11 and mesenchymal markers, such as Snail and its downstream
gene Vim mRNAs, while MCF7 cells exhibited no change in their expression. On the other hand,
MCF7 cells exhibited a significantly increased E-Cadherin expression as compared to MDA-MB-231
cells. The expression levels of EMT markers were comparative to their expression reported in the
tumour samples, making them good representative of cancer models. In future these models will be
helpful in mimicking hypoxic tumours, in studying gene expression, cellular signalling, angiogenesis
and drug response more accurately than 2D and perhaps other 3D models.

Keywords: tumour modelling; polyhydroxyalkanoates (PHAs); scaffold; breast cancer; colon cancer;
epithelial-mesenchymal transition (EMT)
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1. Introduction

Cancer remains a major cause of death worldwide with 19.3 million new cases and
10 million deaths worldwide in 2020. The most prevalent types of diagnosed cancers
include breast (11% of the total cases), lung (11.4%) and colorectal (10%) cancer, followed
by prostrate (7.3%) cancer [1]. Cancers that begin in epithelial cells of glandular tissues
and produce fluids and mucous are termed as adenocarcinomas. Most cancers of the
breast, colon and prostate are adenocarcinomas. Invasive ductal carcinoma is the most
common breast adenocarcinoma. Tissue engineered models are required to provide the cells
with a mimic of their native environment while preserving their phenotypes, genotypes
and behaviour, in order to provide a high-throughput analysis and cost-effective drug
screening [2,3].

Two-dimensional (2D) monolayer cultures have been used to study tumour biology
where cells are cultured on rigid materials like glass and polystyrene with no contribution
from the extracellular matrix. A growing number of studies recognise the limitations of
such 2D cultures for in vitro studies [4–9]. Apart from the simplicity and low cost, this
method does not entirely reflect the essential physiology of real tissues. The cells are forced
into polarity and a flattened shape, and modified mechanical and biochemical signals
affect cell–cell communication [7,10,11]. As a result, most 2D studies of cellular network
functions do not translate to the in vivo models, thereby hindering the development of
effective therapies that can be successfully translated into the clinic. The development of
3D cell culture provides better models for drug screening, translational research and cancer
prediction. In animal models, cancer is induced by genetic modification or is surgically
implanted into mice. However, the success rates of establishing and propagating theses
human solid tumours range from 20% to 50% [12]; in genetically engineered mouse models,
the tumours fail to grow synchronously and make comparisons of drug responses difficult,
and human versus murine differences further add up to the dissimilarities from the human
tumours [13].

In vivo cancer-associated stroma is a three-dimensional (3D) structure consisting of
neighbouring cells, extracellular matrix (ECM), blood vessels, immune cells and cytokines.
Cancer cells interact with their microenvironment during proliferation, metastasis and
during chemo- or radiotherapy [14–22]. Therefore, it is important to study cancer cells in
an environment that mimics the in vivo milieu. The tumour microenvironment has been
investigated extensively [23–29], nevertheless tumour cell biology in a three-dimensional
(3D) environment remains poorly understood. Still, 3D polymer-based cancer models can
provide several advantages when compared to animal models, such as reproducibility,
complexity in terms of cell types, substrate chemistry, topography, tailored mechanical
properties, engineered gas diffusion gradients and ethical sustainability [30].

Several 3D in vitro culture models have been proposed to mimic physiological con-
ditions in the tumour, recreating cell-to-cell contact, tumour cell microenvironment and
generating hypoxic-necrotic areas [31]. Studies reveal that various cancer cell lines grown in
2D and 3D cell cultures show differences in cancer-related pathways like mTOR-AKT-S6K
(mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) pathway), and also
vary in their drug response, thus making it important to switch to 3D models [32–34].
mTOR is an essential regulator of cell homeostasis including protein translation, glucose
and lipid metabolism, as well as cell survival and autophagy, and it is a central player
that senses and responds to various extracellular growth signals [35]. Scaffold-free cell
culture models do not utilise exogenous artificial platforms for promoting cell growth.
Such cellular aggregates, termed as multicellular tumour spheroids (MCTS), are the most
popular 3D cell culture method to mimic the tumour microenvironment and the cells
produce their own ECM. These only partially recapitulate the microenvironment cues
and are difficult to optimise for inconsistencies in their formation. They are often applied
to mimic structures of breast cancer, epithelial cancer and endothelial cell angiogenesis.
Breast and ovarian cancer cell lines have been studied using Matrigel in multi-well or trans-
well plates for gene expression, cellular signal pathways, angiogenesis and chemotherapy
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response [22,36–39]. In addition, different types of scaffolds, ranging from non-woven fibre
ECM-derived materials to polymers in the form of foams and hydrogels, have been investi-
gated. For developing effective scaffolds it is important that the biomaterial should meet
the requirement of the physical properties and biocompatibility. Natural biodegradable
polymers are attractive because they are highly biocompatible and hence may be used
to support cell growth in vitro and tissue growth in vivo. They are composed of polysac-
charides (amylose, cellulose, alginate, chitosan or hyaluronic acid), proteins (collagen or
gelatine), nucleic acids or polyhydroxyalkanoates [40]. Alginate is a popular biomaterial
for cellular encapsulation and has been used to produce fibres or scaffolds for the 3D
culture of cancer cells. Low concentrations of alginate with other hydrogels including
gelatine, agarose and gelatine methacrylate (GelMA) have been used to design networks of
moderate stiffness and retain biological characteristics, tumorigenicity, metastatic ability
and increased drug resistance [41,42]. Gene expression analysis of tumour cells cultured in
2D versus 3D alginate-based, oxygen-controlled tumour models revealed striking interde-
pendence between culture dimensionality and hypoxia response [43]. Gelatine hydrogel
microspheres (GM) incorporated into cell aggregates tackle the problem of low oxygen and
nutrient supply and demonstrate longer cell viability [44]. Cancer invasion models based
on drug-incorporated gelatine microspheres along with cancer cells and cancer-associated
fibroblasts are efficient tools of drug screening [45]. Chitosan is another biomaterial known
for its biocompatibility, biodegradability, low immunogenicity and low cost. Deacetylated
chitosan scaffolds show better attachment of cancer cell lines, and cells grow as three-
dimensional clumps on the chitosan matrix [46]. Chitosan forms electrostatic interactions
with amine groups of alginate and blends to form an interconnected and porous 3D struc-
ture with mechanical strength and shape maintenance, which is significantly improved as
compared to neat chitosan [47]. A blend of the hydrogel form of chitosan and hyaluronic
acid has been used as a non-adhesive material for spheroids formation [48].

The formation of a solid tumour is central to the development of most kinds of cancer.
Solid tumours involve cancers of the ovary, breast, colon, brain and other tissues [49]. Most
solid tumours have a complex 3D architecture with different populations of abnormal
cells divided into parenchymal and stromal compartments. The interactions between the
tumour and the microenvironment result in complexity and heterogeneity of tumours
leading to resistance to chemotherapy [27]. The stiffness and fibrosis increase from healthy
to malignant tissues and are accompanied with chemoresistance [50]. The stiffness of
fibroadenoma (solid, smooth, firm non-cancerous benign lumps), measured by its Young’s
modulus value is 11.42 kPa, and that of invasive ductal carcinoma (cancer that begin
growing in a milk duct and then invade the fibrous or fatty tissue of the breast outside of
the duct) is 22.55 kPa [51]. However, the Young’s modulus of colorectal cancer tissue is
7.51 kPa [52]. These values indicate that breast cancer tissues display higher tissue stiffness
than colorectal cancer and are hence the former are referred to as hard tumours and the
latter as soft tumours.

Hence, a 3D model for cancer with high fidelity needs to meet many criteria including
shape, suitable dimensions, adequate interconnected porosity and suitable mechanical
properties to mimic the exact tumour environment. Such a model structure thus needs to
be made of a material that is processable into porous 3D structures with tuneable stiffness.
Polyhydroxyalkanoates (PHAs) comprise such a family of biodegradable polyesters that
are produced by bacterial fermentation under nutrient-limiting conditions [53]. There are
two types of PHAs, short chain length PHAs (monomer chain length C4-C5), or SCL-PHAs,
and medium chain length PHAs (monomer chain length C6-C16), or MCL-PHAs. SCL-
PHAs are normally hard and brittle, whereas MCL-PHAs are highly elastomeric in nature.
In addition, PHAs are highly biocompatible in nature and exhibit surface properties that
allow for the attachment and proliferation of mammalian cells [54–56]. The first PHA
to be identified was poly(3-hydroxybutyric acid) (P(3HB)), which is a homopolymer of
3-hydroxybutyrate (HB). P(3HB) is a typical SCL-PHA, i.e., a stiff polymer. Examples of
MCL-PHAs, the elastomeric member of this family, include Poly(3-hydroxyoctanoate), or
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P(3HO), and Poly(3-hydoxyoctanoate-co-3-hydroxydecanoate), or P(3HO-co-3HD) [57].
Blending is an effective way of developing new polymeric material with tailored me-
chanical properties and in some cases also leads to improved biocompatibility as com-
pared to the parent components. For example, the viability of mouse fibroblasts (cell
line L929) on Poly(3-hydroxybutyrate) films increased significantly upon blending with
poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), P(3HB-co-3HHx) [58,59].

Verification of the biomimetic properties of a 3D cancer model can be carried out
using a range of methodologies, and quantification of a suitable marker is one of the
best strategies. Aberrant Wnt signalling is a hallmark for many cancers and upregulated
Wnt-11 expression is reported in breast cancer [60]. Moreover, it has been established that
Wnt-11 expression triggers oestrogen receptor alpha and modulates cellular migration
in breast cancer [61]. Wnt-11 is downstream of TGF-β—shown previously to be one
of the triggers of epithelial-mesenchymal transition (EMT) and chemoresistance [62,63].
EMT is associated with disruption of intracellular tight junctions and loss of cell–cell
contact; during cancer progression it is an accepted phenomenon that is due to the loss of
epithelial features and gain of mesenchymal morphology [64]. Wnt-11 would thus indeed
be a suitable biomarker to validate the 3D cancer models. EMT is a process of cellular
reprogramming of epithelial cells into modulating their cell–cell adhesion properties and
gaining mesenchymal characteristics such as increased motility and invasiveness linked
to metastasis [65]. The EMT programme is orchestrated through transcription factors like
Snail, Slug and Zeb1 that are responsible for the gain of mesenchymal properties [66]. Snail
is linked to tumour progression and invasiveness due to its ability to alter the expression of
the Vimentin gene (vim) [67]. The latter is one of the mesenchymal markers responsible for
maintaining cell shape, cytoplasm integrity and stabilizing cytoskeletal interactions and is
found downstream of the Snail gene. An intercellular adhesion protein, E cadherin, displays
the gain of epithelial properties and is inversely correlated to invasion of surrounding
tissues and metastasis [68]. In the present study, we mainly focus on altered expression of
four genes associated with EMT in the human adenocarcinoma cell line.

In this study, we have established, for the first time, 3D cancer models based on the
novel family of biocompatible natural polymers, or PHAs. A blend of the MCL-PHA,
P(3HO-co-3HD), an elastomeric polymer, and a SCL-PHA, P(3HB), a stiff polymer, was
used to tailor the mechanical property of the model. Porous 3D PHA scaffolds were
generated with variable pore size, allowing for efficient infiltration of the cells and the
required nutrients. The growth pattern of the cell lines representing both hard and soft
cancer, i.e., breast cancer (MCF7, MDA-MB-231) and colon cancer (HCT116), respectively,
have been investigated within these 3D PHA scaffolds. Two different breast cancer cell
lines exhibiting variable growth kinetics were used to compare their temporal growth
pattern. While MCF-7 are epithelial-like cells associated with a weak invasiveness and
good prognosis, MDA-MB-231 are enriched for epithelial to mesenchymal transition (EMT)
markers and possess higher phenotypic plasticity and a more invasive behaviour connected
to aggressive disease [69]. The size of the 3D tumour models was developed mimicking
their real dimensions in patients. Finally, the expression of EMT markers were quantified
within these novel tumour models. The unique PHA-based cancer models developed in
this work are an excellent step forward in the provision of tailorable 3D models for the
in-depth understanding of cancer progression and therapy.

2. Materials and Methods

2.1. Bacterial Strains and Chemicals Used

P(3HO-co-3HD) was produced using Pseudomonas mendocina CH50, which was ob-
tained from the National Collection of Industrial and Marine Bacteria (NCIMB 10541),
Aberdeen, UK. P(3HB) was produced using Bacillus subtilis OK2, which was obtained from
the University of Westminster culture collection. The chemicals used for the production
and characterisation of PHAs were purchased from Sigma-Aldrich or BDH Ltd. (Dorset,
UK), VWR (Leicestershire, UK), unless otherwise stated.
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2.2. Production and Extraction of P(3HB) and P(3HO-co-3HD)

P(3HB) was produced by Bacillus subtilis OK2 using glucose at 35 g/L concentration
as the sole carbon substrate. The sterile nutrient broth was inoculated with a single colony
of Bacillus subtilis OK2 and incubated for 16 h at 30 ◦C, 200 rpm. Then, 10% (v/v) of the
inoculum was used to inoculate the production stage (modified Kannan and Rehacek
media), which was incubated at 30 ◦C, 200 rpm for 48 h. The temperature was controlled at
30 ◦C, pH was set at 6.8 and 1 vvm air was supplied to the bioreactor. At the end of the
fermentation, cells were retrieved by centrifugation. Wet biomass was homogenised and
stored at −20 ◦C overnight, followed by lyophilisation. P(3HO-co-3HD) was produced
by P. mendocina CH50 using glucose at 20 g/L concentration as the sole carbon substrate.
Fermentation was carried out in two stages. The seed culture was prepared by inoculating
sterile nutrient broth with a single colony of P. mendocina CH50. This was incubated for
16 h at 30 ◦C, 200 rpm. Then, 10% (v/v) of the inoculum was used to inoculate the second
stage seed culture (mineral salt medium—MSM), which was incubated at 30 ◦C, 200 rpm
for 24 h. Next, 10% (v/v) of the second stage seed culture was used to inoculate the final
PHA production media (MSM media). The temperature was controlled at 30 ◦C, pH was
set at 7 and 1 vvm air was supplied to the bioreactor. At the end of the fermentation, cells
were retrieved by centrifugation. Wet biomass was homogenised and stored at −20 ◦C
overnight followed by lyophilisation. PHA was extracted from the dried biomass using the
Soxhlet extraction method. Methanol was used to remove the impurities from the biomass
under reflux for 24 h. Methanol was then replaced with chloroform, and the biomass
was subjected to Soxhlet extraction for another 24 h. The chloroform solution containing
polymer was concentrated in a rotary evaporator. The PHA was precipitated using ice-cold
methanol solution and stored at room temperature [70–72].

2.3. Gas Chromatography Mass Spectrometry (GC-MS)

The monomeric composition of the PHA produced was identified using GC-MS. Prior
to the GC-MS analysis, polymer samples were methanolysed. GC-MS analysis was carried
out using a Varian GC/MS system consisting of Chrompack CP-3800 gas chromatograph
and Saturn 200 MS/MS block as described in Constantinides et al., 2018.

2.4. Production of the 3D PHA Scaffolds

The 3D PHA scaffolds were prepared using the particulate leaching technique. P(3HB)
and P(3HO-co-3HD) were dissolved in chloroform, in a 50:50 ratio. Sodium chloride
(<300 µm) was used as the porogen to create porous 3D PHA scaffolds. It was added to the
polymer solution in a 1:9 (polymer:porogen) ratio and stirred for 24 h at room temperature
to allow for homogeneous dispersion. The polymer solution containing porogen was
poured into a Teflon mould (Dimensions—20 mm × 16 mm × 10 mm) and allowed to
dry. The dry 3D PHA scaffolds were removed from the mould using a sterile scalpel
and immersed in sterile water to allow porogen leaching. The pH of the sterile water
containing 3D PHA scaffolds was measured to ensure complete removal of the porogen.
Post leaching, the scaffolds were dried. They were visibly porous and were approximately
20 mm × 15 mm × 8 mm in size.

2.5. Cell Culture on 3D PHA Scaffolds

The 3D PHA scaffolds were cut into 10 mm × 10 mm × 8 mm using a sterile scalpel
and placed in 24-well plates. Prior to seeding cells, the 3D PHA scaffolds were sterilised on
both sides under high-intensity ultraviolet radiation, concentrated around a wavelength of
253.7 nm for 30 min. The 3D PHA scaffolds were further sterilised by washing them with
70% ethanol for 5 min. This was repeated thrice. Post sterilisation, they were allowed to dry
for 12 h in the 37 ◦C humidified chamber to allow for ethanol to volatilise away. Sterile 3D
PHA scaffolds were then rinsed thrice in 1× phosphate buffer saline (PBS) (Sigma Aldrich,
St. Louis, MO, USA) and then incubated in 2 mL of Dulbecco’s modified Eagle medium



Cancers 2022, 14, 3549 6 of 24

(DMEM) supplemented with 2 mM L-glutamine, 10% FBS and 1% Penicillin-Streptomycin
for the next 24 h.

HCT116 (ATCC®-CCL-247), MCF-7 (ATCC®-HTB-22) and MDA-MB-231 (ATCC®-
HTB-26) cell lines were obtained from ATCC. The cells were cultured in T75 flasks (Sigma
Aldrich) in DMEM (Himedia) containing 10% FBS (Thermo Fisher Scientific, Waltham, MA,
USA), 2 mM L-Glutamine (Merck Life Science UK Limited, Dorset, UK) and 1% antibiotic
solution (100 U/mL penicillin, 100 µg/mL streptomycin) (Sigma Aldrich), henceforth
referred to as complete DMEM. Cultured cells were maintained at 37 ◦C, 5% CO2 in a
humidified incubator. Static surface seeding method was used to seed cells onto the 3D
PHA scaffolds as described in previous papers [73]. The ratio of the cell-seeded and scaffold
area was optimised. Different cell seeding densities were used. The higher cell density
of 200,000 cells/scaffold of 3 × 10 × 10 or 10 × 10 × 10 mm3 scaffolds was found to be
optimal. Hence, a concentrated cell suspension of 200,000 cells was added to each 3D PHA
scaffold and incubated for 30 min to allow for cells to attach to the scaffold. After 30 min,
500 µL (enough to cover the 3D PHA scaffold) of complete DMEM was carefully added
from the sides so as to not dislodge any cells seeded on the top of the 3D PHA scaffolds
and incubated for 12 to 24 h. After 12 h, 1000 µL of complete DMEM was added from the
sides. At the end of incubation, the 3D PHA scaffolds were submerged in complete DMEM
and covered with a cell crown 24 (Scaffdex Oy, Tampere, Finland). The cell-seeded 3D
PHA scaffolds were incubated for 5 days. After every 24 h, media were aspirated, 3D PHA
scaffolds were washed three times with PBS and complete DMEM was added to the 3D
PHA scaffolds.

2.6. Cell Proliferation Studies

Proliferation of the cells on the 3D PHA scaffolds at the end of each time point was
determined using the Alamar Blue assay following the manufacturer’s protocol (Thermo
Fisher Scientific, Gloucester, UK). Alamar Blue reagent (10% volume of culture media) was
added to the wells. After 3 h of incubation, Alamar Blue solution was transferred to a
96-well plate to obtain absorbance values at 570 nm. Tissue Culture Plastic (TCP) was used
as the positive control.

2.7. Scanning Electron Microscopy (SEM)

2.7.1. SEM Characterisation of the 3D PHA Scaffolds

Post leaching, dried 3D PHA scaffolds were observed under the Scanning Electron
Microscope (SEM). The 3D PHA scaffolds were cut using a clean scalpel. The samples were
vacuum-dried and placed on aluminium stubs. Finally, the 3D PHA scaffolds were gold
coated and imaged using SEM Zeiss EVO40. The pore sizes were calculated from the SEM
images using the Image J program (Public Domain Image Processing Program, National
Institute of Health, Bethesda, MD, USA).

2.7.2. SEM Characterisation of the Cell Laden 3D PHA Scaffolds

SEM was used to view the cross section of the cell laden 3D PHA scaffolds to observe
cell morphology within the 3D PHA scaffold. Cell seeded 3D PHA scaffolds were fixed
in 2% paraformaldehyde in PBS and kept at 4 ◦C overnight. They were dehydrated
using graded ethanol solution (50%, 70%, 80%, 90% and 100%) and Hexamethyldisilazane
(HMDS), and they were gold plated and imaged using SEM Zeiss EVO40 (Public Domain
Image Processing Program, National Institute of Health, Bethesda, MD, USA).

2.8. Confocal Microscopy

The cell-seeded 3D PHA scaffolds cultured as described above were stained with
CellTrace™ Calcein Green, AM/Ethidium homodimer (Invitrogen™)-1 mix in 1:4 ratio
(MDA-MB-231) or 50 mM Image-iT TMRM reagent/10 µM CellTrace™ Calcein Green, AM
(Invitrogen™) (HCT116 and MCF-7) for 30 min, cut using a clean scalpel into 1–2 mm
slices placed in glass-bottom dishes and viewed using 488 nm and 548 nm wavelength,
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respectively, using a Nikon AIR microscope. In MDA-MB-231-seeded 3D PHA scaffolds,
Calcein Green/Ethidium bromide led to green/red colour for live/dead analysis, whereas
in HCT116- and MCF7-seeded 3D PHA scaffolds, TMRM/Calcein Green led to red/green
colour, respectively. TMRM is a cell-permeant dye that accumulates in active mitochondria
with intact membrane potentials indicating live cells.

2.9. Total RNA Extraction, cDNA Synthesis and qRT-PCR

Total RNA was extracted using Trizol (Sigma, Hertfordshire, UK), RNA concentration
and purity was measured using the NanoDrop Spectrophotometer using absorbance values
at 260 nm and 280 nm. cDNA was generated by the reverse transcriptase reaction and
used for qPCR. The following genes were studied (corresponding primer sequences are
given in references in parentheses): Wnt-11 [74]; Vim, Snail and E-cadherin [75]. Analysis
by real-time qPCR was done by SYBR Green premix (Qiagen, Germantown, UK) using
the following conditions: 95 ◦C for 15 min, 40 cycles at 95 ◦C for 15 s, 60 ◦C for 1 min
and 72 ◦C for 15 sec. Relative levels of mRNA expression were calculated according to
the CT/2-∆∆CT method [64]. RNA polymerase II, (RPII) was optimised and used as the
reference gene [76,77]. Experiments were performed in triplicate and the standard deviation
was calculated as well as the Student’s t-test using GraphPad Prism 7.00 (La Jolla, CA,
USA) software.

2.10. Data Analysis

All data were analysed as means ± standard errors. Statistical significance was
determined using the student’s t-test or ANOVA with Newman–Keuls post hoc analysis,
as appropriate. Results were considered significant for p < 0.05.

3. Results

3.1. Production and Chemical Characterisation of the Polymer to Make 3D PHA Scaffolds

Polymer production was carried out using bacterial fermentation. P(3HB) and P(3HO-
co-3HD) polymers were produced using Bacillus subtilis OK2 and Pseudomonas mendocina
CH50, respectively, with glucose as the sole carbon source as described in Basnett et al., 2021.

Gas Chromatography–Mass Spectrometry was used to confirm the monomeric com-
position of the PHAs produced. For P(3HB), the gas chromatogram showed one peak
(Rt = 4.1 min), originating from the product of polymer methanolysis, and another peak
of the internal standard, methyl benzoate (Rt = 6.4 min) (Figure 1a). Mass spectra pat-
tern for the peak at Rt = 4.1 min matched with the methyl ester of 3-hydroxybutyric acid
from the NIST Standard Reference Library. For P(3HO-co-3HD), the gas chromatogram
showed two peaks (Rt = 7.7 min and Rt = 9.3). The mass spectra for the peaks matched
with the methyl esters of 3-hydroxyoctanoic acid (3HO) and 3-hydroxydecanoic acid (3HD),
respectively, from the NIST Standard Reference Library (Figure 1b).

Figure 1. Cont.
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Figure 1. (a) GC-MS spectra of P(3HB) and (b) P(3HO-co-3HD). (c) Schematic representation of the
preparation of porous 3D PHA scaffolds. (d) An optical image of air-dried porous 3D PHA scaffolds
20 mm × 15 mm × 8 mm. (e) SEM images of the P(3HB)/P(3HO-co-3HD) 50:50 3D PHA scaffold.

In Figure 1a,b, the peak at 6.25 represented the internal standard (methyl benzoate).
In the case of P(3HB), the fragment peak at retention time 4.125 represented the 3-hydroxy
methyl ester of butyric acid, whereas in the P(3HO-co-3HD) spectrum, the fragment peak
at retention time of 7.611 and 9.188 represented 3-hydroxyl-methyl ester of octanoic acid
and decanoic acid, respectively.

3.2. Production and Characterisation of the 3D PHA Scaffold

The porous 3D PHA scaffolds were prepared by solvent casting–particulate leaching
technique [67], which is a standard method to produce polymer-based scaffolds. The NaCl
sieved through a 300 µm sieve ensured that the 3D PHA scaffolds have a well-connected
variable pore size. The adoption of an appropriate polymer-to-salt ratio, experimentally
defined as 1:9 for both P(3HO-co-3HD) and P(3HB), resulted in the formation of rich and
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interconnected porosity, and the choice of sieving salt through a 300 µm sieve allowed for
controlling the final pore size. The 3D PHA scaffolds were soaked in distilled water to
remove the porogen (Figure 1c). Stable pH of the water into which the porogen was being
leached ensured the complete removal of the porogen, i.e., NaCl. The 3D PHA scaffolds
appeared to be visibly porous without magnification. The 3D PHA scaffold size was
20 mm × 15 mm × 8 mm (Figure 1d). Larger 3D PHA scaffolds were produced, hoping to
induce hypoxic conditions in the core.

Figure 1e shows SEM images of 3D PHA scaffolds, which were analysed further to
analyse the structure and calculate the pore size of the 3D PHA scaffolds using Image J.
The pore size varied from 30 to 300 µm, which provided a varied level of pore sizes within
the 3D PHA scaffolds. The pores of variable sizes were evenly distributed throughout the
3D PHA scaffold, and an interconnected network of pores was observed.

3.3. Cell Culture on the 3D PHA Scaffolds to Create the Disease Models

3.3.1. Hard Tumour Disease Models

To show the ability of these 3D PHA scaffolds for development of tumour models
two different human cancer cell lines derived from breast epithelium were chosen because
of their different invasive properties and stiffness; basal MDA-MB-231 was derived from
adenocarcinoma metastatic tumour site that is linked to aggressive disease, and MCF7 was
derived from primary breast ductal carcinoma that belongs to the luminal A subtype [2,69].
These cell lines have significantly different stiffness. Several studies report that metastatic
cells are softer as compared to their non-invasive counterparts [78,79]. Stiffness values of
more aggressive cells (MDA-MB-231) are lower than their non-aggressive counterparts
(MCF7) [80]. Each cell line was seeded on pre-soaked 3D PHA scaffolds and allowed to
grow for 5 days. High cell seeding density per 3D PHA scaffold sample was chosen for cell
viability studies to allow the cells to populate the 3D PHA scaffold, enabling cell–scaffold
interaction as shown in Figures 2 and 3.

Figure 2. Cont.
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Figure 2. SEM images of cells grown on 10 mm × 10 mm × 8 mm PHA-based 3D scaffolds (a–d) MCF7
cells cultured on 3D PHA scaffolds at (a,b) Day 1 and (c,d) Day 5. (b) MDA-MB-231 cells cultured on
3D PHA scaffolds at (e,f) Day 1 and (g,h) Day 5.

Figure 3. SEM images of HCT116 cells grown on 10 mm × 10 mm × 8 mm 3D PHA scaffolds on
Day 1 (a,b) and Day 5 (c,d).
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3.3.2. Cell Viability of Hard Cancer 3D Models

Viability of the cells on the 3D PHA scaffold was assessed on Day 1, 3 and 7 using
the Alamar blue assay that detects metabolically active cells. The MCF-7 cells displayed a
significant increase in cell viability with time (Figure 4a). On Day 1, 3 and 7, cell viability
was set at 100% for the 2D cell culture on TCP. While at Day 1 on the 3D PHA scaffold, the
cell viability was 74%, which significantly increased to 98.8% (p < 0.05) at Day 3. Again, on
Day 7, there was a further significant increase in the cell viability of the MCF-7 cells to 168%
(p < 0.05). Similarly, MDA-MB-231 cells displayed a significant increase in cell viability
over time (Figure 4b). On Day 1, 3 and 7, the cell viability of the cells cultured on 2D cell
culture on TCP were normalised to 100%. While the cells on the 3D PHA scaffolds showed
only 59% cell viability on Day 1, which increased significantly to 80.2% on Day 3 (p < 0.05),
followed by a further increase to 161.45% (p < 0.05) on Day 7.

Figure 4. Alamar blue assay of (a) MCF-7 cells and (b) MDA-MB-231 cells cultured on 2D tissue
culture plastic (TCP) and 3D PHA scaffold for 1, 3 and 7 days. Differences were considered statistically
significant with p < 0.05 (*).
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These results show that cells in the 2D cell cultures exhibited higher proliferation rates
than those in the 3D cultures initially, but the 3D cultures maintained a longer proliferation
phase. This finding was consistent with previous studies [81].

3.3.3. SEM Imaging of the Disease Models: Formation of Hard Cancer 3D Models

After 1 and 5 days of culture, cells were fixed on the 3D PHA scaffolds and observed
under the SEM to assess their morphology. SEM images revealed that the MDA-MB-231
cells formed aggregates in contrast to the elongated shape observed when cultured on
a 2D surface. The MCF-7 cells displayed diverse morphologies (Figure 2a,b,e,f). They
proliferated into extensive layers of cells on the 3D PHA scaffold at Day 5. Hence, it seems
like initially, on Day 1, the cells adhere to the 3D PHA scaffold and adjust to the new
environment provided by the 3D PHA scaffold. However, by Day 5, the cells proliferate
at a high rate, either forming layers covering the 3D PHA scaffold surface or growing in
clumps where each cell surface could be viewed.

3.3.4. Live Cell Assessment on the Hard Cancer Disease Models

To investigate the growth pattern of breast cancer cell lines, MCF7 and MDA-MB-231
cells were grown on 10 mm 3D PHA scaffolds for a period of up to 5 days. The cells
were stained with TMRM (Red) and Calcein green (green) to check the live cells within
the 3D PHA scaffolds. TMRM detects active mitochondrial membrane and Calcein green
detects live cells with intact cell membranes. On Day 1, the MCF7 cells were distributed
evenly throughout the 3D PHA scaffold and no clumps were observed (Figure 5a,b). The
cells spread throughout the centre and infiltrated to the bottom of the 3D PHA scaffolds
(Figure 5b). On Day 5, MCF7 cells showed an even distribution throughout the 3D PHA
scaffolds and there was no significant cell death, and they appear to be denser than Day 1
(Figure 5c,d). MCF7 cells formed an even dispersed layer on the 3D PHA scaffolds on
Day 5, which covered most of the 3D PHA scaffold. The porosity of the 3D PHA scaffolds
facilitates the cells to infiltrate to the bottom of the 3D PHA scaffolds, and a consistent
distribution of cells were observed throughout the 3D PHA scaffold. Similar to the MCF7
cells, MDA-MB-231 cells also grew well on the 3D PHA scaffolds. Upon staining with
Calcein Green (green), a lower density of MDA-MB-231 cells was observed on Day 1
(Figure 5e,f) and Day 5 (Figure 5g,h), and they tended to grow in clusters, as observed in
native tumour tissue, throughout the 3D PHA scaffold. In comparison to MCF-7, there was
not a marked difference in the growth pattern of MDA-MB-231 between Day 1 and Day 5.

3.3.5. Wnt-11 and E-Cadherin mRNA Expression Profiling

Solid hard tumour models made by culturing breast cancer cell lines MCF7 and MDA-
MB-231 were analysed for mRNA expression levels of several EMT marker genes. Wnt-11,
E-cadherin, Vim and Snail genes were monitored over a period of 0, 7, and 14 days after
seeding the cells in 3D PHA scaffolds. MCF7 and MDA-MB-231 cells were cultured in 3D
PHA scaffolds, and cells were extracted from 3D PHA scaffolds on Day 0, 7 and 14 and
analysed for mRNA levels.

We first analysed Wnt-11 mRNA levels in both MCF-7 and MDA MB-231 cells. Wnt-11
mRNA expression in both breast cancer cell lines were quantified after growing cells
on 3D PHA scaffolds on Day 0 using qRT-PCR. The MCF-7 cells, which have the most
epithelial properties, expressed less Wnt-11 mRNA than MDA-MB-231 cells (Figure 6a;
Day 0; 40-fold ± 0.5, n = 3; p < 0.01). Next, MCF-7 cells were seeded onto 3D PHA scaffolds
and allowed to grow for 14 days, and Wnt-11 mRNA levels were analysed in a time
dependent manner. qRT-PCR analysis revealed that Wnt-11 gene expression in MCF7 cells
did not significantly change when the cells were grown on the 3D PHA scaffolds for 7 and
14 days. Similarly, MDA-MB-231 cells were seeded on the 3D PHA scaffolds and allowed
to proliferate for a period of 14 days. Interestingly, Wnt-11 mRNA levels were found to be
significantly upregulated in MDA-MB-231 cells grown on 3D PHA scaffolds on Day 7 and
14 by 5 ± 0.2 and 229 ± 0.8-fold in comparison to Day 0, respectively.
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Figure 5. The 3D images of cells grown on 10 mm × 10 mm × 8 mm PHA-based 3D scaffolds (a–d).
MCF7 cells cultured on 3D PHA scaffolds at (a,b) Day 1 and (c,d) Day 5 stained with TMRM (Red)
and Calcein Green (Green), both for live cells. (b) MDA-MB-231 cells cultured on 3D PHA scaffolds
at (e,f) Day 1 and (g,h) Day 5 stained with Calcein Green (Green) live cells and Ethidium bromide
(Red) dead cells.

E cadherin is another EMT marker that is an intracellular adhesion protein and marker
of epithelial characteristics [68]. To see the effects of PHA-based 3D disease models, MCF-7
and MDA-MB-231 cells were seeded on 3D PHA scaffolds and allowed to proliferate for
a period of 0, 7 and 14 days. mRNA levels of the E-Cadherin gene were studied using
qRT-PCR analysis. It was observed that the expression level of E-cadherin was significantly
higher in MCF7 cells than MDA-MB-231 cells and increased further on the Days 7 and 14,
as reported earlier [82]. Wnt-11 and E-cadherin mRNA levels were found to be inversely
correlated in MCF-7 and MDA-MB-231 cells (Figure 6d; n = 3; p < 0.05). Next, mesenchymal
markers Vim and Snail mRNA levels were analysed in MCF-7 and MDA-MB-231 cells
cultured on 3D PHA scaffolds. Cells were allowed to proliferate for 0, 7 and 14 days, then
subjected to qRT-PCR analysis. It was observed that in MDA-MB-231 cells, the expression
levels of Vim and Snail increased significantly by 429- and 450-fold, respectively, when the
cells were grown for 14 days as compared to on Day 0 (n = 3; p < 0.01). Enhanced Vim and
Snail gene expressions were also found in MCF-7 cells on Day 7 as compared to Day 0 (5-
and 8-fold, respectively), but significant upregulation of both Vim and Snail mesenchymal
markers was observed after 14 days with respect to Day 0 (Figure 6e, n = 3; p < 0.01).
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Figure 6. (a) qRT-PCR analysis of Wnt-11 expression level in MCF7 and MDA-MB-231 cells cultured
in 3D PHA scaffolds. (b) Wnt-11 mRNA levels in MCF7 cells cultured in 3D PHA scaffolds for
0, 7 and 14 days. (c) Wnt-11 mRNA expression levels in MDA-MB-231 cells cultured on 3D PHA
scaffolds for 0, 7 and 14 days. (d) E-Cadherin mRNA expression levels in MCF7 and MDA-MB-231
cells cultured in 3D PHA scaffolds for 0, 7 and 14 days. (e) mRNA levels of Vim and Snail in MCF7
and MDA-MB-231 cells grown in 3D PHA scaffolds. The column graphic represents the average of
three replicates of mRNA isolated from each cell line. The data are normalised according to RPII
expression level by fold analysis (n = 3; p < 0.01).

In summary, all the results obtained are consistent with the fact that 3D cell culture
using the 3D PHA scaffolds are superior substrates as mimics of the microenvironment of
tumours as compared to 2D cell culture (data not shown) to reliably study gene expression
profiles as well as cellular behaviour. The role of increased EMT markers and Wnt-11 in 3D
need to be studied further in the future.

3.4. Cancer Disease Modelling for Soft Tumours

3.4.1. SEM Imaging of the Disease Models: Formation of Soft Cancer 3D Models

Human adenocarcinoma colorectal cell line HCT116 was seeded on the fabricated
3D PHA scaffolds of 10 ×10 × 8 mm size and was allowed to proliferate for 5 days. The
cell line proliferated into flat layered sheets on the 3D PHA scaffold on Day 1. HCT116
cells proliferated further and layers of cells forming colonies spread out within the crevices
of the 3D PHA scaffolds by Day 5 (Figure 3c,d). Hence, it seems like initially, on Day 1,
the cells adhere and adjust to the new environment provided by the 3D PHA scaffold.
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However, by Day 5, the cells proliferated at a high rate, either forming layers covering the
3D PHA scaffold surface or growing in clumps where each cell surface could be viewed.

3.4.2. Live Cell Assessment on the Soft Cancer Disease Models

To make soft cancer models, HCT116 cells were allowed to grow in 3D PHA scaffolds
for 5 days and imaged at Day 1 and 5 by staining them with TMRM (Red) and Calcein
Green (Green). TMRM detects active mitochondrial membranes, and Calcein green detects
live cells with intact cell membranes. HCT116 cells grow in pockets in the 3D PHA scaffolds
rather than being dispersed throughout the 3D PHA scaffolds. This could be attributed
to the fact that HCT116 grow in colonies in 2D cultures as well. By Day 5, HCT116 cells
appeared to form bigger clusters (Figure 7a–c) than Day 1 (Figure 7d–f), and colonies started
to appear in the pockets within the 3D PHA scaffolds with no significant cell death because
the cells had enough time to adhere and adapt to the 3D PHA scaffold’s environment.

Figure 7. Live cell imaging of HCT116 cells grown on 10 mm × 10 mm × 8 mm 3D PHA scaffolds on
Day 1—(a) upper side, (b) centre and (c) lower side—and on Day 5—(d) upper side, (e) centre and
(f) lower side—using TMRM (Red) and Calcein Green (Green), both for live cells. The upper side,
lower side and centre of the 3D PHA scaffold were imaged using a Nikon confocal microscope.

3.5. Comparison of Growth Patterns in Soft and Hard Cancer Disease Models

As seen in Figure 8, on Day 5, MDA-MB-231(representing hard breast tumour/cancer
type) showed dispersed growth in clusters, and MCF7 cells (representing hard breast
tumour/cancer type) formed an evenly dispersed dense layer, while HCT116 (represent-
ing soft colon tumour/cancer type) formed large colonies within the pockets of the 3D
PHA scaffolds.
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Figure 8. Comparison of cell growth patterns of (a) MCF7, (b) HCT-116 stained with TMRM (Red)
and (c) MDA-MB-231 cells stained with Calcein Green (Green), both for live cells.

4. Discussion

In this study, an MCL and SCL-PHA blend (50:50 wt%) was used to fabricate a porous
3D PHA scaffold of size 10 mm × 10 mm × 8 mm and culture breast and colon cancer
cells. There are many advantages of using PHAs. One main advantage of using PHAs
is the fact that the mechanical properties of PHAs can be modulated to make models of
variable stiffness. This is because there are many types of PHAs ranging from C4-C16
units in each monomer unit. By varying the carbon source provided to the bacteria and
the bacterial species used, the monomer content of the PHA can be altered. This in turn
leads to changes in the mechanical properties. The mechanical properties of the PHA-
based 3D scaffolds can be tailored to match the specific tumour type by blending various
types of PHAs or producing copolymers with different monomer types. This leads to
an enormous range of mechanical properties that are not accessible for scaffolds using
alginate/gelatine/hyaluronic acid or chitosan. In addition, PHA-based scaffolds have a
slow degradation rate, and the degradation occurs by surface degradation. This results in
stable scaffold structures, which can be used for long-term studies as opposed to the other
types mentioned above. Additionally, PHAs are thermoplastics in nature and hence can be
processed easily using a variety of processing methods, such as 3D printing using fused
deposition modelling (FDM) and Selective Laser Sintering (SLS), to produce structurally
varied and bespoke models.

Finally, and not the least, the size that can be achieved using PHA-based scaffolds is
comparable to that of patient tumours. Since most tumours grow to a size of 1–2 cm when
initially diagnosed, cancer cells grown in 3D PHA scaffolds of 1 cm thickness will resemble
the oxygen gradient, nutrient and waste removal characteristics of in vivo tumours and
emulate a tumour-like microenvironment [83,84]. Most 3D scaffolds that use biomaterials,
such as gelatine, alginate and chitosan, have a lower size range, up to 600 µm [41,44,45]. 3D
cell culture in the bigger 3D PHA scaffolds resembling tumour sizes is much more relevant
to the understanding of cancer cell behaviour, identification of targets for cancer treatments
and drug screening.

Hence, novel 3D cancer models were developed, where breast cancer and colon cancer
cells were used to mimic hard and soft tumours, respectively. Breast tumours have higher
stiffness as compared to colon tumours, which affects the oxygen gradient and nutrient
supply in these tumours, and also affects the various cellular mechanisms [85]. PHAs
are relatively slow in degradation and undergo surface degradation [86]. For substantial
degradation, the scaffolds will need to be maintained in vitro for at least two to three
months. In contrast, degradation of hydrogel-based scaffolds, such as for alginate and
gelatine, occurs very fast. They undergo bulk degradation in less than 12 h in vitro [87]. It
is extremely difficult to match the speed of hydrogel degradation with the pace of tissue
formation, which is important in maintaining the shape and mechanical integrity of tissue-
engineering constructs [10]. However, PHA-based scaffolds undergo surface degradation
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after 2–3 months as opposed to hydrogel scaffolds that would crumble and break during
this period. Hence, PHA-based scaffolds remain stable for longer periods of time and can
be used for long-term studies.

MCL and SCL-PHAs have been studied previously and have exhibited excellent bio-
compatibility with different types of cell lines for various applications including tissue
engineering and medical devices [70,71,88]. However, MCL and SCL PHA blends have
not been explored previously for their suitability as 3D PHA scaffolds in cancer disease
modelling. The scaffold was developed using P(3HB), which is a short-chain length PHA,
known to be hard and brittle in nature and P(3HO-co-3HD), which is a medium-chain
length PHA, known to be soft and elastomeric. Therefore, a ratio of 50:50 was chosen
as a first example to study the feasibility of the PHA-based models. In the future, the
ambition is to use a range of the ratios and hence obtain scaffolds with a varying range
of mechanical properties. The MCL and SCL-PHAs used for the fabrication of 3D PHA
scaffolds were produced by the fermentation of P. mendocina CH50 and Bacillus subtilis OK2,
respectively, using glucose as the carbon source. It is well established that Pseudomonas sp.
are capable of accumulating MCL-PHA copolymers when grown on structurally unre-
lated carbohydrates [89,90]. Similarly, Bacillus species are known to produce the P(3HB)
homopolymer when grown on glucose as substrate [91]. GC-MS was used to identify the
MCL-PHA as a P(3HO-co-3HD) copolymer and the SCL-PHA as a P(3HB) homopolymer.

The P(3HO-co-3HD)/P(3HB) blend was used to fabricate 3D PHA scaffolds using the
salt-leaching technique [92]. SEM images presented a foam-like structure with well-defined
pores formed due to the dissolution of sodium chloride particles (Figure 1e).The pore size
in the fabricated 3D PHA scaffolds ranged from 30 to 300 µm, the pores of variable sizes
were evenly distributed throughout the 3D PHA scaffold, the interconnected network of
pores facilitated the infiltration of cells throughout the 3D PHA scaffold and the cells had
enough space to be able to grow in colonies and form 3D tumour models similar to the
in vivo models. The pores would act as channels to facilitate cellular interaction, nutrient
and oxygen diffusion, as well as waste removal [93,94]. Previously, various breast cancer
cell lines from different subtypes, such as MCF-7 (luminal A), BT474 (luminal B), SKBR3
(human epidermal growth factor receptor 2—HER2) and MDA-MB-231 (triple negative),
have been cultured in 3D microenvironments. The 3D liver model of Alginate (1% and
0.5%): GelMA (gelatine methacrylate) fibres containing NIH-3T3 fibroblasts, HepG2s and
HUVECs showed no change in cell viability [41]. UV light illumination always carries
the risk of high cell death and DNA damage, which affects normal cellular function.
The Alginate:GelMA mixture was optimised for normal cellular function at a 365 nm
wavelength [41]. This was not a concern in our study, as the 3D PHA scaffolds were
UV sterilised prior to cell seeding. In this study, breast cancer cell lines, such as MCF-7
and MDA-MB-231, and the colon cancer cell line, HCT116, were cultured on the PHA-
based porous 3D PHA scaffolds, and growth was observed for 1 and 5 days. Cancer cell
properties, such as morphology, proliferation pattern and tumorigenicity, were monitored
until Day 5. Both the cell lines attached and proliferated on the 3D PHA scaffold over time.
In comparison to tissue culture plates, MCF-7 and MDA MB -231 cells cultured on 3D PHA
scaffolds exhibited delayed growth until Day 3 (Figure 4). Both the cell types continued to
proliferate on the 3D PHA scaffolds until Day 7, while cells cultured on 2D tissue culture
plastic (TCP) displayed no change in cell viability on Day 7 (Figure 4). This could be due
to the higher surface area of 3D scaffolds as compared to the 2D cell culture, which has a
major drawback of contact inhibition to sustain cell growth over long durations [10]. It is
the 3D environment in which the cells grow and maintain a longer proliferation phase, and
are hence growing under conditions that mimic in vivo conditions [95].

These observations were consistent with a similar study conducted by Florczyk et al., 2016,
where three cell lines, TRAMP-C2 (prostate cancer), SK-Hep-1 (liver cancer) and MDA-MB-
231 (breast cancer), were cultured on 2D tissue culture plastic and Chitosan-Alginate 3D
scaffolds [96].
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It was observed that in the 2D cell culture, cell lines proliferate rapidly and be-
come confluent, whereas cells show delayed growth, forming tumour spheres on the
3D scaffolds [96]. In another study conducted by Chen et al., 2012, MCF-7 cells were cul-
tured on 3D collagen scaffolds. MCF-7 cells proliferated on the 3D PHA scaffolds until the
Day 13, whereas these cells did not proliferate beyond Day 7 on 2D tissue culture plates [63].
This was concurrent with results obtained in our study, pointing out that cells cultured on
the 3D PHA scaffolds initially take time to attach and start proliferation, unlike 2D cell
culture, where cells soon fail to proliferate due to contact inhibition.

SEM images revealed that MDA-MB-231 cells formed aggregates and exhibited
rounded morphology in a 3D environment while displaying a spindle-shaped morphol-
ogy in the 2D cell culture. Similar observations were made by Ivers et al., 2014, when
MDA-MB-231 cells were cultured in 3D, using a reconstituted basement membrane matrix
Geltrex® for 10 days. MDA-MB-231 form aggregates or spread in a dissociated manner
showing elongated or round-shaped morphology, demonstrating the dynamic behaviour
of the MDA-MB-231 in a 3D environment [97]. MCF-7 cells cultured on 3D PHA scaffolds
displayed diverse morphologies in 3D (Figures 2a–d and 5a–d). They proliferated into
sheets with some rounded cells. While HCT116 formed large colonies within the pockets of
the 3D PHA scaffold by Day 5, this needs further analysis, as they might make hypoxic
pockets within the 3D PHA scaffold. This was consistent with the observation made by
Chen et al., 2012. Do Amaral et al., 2011, made an observation that MCF7 cells formed
unusual spheroids when cultured in 3D for longer periods of time [98]. This could explain
the absence of grape like cell clusters on Day 5.

Live cell imaging of cells cultured on 3D PHA scaffolds provides a better analysis of
the growth pattern and viability of hard and soft cancer cell lines. On Day 1, the MCF7 cells
were distributed evenly throughout the 3D PHA scaffold, and no clumps were observed
(Figure 5a,b). The cells spread throughout the centre and until the bottom of the 3D PHA
scaffolds. While HCT116 cells grew in pockets rather than being dispersed throughout
the 3D PHA scaffolds (Figure 6a–c). This could be attributed to the fact that HCT116 cells
also grow in colonies in 2D cultures. On Day 5, MCF7 cells showed an even distribution
throughout the 3D PHA scaffold, and there was no significant cell death and they appeared
to be denser than Day 1 (Figure 5c,d). However, HCT116 cells appeared to form bigger
clusters on Day 5 as compared to Day 1 (Figure 7d–f), and colonies started appearing in
the pockets within the 3D PHA scaffolds with no significant cell death because the cells
had sufficient time to adhere and adapt to the 3D PHA scaffold’s environment. Similarly,
on Day 5, MCF7 cells formed an evenly dispersed layer, which covered most of the 3D
PHA scaffold. HCT116 continued to form larger colonies within the pockets of the 3D
PHA scaffold, which needs further analysis as they might make hypoxic pockets within the
3D PHA scaffold, as mentioned above. The porosity of the 3D PHA scaffolds facilitated
the penetration of the cells to the bottom of the scaffolds and resulted in a consistent
distribution of cells throughout the 3D PHA scaffold.

In chitosan alginate (CA) scaffolds, both hepatocellular carcinoma as well as human
glioblastoma U-87 MG and U-118 MG cell lines showed increase in the expression levels of
genes involved in EMT and cancer stem cells [99,100]. The mixed hydrogel of chitosan and
hyaluronic acid (CH) used for human non-small cell lung cancer cells 3D spheroid formation
showed increase in the expression level of EMT marker, stemness or drug resistance
compared with those of cells in the 2D culture system [101]. 3D human glioblastoma cancer
stem cells cultured in CH scaffolds also enhanced the expression of stem cell markers
and drug resistance [102]. Gene expression profiles in hard cancer disease models were
studied in a time-dependent manner. MCF7 and MDA-MB-231 cells cultured on 3D PHA
scaffolds were analysed for mRNA expression levels of several EMT marker genes. Wnt-11,
E-cadherin, Vim and Snail genes were monitored over a period of 14 days after seeding
the cells in 3D PHA scaffolds. Our results demonstrated that MDA-MB-231 cells, when
grown within 3D PHA scaffolds, express higher levels of Wnt-11 and mesenchymal markers
such as Vim and Snail mRNAs. Wnt signalling regulates a variety of cellular processes,
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including differentiation, cellular proliferation and stem cell pluripotency [74,103]. It has
been reported that triple-negative breast cancer, which is an aggressive subtype of breast
cancer, and expresses high levels of Wnt-11, which is accepted as a cancer stem cell (CSC)-
like marker [60,61]. Epithelial cancer cells undergoing EMT adopt a cancer stem cell-like
phenotype and are uniquely capable of seeding new tumours [104]. Moreover, it has
been reported that TGFβ is linked to both EMT and Wnt-11. A recent study used TGF-β1
stimulation to investigate angiogenesis [105]. Future studies are required to determine the
role of TGF-β1 in the PHA-based models.

E-cadherin is considered a pivotal marker in the EMT mechanism [106]; thus, we
analysed the mRNA levels of E-cadherin in MCF7 and MDA-MB-231 cells as an “epithelial”
marker at the molecular level. Both cell lines show increased E cadherin expression over
a period of 14 days, which suggests gain of epithelial characteristics. This is inconsistent
with the gain of EMT phenotypes as studies report E-cadherin to be linked to intercellular
adhesion and to epithelial characteristics. However, most breast cancers are invasive ductal
carcinoma and express E-cadherin in primary tumours and metastasis, which suggests
that the PHA-based models resemble tumour expression profiles. We found increased
E-cadherin mRNA levels in MCF-7 cells in a time-dependent manner, whereas MDA-MB-
231 cells showed more ‘mesenchymal’ characteristics by increasing their Snail and Vim
mRNA expressions. The complex genetic changes required to attain EMT-linked phenotypic
changes are mediated by specific transcription factors including Snail (also known as Snail1).
In 3D PHA scaffolds, the expression level of E-cadherin was significantly higher in MCF7
cells than MDA-MB-231 cells. Unlike MDA-MB-231 cells, MCF7 cell lines grown in 3D PHA
scaffolds for 14 days show no significant change in Vim and Snail. This observation explains
the significantly higher expression level of E-cadherin in MCF7 cells than MDA-MB-231 cells.
The Snail acts as a transcriptional repressor of E-cadherin to regulate epithelial-mesenchymal
transitions [107]. Snail l can be considered as one of the master EMT regulators and
modulates cancer cell survival, cell cycle regulation, apoptosis evasion, cell adhesion,
neuroendocrine differentiation and chemoresistance [106,108]. Snail also modulates the
expression of a large number of genes directly or indirectly, associated with cancer invasion
and metastasis to promote EMT in vitro [66,109]. Studies in tumour samples report that Vim
is a downstream gene of Snail and is expressed by Snail to attain the EMT phenotype [107].
This explains why both breast cancer cell lines show a consistent change in their Vim and
Snail mRNA levels, with increase in the transcription factor Snail gene expression and its
downstream gene vim in MDA-MB-231, while in MCF7 cells, no change was observed in
their expression. Studies of EMT markers in “basal-like” breast tumours reported that EMT
markers (vimentin), as well as cadherin switching (reduced expression of E-cadherin), were
significantly more frequent [110]. The epithelial components of breast carcinomas express
E- cadherin, a proportion of them also show vimentin expression, while the mesenchymal
components of breast carcinomas show vim expression [110].

These observations point out the resemblance in the EMT markers in breast cancer
cell lines cultured in 3D PHA scaffolds. The EMT gene expression profiles of MCF7 and
MDA-MB-231 cells cultured in 3D PHA scaffolds were similar to those seen in tumour
samples, which is representative of better cancer models that can be further analysed for
their tumour-like characteristics. The PHA-based cancer models result in better stemness
characteristics and molecular marker resemblance to tumours. Our data confirmed that
PHA-based 3D scaffolds allowed for breast cancer cells to grow in 3D, and the EMT/Wnt11
gene expressions increased significantly as shown by others in Matrigel-based 3D cultures.
In summary, all the results are consistent with the fact that PHA-based 3D disease models
are comparable to other biomaterials to study gene expression profiles as well as cellular
behaviour as compared to 2D cell culture. In addition, in future, the 3D model developed
in this work could be used to enhance the percentage of tumour development in vivo,
especially with cells from patients, a truly bespoke model.
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5. Conclusions

This is the first ever study investigating the suitability of 3D PHA scaffolds for
the development of cancer models using breast cancer and colon cancer cell lines. We
produced two types of PHAs, P(3HB) and P(3HO-co-3HD), using Bacillus subtilis and
Pseudomonas mendocina, respectively, and with good yields. These were blended to form
high-quality 3D scaffolds with controlled interconnected porosity. Three types of cancer cell
lines, MCF7 cells, MDA-MB-231 (breast cancer cells) and HCT116 (colon cancer cells), were
successfully grown within the PHA-based 3D scaffolds, exhibiting excellent proliferation
and cellular morphology mimicking that of native cancer cells. These results confirmed
that the PHA-based 3D scaffolds provided a suitable 3D environment for the cancer cells
and would work very well to create functional 3D disease models to be used for in-depth
understanding of the process of cancer development and for novel drug testing. Both
Wnt-11 and EMT have been linked to the stem cell phenotype. These results could con-
tribute to an understanding the cellular behaviour of cancer cells and help in finding better
targeted therapies. Therefore, the role of increased EMT markers and Wnt-11 in cancer cells
grown within the 3D disease models needs to be further explored. These models will be
helpful in analysing the gene expression, cellular signalling pathways, angiogenesis and
chemotherapy response more accurately than 2D and other currently available 3D models.
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