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Region-wise Generative Adversarial Image

Inpainting for Large Missing Areas
Yuqing Ma, Xianglong Liu*, Shihao Bai, Lei Wang, Aishan Liu, Dacheng Tao, Fellow, IEEE,

and Edwin R. Hancock, Fellow, IEEE

Abstract—Recently deep neural networks have achieved
promising performance for in-filling large missing regions in
image inpainting tasks. They have usually adopted the standard
convolutional architecture over the corrupted image, leading to
meaningless contents, such as color discrepancy, blur and other
artifacts. Moreover, most inpainting approaches cannot handle
well the case of a large contiguous missing area. To address
these problems, we propose a generic inpainting framework
capable of handling incomplete images with both contiguous and
discontiguous large missing areas. We pose this in an adversarial
manner, deploying region-wise operations in both the generator
and discriminator to separately handle the different types of
regions, namely existing regions and missing ones. Moreover, a
correlation loss is introduced to capture the non-local correlations
between different patches, and thus guide the generator to
obtain more information during inference. With the help of
region-wise generative adversarial mechanism, our framework
can restore semantically reasonable and visually realistic images
for both discontiguous and contiguous large missing areas.
Extensive experiments on three widely-used datasets for image
inpainting task have been conducted, and both qualitative and
quantitative experimental results demonstrate that the proposed
model significantly outperforms the state-of-the-art approaches,
on the large contiguous and discontiguous missing areas.

Index Terms—region-wise convolutions, correlation loss, dis-
contiguous missing regions, contiguous missing regions, generic
adversarial inpainting framework

I. INTRODUCTION

IMAGE inpainting (i.e., image completion or image hole-

filling), synthesizing visually realistic and semantically

plausible contents in missing regions, has attracted great

attention in recent years. It has been widely applied in many

scenarios [1]–[3], such as image recovery (removing photo

scratches and text occlusions), photo editing (removing un-

wanted objects, face editing), image encoding and transmission

(loss of blocky image content caused by network packet

loss during image transmission) and image-based rendering.

Recently, many image inpainting methods have been proposed

for generating desirable contents in different ways. For in-

stance, context encoders [4] first exploit GANs to restore im-
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Fig. 1: Image inpainting results for large missing areas (discontiguous
at the top row, and contiguous at the bottom row), using EdgeConnect
(EC) [12] , our previous model Region-wise Encoder-Decoder (RED)
[13] and the proposed method on street view images.

ages, using a channel-wise fully connected layer to propagate

information between encoder and decoder. To perceptually

enhance image quality, several studies [5]–[7] have attempted

to extract features using a pre-trained VGG network to reduce

the perceptual loss [8] or style loss [9]. [10]–[12] have further

concentrated on irregular missing regions and achieved satis-

fying performance especially for the highly structured images.

Despite the encouraging progress in image inpainting, most

existing methods [12], [14], [15] still face inconsistency prob-

lems such as distorted structures and blurry textures, and

suffer from severe artifacts when the large missing areas are

contiguous. Figure 1 illustrates the problem by showing the in-

painting results of the recent EdgeConnect (EC) [12] (Figure 1

(b)), our previous work Region-wise Encoder-Decoder (RED)

[13] (Figure 1 (c)) and ours (Figure 1 (d)), with the inputs

(Figure 1 (a)) containing the different types of missing regions,

namely discontiguous and contiguous missing regions. For

discontiguous missing regions, even though the total missing

area is large, it is nonetheless still easier to infer the missing

semantic information from the surrounding area. However, for

large contiguous missing regions, both methods can hardly

infer semantically plausible and visually realistic information,

leading to unsatisfactory results containing fold-like artifacts.

This phenomenon is mainly exacerbated by the inappro-

priate convolution operation over the two different types of

regions, i.e., existing and missing regions. Since the pixels in

the existing regions are self-reconstructing which is easy to

accomplish, while the pixels in the missing regions need to be

inferred from the existing regions which is hard to accomplish,

different feature representations should be extracted to charac-
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terize different types of regions. Therefore, directly applying

the same convolution filters to the two region types for

semantic contents generation inevitably leads to visual artifacts

such as color discrepancy, blur and spurious edge responses

surrounding holes. The changeable mask was proposed in

recent work [10] to handle the difference. However, due to

the same convolution operation in different regions, the results

still suffer from serious artifacts.

In this paper, to generate desirable contents for both con-

tiguous and discontiguous large missing regions, we develop

a region-wise generative adversarial framework to handle the

different region types in each image. Figure 2 shows the

architecture of our overall framework, consisting of the region-

wise generators including two consecutive encoder-decoder

networks, and a region-wise discriminator. The first encoder-

decoder network of the region-wise generators, namely se-

mantic inferring network, roughly infers the missing semantic

contents, while capturing the correlations between missing

regions and existing regions guided by the correlation loss.

The second one dubbed global perceiving network considers

the two different region types together over the entire image

to further refine the inpainting results. Finally, the region-wise

discriminator adversarially guides the generators to generate

visually realistic contents and enhances the image quality.

Note that this paper extends upon our previous conference

paper [13] with additional exploration on region-wise adver-

sarial mechanism, detailed discussions from different point of

views, and expanded experimental results. Compared to RED

[13] that mainly concentrated on the discontiguous missing

areas, this work proposes a region-wise generative adversarial

image inpainting framework for both large discontiguous and

contiguous missing areas. The key contributions of this paper

can be summarized as follows:

• To apply the inpainting model to both contiguous and

discontigous missing regions, a generic inpainting frame-

work is proposed with the region-wise generative adver-

sarial mechanism to further eliminate the artifacts and

obtain visually realistic generated contents.

• To locally handle features in different regions, the region-

wise generators employ and integrate a region-wise con-

volution in the semantic inferring network.

• To model non-local correlations between existing regions

and missing regions, the correlation loss guides the

region-wise generators to infer semantic contents and

generate more detailed information.

• Extensive experiments are performed on various popular

datasets, including faces (CelebA-HQ [16]), and natural

scenes (Paris StreetView [17] and Places2 [18]). These

demonstrate that the proposed method can significantly

outperform state-of-the-art approaches for image inpaint-

ing on both discontiguous and contiguous missing areas.

The remaining sections of this paper are organized as

follows. Section II discusses the related work for image in-

painting. In Section III we introduce our inpainting framework

together with the problem formulation. Comprehensive exper-

iments over three popular datasets are presented in Section IV.

Finally, we conclude the paper in Section V.

II. RELATED WORK

Until now, there have been many methods proposed for

generating desirable contents in different ways, including the

traditional methods using handcrafted features and the deep

generative models. We mainly focus on the deep models and

introduce three different types of deep methods in detail.

A. Traditional Methods

Traditional inpainting approaches can be roughly divided

into two classes of methods, namely a) diffusion-based and

b) patch-based. The former class of methods propagate back-

ground data into missing regions by following a diffusive

process, typically modeled using differential operators [19].

Patch-based methods [20], [21], on the other hand, fill in

missing regions with patches from a collection of source

images that maximize the patch similarity. These methods

result in good completion of repeating image structures. How-

ever, they are usually time-consuming and cannot hallucinate

semantically plausible contents for the challenging case.

B. Deep Generative Methods

The development of deep neural networks [22], [23] has

significantly accelerated the progress of computer vision tasks

[24], [25]. Generative models [26] are widely used in many

areas because of their powerful modeling capabilities based

on accurately modeled distributions of image characteristics.

Notable successes include image classification [27]–[29], im-

age generation [30]–[32], representation learning [33], [34],

image retrieval [35], [36], object detection [37]–[39], video

applications [40] and image translation [41]. In general, we

categorize the deep-learning based inpainting framework into

three classes as follows:

1) Synthesising Realistic Contents: Inspired by the preva-

lence and successes of GANs [26], many methods use the

adversarial loss to generate meaningful contents. The LARA

[42] utilized an adversarial neural network with multiple

generators to generate users from multiple perspectives of

items’ attributes. The CLEARER [43] focused on designing an

effective architecture and proposed a multi-resolution search

space consisting of three task-flexible modules for image

restoration. YOLY [44] proposed a novel unsupervised and

untrained neural network for image dehazing, which employs

three jointly subnetworks to separate the observed hazy image

into several latent layers. [45] designed an AirNet to study

a challenging problem in image restoration which recovers

images from a variety of unknown corruption types and levels.

It is free from the prior of the masks.

By selecting a particular statistical model from the distribu-

tion of complete images, Context Encoders [4] attempted to

obtain “hints” from pixels near the missing areas of the im-

ages through an encoder-decoder architecture. Subsequently,

Semantic Inpainting [46] was proposed to treat the task as

a constrained image generation problem, and attempted to

recover the encoding of the corrupted image to the “closest”

intact one.
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Fig. 2: The architecture of the proposed region-wise adversarial image inpainting framework.

2) Inferring High Frequency Details: Several studies have

attempted to not only preserve contextual structures but also

to produce high frequency details, such as texture information.

These methods are classified as optimization-based approaches

and exemplar-based approaches.

Optimization-based Approach This class of methods usually

produce high frequency detials through a pretrained-VGG

network. Yang et al. [5] first trained a holistic content network

and fed the output into a local texture network to compute

the texture loss which penalizes the differences of the texture

appearance between the missing and existing regions. Wang et

al. [7] further proposed an implicit diversified MRF regulariza-

tion method, which extracts features from a pre-trained VGG

to enhance the diversification of the texture pattern generation

process in the missing regions.

Exemplar-based Approach Here it is assumed that the miss-

ing part is the spatial rearrangement of the patches in the

existing regions. Thus inpainting task can be regarded as a

search and copy process using the existing regions. Based

on the above assumption, Contextual-based Image Inpainting

[6] and Shift-Net [47] were proposed by designing a “patch-

swap” layer and a “shift-connection” layer respectively. In this

way high-frequency texture details from the existing regions

are propagated to the missing regions. Similarly, Yu et al.

[14] introduced CA which adopted a two-stage coarse-to-

fine network, where coarse prediction was further refined by

computing the similarity between existing patches through a

contextual attention layer.

3) Filling Irregular Holes: Previous approaches mainly

focus on rectangularly shape holes which imposes strong

limitations in practical applications. Thus, several strategies

have been proposed to fill irregular holes. Liu et al. [10]

first proposed a partial convolutional layer, which consists

of a masked and re-normalized convolution operation con-

ditioned only on valid pixels. Yu et al. [11] introduced a

gated convolution, which generalizes partial convolution by

providing a learnable dynamic feature selection mechanism

for each channel at each spatial location across all layers.

[12] introduced an edge generator hallucinates the edges of

the missing regions of the image, while an image completion

network filled in the missing regions using the hallucinated

edges as a priori boundaries. Zhang et al. [15] developed

a principled probabilistic strategy named PIC to deal with

irregular holes through two parallel paths, and generate diverse

information in missing regions.

III. THE APPROACH

In this section, we elaborate the details of our adversarial

inpainting framework. We will first introduce the overall

architecture of the region-wise generative adversarial network

to accomplish the image inpainting task on both discontiguous

and contiguous missing regions.

A. The Adversarial Inpainting Framework

Figure 2 illustrates the architecture of the proposed region-

wise adversarial inpainting framework. The region-wise gen-

erators consist of two consecutive encoder-decoder networks,

namely semantic inferring network and global perceiving

network, to infill meaningful contents into the missing regions,

while the region-wise discriminator adversarially improves the

ability of the region-wise generators.

Specifically, the region-wise generators take the incomplete

image Îg and a binary mask M as input, and attempt to restore

the complete image to be close to the ground truth image Ig ,

where M indicates the missing regions (the mask value is 0
for missing pixels and 1 for elsewhere), Îg = Ig ⊙M and ⊙

denotes dot product. To accomplish this goal, the semantic in-

ferring encoder E1 extracts semantic features from Îg . The de-

coder G1 composed of the proposed region-wise convolutional

layers is employed after the encoder E1 to restore the semantic

contents for different regions, and generate the predicted
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image I
(1)
p = G1

(

E1([̂Ig,M])
)

. After the composited image

I
(1)
c = Îg + I

(1)
p ⊙ (1 −M) is fed into the global perceiving

encoder E2, a decoder G2 further globally and perceptually

synthesizes the refined image I
(2)
p = G2

(

E2([I
(1)
c ,M])

)

.

The composited image I
(2)
c = Îg + I

(2)
p ⊙ (1 − M) is the

final inpainting result. For region-wise image generation, the

region-wise generative adversarial mechanism is introduced to

make the inferred contents approximate the appearance of the

true images, and further visually enhance the image quality.

The inferred contents of both the predicted image and the

refined image, i.e., I
(1)
p ⊙ (1 − M) and I

(2)
p ⊙ (1 − M), are

fed into discriminator D , in which way we can adversarially

enhance the capability of the region-wise generators. As a

result we obtain a visually and semantically realistic inpainting

result I
(2)
c which is close to the ground truth image Ig .

In the following subsection, we will present the under-

pinning techniques of the key components that constitute

our framework for inpainting. The region-wise convolutions

deployed in semantic inferring network is illustrated in Section

III-B. We further propose a correlation loss to guide the se-

mantic inferring network to model the non-local semantic cor-

relations among patches,in Section III-C. In Section III-C, we

introduce two kinds of common artifacts, namely checkerboard

artifacts and fold-like artifacts. The widely-used style loss is

adopted to guide the global perceiving network to suppress the

checkerboard artifacts. And, we further introduce a region-

wise generative adversarial mechanism with a region-wise

discriminator to enhance the ability of region-wise generators

to combat the fold-like artifacts.

B. Generating Region-wise Contents

For image inpainting task, the input images are composed of

both a) the existing regions with valid pixels and b) the missing

regions (or masked regions) with invalid pixels within the

mask which must be synthesized. During the inpainting pro-

cess, the pixels in the existing regions are self-reconstructing

which is easy to accomplish. On the other hand, the pixel

values in the missing regions should be inferred from those

in the existing regions. Moreover, they should be semantically

reasonable and visually realistic from both local and global

perspectives. That is to say, different learning operations

should be conducted on these two types of regions. Relying

on the same convolution filter, it is unlikely to synthesize the

appropriate features over the two different region types. In

practice, such a procedure usually leads to visual artifacts

such as color discrepancy, blur and obvious spurious edge

responses surrounding the missing regions. Motivated by this

observation, we first propose region-wise convolutions in the

semantic inferring network to separately handle the different

region types using different convolution filters.

Specifically, let W,Ŵ be the weights of the region-wise

convolution filters for the existing and missing regions respec-

tively, and let b, b̂ correspond to the filter biases. Further let

x be the feature for the current convolution (sliding) window

belonging to the whole feature map X. Then, the region-wise

convolutions at each location can be expressed as follows:

x
′ =

{

Ŵ
⊤
x+ b̂, x ∈ X⊙ (1−M)

W
⊤
x+ b, x ∈ X⊙M

(1)

This means that for different types of regions, different con-

volution filters will be learnt for feature representation for

inferring and reconstruction respectively.

In practice, we can accomplish region-wise convolutions by

separating the two types of regions by channel using masks.

These masks are resized proportionally as the feature maps

are down-sampled through the different convolution layers.

Thus, the information in the different regions can be learned

separately and transmitted consistently across layers.

Reconstruction Loss We employ the widely-adopted recon-

struction loss [11], [12], [14] Lc over the two output images

generated by the region-wise generators. Note that, although

we only need the inferred contents for missing regions, the

results of applying the framework to existing regions should

be both understandable and meaningful, and allow us to infer

missing information that is consistent with the existing regions

and meaningful from both local and global perspectives. Thus,

it is essential to reconstruct the existing regions’ information

as well as that for the missing regions.

The reconstruction loss is defined as follows:

Lr =
∥

∥

∥
I
(1)
p − Ig

∥

∥

∥

1
+
∥

∥

∥
I
(2)
p − Ig

∥

∥

∥

1
. (2)

Through minimizing the reconstruction loss, we ensure the in-

painting framework adequately explore the information in the

existing regions, based on which the framework is capable of

making accurate inference and generating reasonable contents

consistent with existing regions. This choice of reconstruction

loss allows region-wise convolution filters to learn to generate

meaningful pixel-wise contents for different region types, and

it is especially important for the semantic inferring network.

C. Inferring Missing Contents via Correlations

The reconstruction loss treats all pixels independently with-

out consideration of their correlations, and thus the framework

generates a rather coarse predicted image. However, the in-

ferred missing contents are similar to those of the surrounding

existing regions, and thus is hard to achieve semantically

meaningful and visually realistic. This is mainly because

the convolution operations are highly effective in processing

local neighborhoods, but fail to model the correlation between

distant locations inside the image.

Following prior works [48], [49], to address this problem

and further guide the region-wise convolutions to infer mean-

ingful semantic contents from the existing regions, a non-

local correlation loss is proposed. During the feed-forward

process, traditional non-local operations compute the response

at a position as a weighted sum of features over all locations in

the input feature map. This process can capture long-distance

correlations between patches within an image. However it

is at the expense of high computational overheads in terms

of the number of calculations required. Therefore, it is not

appropriate for large feature maps in our generative models.
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(a) Checkerboard Artifacts (b) Fold-like Artifacts

Fig. 3: Examples of Fold-like artifacts and checkerboard artifacts.

Besides, we prefer to build the same correlations between

different patches just as ground-truth images, which is hard

to accomplish only guided by reconstruction loss. Therefore,

in this paper, we introduce the correlation loss to model

the non-local correlations and further guide the region-wise

convolution in the semantic inferring network to infer the

missing information according to such correlations.

Formally, given an image I
(1)
c , Ψ(I

(1)
c ) denotes the c×h×w

feature map computed using the feature extraction method Ψ.

In practice, in order to easily index an output location in the

spatial domain, we reshape and rescale the feature map to have

size c × n, where n = h × w. Correspondingly, Ψi(I
(1)
c ) is

the i-th column in the reshaped feature map Ψ(I
(1)
c ), where

i = 1, . . . , n, of length c. As a result, a pairwise function fij
can be defined as a non-local operation, which generates an

n× n Gram matrix by evaluating the correlation between the

locations indexed i and j:

fij(I
(1)
c ) =

(

Ψi(I(1)c )
)⊤ (

Ψj(I(1)c )
)

. (3)

Once we have the non-local correlations to hand, we can

incorporate them into the inpainting framework by introducing

a correlation loss.

Correlation Loss Since the relationship among spatially dis-

tant local patches plays a critical role in maintaining semantic

and visual consistency between the generated missing regions

and the existing ones, we further introduce a correlation loss

that can help to determine the non-local image structure.

Namely, for image I
(1)
c , the correlation loss is defined based

on fij(·):

Lc = σ

n
∑

i,j

∥

∥

∥
fij(I

(1)
c )− fij(Ig)

∥

∥

∥

1
, (4)

where σ denotes the position sensitive normalization factor.

The correlation loss forces the region-wise convolution to infer

missing information with semantic details that are much closer

to the realistic image according to semantically related patches,

rather than just the surrounding ones.

D. Eliminating the Artifacts

One common and well-documented shortcoming of existing

inpainting methods is that they produce unwanted artifacts due

to instabilities in the generative models. We observe that there

are two kinds of artifacts, the common checkerboard artifacts

and fold-like artifacts mainly caused by contiguous missing

areas. The artifacts are shown in Figure 3. We adopt the style

loss and deploy the region-wise discriminator to respectively

eliminate the checkerboard artifacts and fold-like artifacts.

1) Checkerboard Artifacts: Checkerboard artifacts are very

commonly-generated by models with upsampling layers, as

shown in Figure 3(a). Image generation usually adopts a

style loss to combat “checkerboard” artifacts [50]. Since

our region-wise convolutions and non-local operations handle

the differences and correlations between local patches, it is

reasonable to adopt style loss over the whole image. Through

using style loss, we can perceptually enhance the image quality

and remove unwanted checkerboard artifacts.

Style Loss After projecting image I
(2)
c into a higher level

feature space using a pre-trained VGG, we can obtain the

feature map Φp(I
(2)
c ) of the p-th layer with size cp×hp×wp.

Thus the style loss is formulated as follows:

Ls =
∑

p

δp

∥

∥

∥

∥

(

Φp(I
(2)
c )

)⊤ (

Φp(I
(2)
c )

)

− (Φp(Ig))
⊤ (Φp(Ig))

∥

∥

∥

∥

1

,

(5)

where δp denotes the normalization factor for the p-th selected

layer by channel. The style loss focuses on the relationship

between the different channels to transfer the style for the

composited image I
(2)
c . It is a thus global perceptual entity

over the entire image, rather than separately dealing with the

different regions in a piece-wise manner.

2) Fold-like Artifacts: Besides checkerboard artifacts, fold-

like artifacts are also a common phenomenon in image inpaint-

ing as shown in the Figure 3(b), which can not be avoided

by using the style loss. This phenomenon is particularly

obvious when confronting large contiguous missing regions.

We speculate that the main reason for this phenomenon is still

due to the essential local natural of the convolution operation.

Despite the separate learning operation of region-wise

convolutions, the missing contents are still inferred by the

information from surrounding pixels. Therefore, the pixels

near the boundary of a missing region rapidly receive effective

information from an existing region, while pixels deep inside

a missing region receive a limited amount of information

restricted by their distance to the boundary. Only as the

network deepens can the distant pixels obtain information

from existing regions, and this constitutes an uneven sample

which leads to artifacts. Moreover, for distant pixels of missing

regions, the framework can only make inference based on

the inferred pixels near the boundary which may contain

inaccurate information. Thus, the filled pixels deep inside of

missing regions are even more inaccurate, which seems like

meaningless artifacts.

To address these problems, we resort to generative ad-

versarial networks to train the inpainting framework in an

adversarial manner, pursuing realistic visual effects close to

ground-truth images. Previous works [14], [15] usually adopt

the discriminator using standard convolutions. It is worth

noting that, undesirable artifacts only exist in the inferred

regions, with the result that there is no need to penalize

the existing regions. In fact, focusing on the entire images

including the existing regions, inevitably exerts a detrimental

effect on the inferred regions. This means that we still need

to consider the difference between the two types of regions.
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Therefore, we further introduce a region-wise generative ad-

versarial mechanism to guide the region-wise generators. We

extract the inferred regions of each image, instead of the whole

image, and concatenate them with the mask as the input to the

region-wise discriminator. It could help the generator to pay

more attention to specific regions.

Adversarial Loss Thus, we deploy the region-wise generative

adversarial mechanism to the framework, penalizing input

images at the scale of patches, which could further preserve

local details. While training the region-wise generators, the

generated patches will be considered as real and thus labeled

as 1. As the discriminator improves, the generator enhances

its ability to generate realistic images. After several iterations,

the generators and discriminator gradually reach a balance,

eliminating the unpleasant artifacts and generating visually

realistic inpainting results. Formally, given I
(1)
p , I

(2)
p , Ig , we

minimize the following loss to train the discriminator:

La = αE(M
′

−D([Ig ⊙ (1−M),M]))

+E(−D([I(1)p ⊙ (1−M),M]))

+E(−D([I(2)p ⊙ (1−M),M])),

(6)

where α is a hyper-parameter to define the significance

of each part of adversarial loss. M
′

is the label matrix

indicating the validity of corresponding patches over the whole

image, obtained by the nearest interpolation method from

the mask M. We concatenate mask M to separate inferred

contents and existing contents, which seems better than simply

concatenating (1 −M). The reason we speculate is that, via

defining inferred regions as 1 will introduce some noises and

affect the final visual appearance.

Algorithm 1 Training of the proposed framework

1: while iterations t < Ttrain do

2: Sample batch images Ig

3: Generate continue binary masks M

4: Construct input images Îg = Ig ⊙M

5: Predicted by the semantic inferring network and get

I
(1)
p = G1(E1([̂Ig,M]))

6: Construct composited images I
(1)
c = Îg+I

(1)
p ⊙(1−M)

7: Predicted by the global perceptual network and get

I
(2)
p = G2(E2([I

(1)
c ,M]))

8: Construct output images I
(2)
c = Îg + I

(2)
p ⊙ (1−M)

9: Calculate Lc by I
(1)
p , Ls by I

(2)
p , Lr by I

(1)
p and I

(2)
p

10: if t < Tpretrain then

11: Update E1, G1, E2 and G2 with Lc, Ls and Lr

12: else

13: Calculate La by Ig ⊙ (1−M), I
(1)
p ⊙ (1−M) and

I
(2)
p ⊙ (1−M)

14: Update E1, G1, E2 and G2 with Lc, Ls, Lr and -La

15: Update D with La

16: end if

17: end while

E. The Formulation and Optimization

Formulation To guide the learning of the region-wise genera-

tors, we combine the losses for reconstruction, correlation and

style with the adversarial loss to give us an overall loss L:

L = Lr + λ1Lc + λ2Ls − λ3La, (7)

and La is minimized only to guide the region-wise discrimina-

tor to distinguish the generated contents and the real contents.

We alternately train the generators and discriminator in an

interleaved manner, until the loss converges.

Implementation Our model is based on the encoder-decoder

architecture of CA without its contextual attention module,

but we add region-wise convolutions in the encoder-decoder

networks and replace its discriminators with a region-wise

discriminator. We also adopt skip links in our encoder-decoder

architecture. As claimed in [10] this may propagate the noise

or errors for most inpainting architectures. However, we find

that skip links do not lead this problem due to the regulat-

ing effect of the region-wise convolutions. They thus enable

detailed output from existing regions. Spectral normalization

is also adopted in discriminator to stabilize the training, with

the leaky ReLU used as the activation function. In practice,

we exploit the widely-adopted pre-trained VGG network to

extract features for the calculation of correlation loss as well as

style loss. For the computation of correlation loss, only feature

maps extracted by pool2 are adopted due to the weak semantic

representational capacity of pool1 and the blur caused by

pool3 and pool4. In order to calculate the style loss, we use

the output of pool1, pool2, and pool3 together. In another

word, Ψ(·) = Φp(·) when p = 2. Input images are resized

to 256× 256, and the proportion of irregular missing regions

varies from 0 to 40% in the training process. We empirically

choose the hyper-parameters λ1 = 10−5, λ2 = 10−3. λ3 = 0
for the previous 20 epochs, λ3 = 1 for later 9 epochs. The α is

set as 0.01, which heavily penalizes the inferred contents and

thus could lead to better elimination of artifacts. The initial

learning rate is 10−4 using the Adam optimizer.

Optimization The entire optimization process is described in

Algorithm 1. It follows the standard forward and backward

optimization paradigm. In our framework, the reconstruction

and adversarial loss operate on two consecutive networks in

the region-wise generators. They respectively guarantee a)

pixel-wise consistency between the two predicted images and

the ground truth, and b) produce natural visual appearance,

especially for the inferred contents. To capture the relationship

between different regions and generate detailed contents, the

correlation loss is adopted to guide the training of the semantic

inferring network. Moreover, the style loss helps to percep-

tually enhance the image quality by considering the entire

image in the global perceptual network. In the forward step,

given a ground truth image Ig , we first sample an irregular

binary mask M and subsequently generate the incomplete

image Îg . The region-wise generators take the concatenation

of Îg and M as the input. It outputs the predicted images I
(1)
p

and the refined images I
(2)
p . In the backward step, to avoid

the well-documented instabilities of generative models, we

only compute Lr,Lc,Ls over the predicted and composited
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images obtained in previous iterative epochs. After several

epochs, we introduce the adversarial loss La to further guide

the previous networks. Instead of taking the whole image as

input, we specifically highlight the restored information for

missing regions. This further enhances the inpainting results.

IV. EXPERIMENTS

In this section, we first evaluate the proposed method

in both a visually subjective and a quantitatively objective

manner over several commonly used datasets for image in-

painting. Furthermore, we compare a number of state-of-the-

art methods. Then we study the performance contributed by

each component of our adversarial inpainting framework and

analyze the effect of each component on the inpainting re-

sults. Our code is available at https://github.com/DIG-Beihang/

Region-wise-Inpainting.git.

A. Datasets and Protocols

We employ the widely-used datasets in prior studies, includ-

ing CelebA-HQ [16], Places2 [18], and Paris StreetView [17].

CelebA-HQ contains 30k high-resolution face images, and we

adopt the same partition as [14] did. Places2 dataset includes

8,097,967 training images. Paris StreetView contains 14,900

training images and 100 test images. For both datasets, we

adopt the original train, test, and validate splits.

We compare our method with four state-of-the-art models,

namely, Contextual Attention (CA) [14], Partial Convolution

(PC) [10], EdgeConnect (EC) [12], and Pluralistic Image

Completion (PIC) [15]. While CA was initially designed for

regular missing regions, PC, EC, PIC and our method focus

on irregular holes. We directly apply the publicly released pre-

trained models in our experiments. For PC, since there is no

published code, we borrow the implementation on github 1,

and retrain the model following the authors’ advice.

We compare our model with state-of-the-arts in both a

visually subjective and a quantitatively objective way. We

follow the quantitative protocols in [12], and use the following

quantitative metrics: 1) ℓ1 error, 2) ℓ2 error, 3) peak signal-to-

noise ratio (PSNR), 4) structural similarity index (SSIM) and

5) Frechet Inception Distance (FID). These metrics can reflect

the distance between the ground-truth images which are more

natural and generated images, and can help to compare the

visual appearance of different inpainting results.

B. Comparison with State-of-the-arts

Now we compare our region-wise generative adversarial

method with the state-of-the-art inpainting models, in both a

qualitative and a quantitative way.

1) Qualitative Results: Figure 4, 5 and 6 show the inpaint-

ing results for the different methods on several examples from

CelebA-HQ, Paris StreetView, Places2, respectively, where

“GT” stands for the ground truth images. All of the reported

results are the direct outputs from trained models without using

any post-processing. We compare all the models both on the

discontiguous and contiguous missing regions.

1https://github.com/MathiasGruber/PConv-Keras

From Figure 4, we can see that CA brings strong distortions

in the inpainting images, while PC, EC and PIC can recover

the semantic information for the missing irregular regions in

most cases, but still produces obvious deviations from the

ground truth. EC performs well when discontiguous missing

regions occur, but also fails to infer the correct edge infor-

mation for large holes. In fact, it infills some inappropriate

semantic contents into the missing regions, such as the eye-

like contents shown in the second row of Figure 4 (d). For

either discontiguous or contiguous missing regions, PIC better

restores the missing regions on the faces. Unfortunately, it

cannot handle the surrounding areas without distinguishing

their semantic differences. All these methods can not generate

natural contents, especially when faced with continuous miss-

ing regions. Among all the methods, we can observe that our

model can recover the incomplete images with more natural

contents in the missing regions. For instance, the structure and

detailed information for faces appears more consistent with

existing regions and much closer to the ground truth.

Similarly, for the natural scene images, as shown in Figure

5 and 6, we obtain similar conclusions to those for Figure

4. For example, CA still suffers from the heavy distortions,

while PC and EC produce inconsistency and problems with

blur in the filled contents. However, here the performance of

PIC shows an obvious degradation. The phenomenon seems

more obvious on the Paris dataset, which contains more

complicated structure. This is mainly because it is unlikely to

well approximate the distribution of the groundtruth images

guided only by the KL divergence or adversarial loss. Our

method can well address the severe issues with the region-wise

generative adversarial learning with correlation guidance, and

thus generates natural and stable results on the scene dataset.

This superior performance further proves that our method is

powerful for the generic image inpainting task.

2) Quantitative Results: Table I and II list the results

obtained with all methods studied on CelebA-HQ, Paris Street

View and Place2 in terms of different metrics, with respect

to contiguous and discontiguous missing areas of different

sizes. We can observe that in most cases, the proposed method

achieves superior performance on both discontiguous and con-

tiguous masks in terms of each quantitative evaluation metric.

Moreover, compared to the other methods which show obvious

degradation on contiguous missing areas, our model shows

stable performance on the two types of masks. With the region-

wise convolutional operation and the guidance of correlation

loss, both the proposed model and our origin model RED could

infer semantically reasonable information and restore visually

realistic contents on discontiguous masks. The proposed model

performs better in most cases on discontiguous masks. RED

performs well especially on small discontiguous missing areas

of Paris Street View and Places2 dataset where the quantitative

results of our model are very close to those of RED. However,

it is hard for RED to generate visually realistic contents on

contiguous masks without adversarially region-wise training.

This is mainly because of the fold-like artifacts caused by

large contiguous missing areas, indicating that the inpainting

models need to be guided by well-designed regularization.

Furthermore, as the missing area gradually increases, the
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TABLE I
Quantitative comparisons on contiguous missing areas, where the bold indicates the best performance, and the underline indicates the

second best performance. Lower † is better, while higher ∗ is better.

Mask
CelebA-HQ Paris Street View Places2

CA PC EC PIC RED ours CA PC EC PIC RED Ours CA PC EC PIC RED Ours

PSNR∗ 0-10% 27.28 27.93 29.50 29.10 29.35 33.34 27.08 29.50 30.72 30.05 31.11 31.99 24.95 28.26 27.23 27.58 29.62 30.39

10-20% 23.27 24.77 25.92 25.01 23.61 28.90 23.20 26.00 26.97 25.73 26.03 27.78 21.41 24.57 23.31 23.61 25.36 26.16

20-30% 20.89 22.31 23.43 22.52 20.70 26.45 20.45 23.68 24.76 23.09 23.86 25.13 19.08 22.34 20.06 20.95 22.70 23.24

30-40% 19.53 20.76 21.99 21.13 19.43 24.63 18.71 22.29 23.40 21.47 22.55 23.35 17.62 20.83 17.95 19.48 21.22 21.62

40-50% 18.44 19.80 20.99 20.23 18.63 23.16 17.32 21.04 22.12 20.20 21.26 22.06 15.98 19.59 16.47 17.58 19.18 19.88

ℓ
†
1(10−3) 0-10% 10.53 22.34 11.66 14.08 7.60 4.41 9.83 17.83 12.61 9.02 6.30 5.61 15.44 10.00 10.59 12.35 7.47 6.96

0-20% 21.72 29.63 18.72 22.41 19.99 10.25 23.05 25.62 19.59 18.61 16.15 12.38 28.23 19.56 22.47 22.72 15.87 14.56

20-30% 34.68 39.16 27.29 32.01 33.74 16.60 37.07 35.41 27.78 29.52 25.63 21.14 43.78 29.32 41.15 35.68 26.03 24.35

30-40% 46.22 48.40 35.08 40.16 44.12 24.24 50.25 44.36 35.04 39.99 33.95 29.69 58.99 38.89 61.47 47.77 35.36 33.46

40-50% 58.11 56.55 42.46 47.41 52.85 32.66 63.94 52.53 42.10 49.13 42.55 36.90 82.21 49.39 82.34 67.90 52.30 47.31

ℓ
†
2(10−3) 0-10% 2.70 2.03 1.65 1.86 2.10 0.72 2.28 1.52 1.26 1.90 1.29 1.06 4.54 2.31 2.38 2.78 1.79 1.65

10-20% 6.15 4.13 3.51 4.34 6.43 1.81 6.78 3.32 2.89 4.93 4.14 2.56 9.33 4.75 5.52 6.03 4.05 3.66

20-30% 9.88 6.82 5.62 7.08 10.90 2.93 11.04 5.71 4.89 8.03 6.44 4.59 14.87 7.32 11.03 9.96 6.75 6.25

30-40% 12.83 9.36 7.32 9.11 13.57 4.48 14.83 7.50 6.17 10.34 7.62 6.23 20.24 9.91 17.55 13.44 9.16 8.59

40-50% 16.11 11.46 8.92 10.80 15.50 6.33 19.25 9.56 7.80 12.55 9.92 7.83 29.05 13.02 24.57 20.08 14.13 12.60

SSIM∗ 0-10% 0.950 0.930 0.950 0.936 0.964 0.969 0.952 0.940 0.948 0.955 0.963 0.963 0.941 0.953 0.926 0.944 0.953 0.953

10-20% 0.900 0.885 0.911 0.896 0.922 0.929 0.898 0.891 0.907 0.907 0.919 0.920 0.884 0.900 0.842 0.887 0.905 0.906

20-30% 0.836 0.824 0.861 0.846 0.871 0.885 0.832 0.826 0.855 0.843 0.867 0.865 0.809 0.841 0.728 0.811 0.842 0.842

30-40% 0.772 0.764 0.810 0.797 0.821 0.833 0.760 0.756 0.797 0.771 0.806 0.803 0.737 0.783 0.618 0.738 0.781 0.781

40-50% 0.706 0.705 0.762 0.747 0.773 0.778 0.686 0.699 0.752 0.711 0.759 0.756 0.644 0.722 0.517 0.644 0.704 0.705

FID† 0-10% 9.10 8.96 15.00 18.64 8.54 8.44 26.77 27.39 15.74 19.47 19.15 18.94 1.24 2.96 2.24 0.67 0.45 0.41

10-20% 12.40 11.12 17.60 19.55 10.22 10.13 46.64 41.47 25.73 31.27 31.68 29.04 3.59 4.81 10.03 2.43 1.53 1.21

20-30% 17.74 16.61 22.70 21.22 12.99 12.93 77.85 67.21 41.80 51.29 51.41 45.95 9.47 8.47 28.90 7.08 4.48 3.48

30-40% 25.62 27.75 29.41 23.88 16.98 16.43 101.09 91.74 63.96 68.89 70.95 61.39 18.35 12.76 54.60 14.37 8.76 6.97

40-50% 36.37 41.17 35.27 25.61 21.84 19.94 131.35 116.52 81.72 83.41 89.43 79.58 29.17 18.03 83.23 26.31 17.75 12.34

TABLE II
Quantitative comparisons on discontiguous missing areas, where the bold indicates the best performance, and the underline indicates the

second best performance. Lower † is better, while higher ∗ is better.

Mask
CelebA-HQ Paris Street View Places2

CA PC EC PIC RED ours CA PC EC PIC RED ours CA PC EC PIC RED ours

PSNR∗ 0-10% 28.28 29.14 31.77 31.25 33.52 33.66 27.82 30.01 31.87 32.16 33.66 33.34 25.42 30.41 27.23 28.69 31.05 30.90

10-20% 24.62 26.50 28.48 28.06 28.99 29.54 22.75 26.94 28.49 27.87 29.13 28.90 21.55 26.93 23.31 24.92 26.97 26.94

20-30% 21.65 24.10 25.81 25.26 25.44 26.54 20.57 24.72 26.30 25.03 26.30 26.45 18.79 24.86 20.06 22.16 24.02 24.11

30-40% 19.67 22.36 23.89 23.14 23.05 24.60 19.30 23.09 24.49 23.03 24.38 24.63 17.02 23.14 17.95 20.25 22.03 22.21

40-50% 18.13 20.81 22.16 21.29 20.82 22.94 18.02 21.77 23.14 21.46 22.72 23.16 15.73 21.71 16.47 18.72 20.43 20.74

ℓ
†
1(10−3) 0-10% 9.04 20.76 9.49 11.84 4.04 3.91 11.24 17.35 11.44 6.76 4.29 4.41 14.54 18.94 10.59 10.73 5.96 6.09

10-20% 17.71 25.63 14.05 16.39 9.10 8.37 21.93 23.79 16.78 13.20 10.08 10.25 27.94 24.49 22.47 19.58 12.77 12.86

20-30% 30.73 33.00 20.72 23.47 17.27 14.82 37.04 31.75 22.55 21.40 16.89 16.60 46.26 30.48 41.15 31.87 22.34 22.18

30-40% 45.07 41.13 28.12 31.65 26.68 21.63 52.25 40.57 30.03 31.31 25.35 24.24 65.34 37.25 61.47 45.33 32.81 32.09

40-50% 61.17 50.88 37.35 42.01 39.66 29.68 69.64 49.65 37.74 42.75 35.19 32.66 85.32 45.23 82.34 60.28 44.62 42.85

ℓ
†
2(10−3) 0-10% 2.08 1.46 0.92 1.03 0.72 0.67 3.58 1.28 0.95 1.02 0.73 0.72 4.29 1.14 2.38 1.96 1.23 1.25

10-20% 4.35 2.59 1.80 2.00 1.74 1.47 6.64 2.50 2.03 2.42 1.75 1.81 9.43 2.50 5.52 4.28 2.80 2.80

20-30% 8.15 4.46 3.18 3.69 3.68 2.76 12.35 4.07 3.12 4.27 3.03 2.93 16.46 4.04 11.03 7.56 5.10 5.02

30-40% 12.42 6.53 4.78 5.81 6.15 4.15 17.33 5.99 4.59 6.81 4.88 4.48 23.80 5.85 17.55 11.36 7.76 7.52

40-50% 17.48 9.27 7.02 8.75 10.21 6.00 23.82 7.99 6.24 9.79 7.21 6.33 31.43 8.07 24.57 15.77 10.95 10.38

SSIM∗ 0-10% 0.952 0.933 0.950 0.942 0.972 0.972 0.950 0.940 0.955 0.963 0.971 0.969 0.945 0.924 0.926 0.945 0.956 0.955

10-20% 0.904 0.893 0.911 0.912 0.940 0.941 0.893 0.890 0.915 0.919 0.931 0.929 0.887 0.880 0.842 0.888 0.910 0.909

20-30% 0.837 0.839 0.861 0.868 0.897 0.898 0.823 0.830 0.874 0.865 0.888 0.885 0.809 0.834 0.728 0.811 0.849 0.846

30-40% 0.768 0.783 0.810 0.821 0.850 0.855 0.749 0.764 0.823 0.802 0.835 0.833 0.729 0.784 0.618 0.731 0.786 0.783

40-50% 0.696 0.723 0.762 0.765 0.799 0.807 0.685 0.701 0.773 0.734 0.782 0.778 0.647 0.728 0.517 0.649 0.720 0.717

FID† 0-10% 10.02 9.32 15.19 18.84 8.58 8.61 40.17 29.27 13.87 17.80 15.83 16.90 2.12 1.75 2.24 0.76 0.38 0.41

10-20% 13.54 11.37 17.69 19.81 9.91 10.11 64.99 46.64 26.63 32.56 27.15 28.42 5.85 2.10 10.03 2.52 1.04 1.08

20-30% 22.05 15.25 21.28 21.70 12.23 12.51 97.88 74.71 39.29 45.43 42.18 41.62 13.09 2.88 28.90 6.78 2.60 2.63

30-40% 33.41 21.03 25.55 23.80 14.61 15.18 123.04 95.38 52.77 60.19 52.10 54.12 23.00 4.31 54.60 13.75 5.48 5.25

40-50% 48.35 31.29 30.56 25.97 17.30 18.12 140.57 116.92 65.32 73.81 67.72 64.40 35.02 6.97 83.23 23.87 10.39 9.35
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(a) Input (b) CA [14] (c) PC [10] (d) EC [12] (e) PIC [15] (f) Ours (g) GT

Fig. 4: Qualitative comparisons between different methods on CelebA-HQ

(a) Input (b) CA [14] (c) PC [10] (d) EC [12] (e) PIC [15] (f) Ours (g) GT

Fig. 5: Qualitative comparisons between different methods on Paris

(a) Input (b) CA [14] (c) PC [10] (d) EC [12] (e) PIC [15] (f) Ours (g) GT

Fig. 6: Qualitative comparisons between different methods on places2.
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(a) Input (b) standard conv. (c) w/o Lc (d) Lc + Ls (e) I
(1)
c (f) w/o La (g) full model

(PSNR/SSIM) (26.41/0.886) (26.47/0.885) (26.44/0.885) (26.50/0.885) (26.24/0.883) (27.38/0.887)

Fig. 7: Results of inpainting on the large contiguous and discontiguous missing areas generated by masking randomly. (a) the input incomplete
images, (b) results using standard convolutions instead of our region-wise convolutions, (c) results of model trained without our correlation
loss Lc, (d) results of model trained with Lc,Ls at the same network, (e) results of the semantic inferring network, (f) results of model
trained without adversarial loss, namely RED [13] and (g) results of our full model.

TABLE III
Abaltion study for each component, where the bold indicates the

best performance. Lower † is better, while higher ∗ is better.

Mask standard

conv

w/o Lc Lc+Ls I
(1)
c w/o La ours

PSNR∗ 0-10% 32.56 32.74 32.65 32.58 32.49 33.50

10-20% 28.25 28.33 28.28 28.31 28.09 29.22

20-30% 25.35 25.43 25.39 25.47 25.20 26.49

30-40% 23.61 23.62 23.62 23.74 23.39 24.62

40-50% 22.25 22.25 22.26 22.41 22.03 23.05

ℓ
†
1 (10−3 ) 0-10% 4.78 4.68 4.76 4.79 4.82 4.16

10-20% 10.46 10.31 10.50 10.43 10.63 9.31

20-30% 17.98 17.78 18.05 17.81 18.28 15.71

30-40% 25.36 25.25 25.55 25.11 25.94 22.93

40-50% 33.10 32.98 33.32 32.68 33.87 31.17

ℓ
†
2 (10−3 ) 0-10% 0.93 0.92 0.93 0.94 0.97 0.69

10-20% 2.14 2.12 2.14 2.12 2.24 1.64

20-30% 3.77 3.73 3.73 3.67 3.92 2.85

30-40% 5.26 5.27 5.26 5.11 5.54 4.31

40-50% 6.95 6.96 6.91 6.69 7.31 6.17

SSIM∗ 0-10% 0.969 0.969 0.968 0.968 0.968 0.971

10-20% 0.935 0.935 0.934 0.933 0.933 0.935

20-30% 0.889 0.888 0.887 0.887 0.886 0.892

30-40% 0.844 0.842 0.841 0.841 0.839 0.844

40-50% 0.796 0.792 0.792 0.793 0.789 0.793

FID† 0-10% 8.64 8.58 8.58 8.82 8.77 8.52

10-20% 10.25 10.18 10.20 10.75 10.75 10.12

20-30% 12.83 12.77 12.92 14.07 14.05 12.72

30-40% 15.89 15.95 16.13 18.07 18.27 15.80

40-50% 19.17 19.35 19.65 22.66 22.93 19.03

performance of each method degrades in terms of each of the

metrics. Compared to the others, in most cases, our method

consistently obtains the best performance, and the performance

decreases more slowly when the mask size enlarges. This

means that our method can infer the missing contents in a

stable and robust manner, especially for input images with

large missing regions. The superior performance of our method

illustrates that our framework exhibits a strong capability to

generate more detailed contents of better visual quality.

It is worth noting that most inpainting models perform

better on CelebA-HQ compared to other datasets with nature

scene. It is because the celebA-HQ is a well-structured dataset

containing position-calibirated face images. It is simpler than

the natural scene for the network to learn. Besides, our

correlation loss could guide the model to capture the non-local

correlations between different patches, which is more suitable

for a more well-structured dataset such as faces. Therefore,

our method could achieve better performance on CelebA-HQ.

C. Ablation Study

In this section, we will first investigate the effectiveness

of each component, and then analyze alternative choices of

certain components. Finally, we will prove the generalization

of our model trained on irregular masks and analyze the

influence factors of the inpainting performance.

1) Component-wise Analysis of Network Behaviour: We

conduct experiments to validate the effectiveness of different

components in our adversarial image inpainting framework as

shown in Figure 7. From the results, it is clear that without the

region-wise convolutional layers, the framework can hardly

infer the consistent information with existing regions. The

filled eyes (in the 1st and 3rd rows ) as well as the teeth (in the

4th row) are blurry. In the second row, the filled contents from

the nose to the lip is unnatural. Moreover, without considering



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

(a) (b) (c) (d) (e) (f) (g) (h)
PSNR/SSIM 25.16/0.0.872 25.71/0.880 25.66/0.877 25.55/0.879 25.67/0.880 27.30/0.879 GT

Fig. 8: Qualitative comparisons between the proposed model with different discriminators. (a) the input image, (b) results of our model
without discriminator, (c) using two region-wise discriminators, (d) using one region-wise discriminator only to regularize the output of
global perceiving networks, (e) using one standard discriminator on both outputs, (f) using standard and region-wise discriminator at the
same time, (g) our full model and (h) ground truth.

(a) Input (b) CA [14] (c) PICreg [15] (d) PICirr [15] (e) EC [12] (f) Ours (g) GT

(PSNR/SSIM) (24.29/0.887) (19.18/0.809) (25.02/0.875) (25.76/0.891) (26.45/0.906)

Fig. 9: Qualitative comparisons between different methods on regular masks

the non-local correlation, the framework restores the missing

regions only according to the surrounding areas. The color of

the filled lips or eyes are nearly close to that of the faces,

and the outlines are uncertain. Furthermore, using Lc,Ls at

the same stage will cause artifacts and cannot restore semantic

contents. Besides, we can observe that only relying on the se-

mantic inferring network can restore the semantic information,

but the outputs still contain checkerboard artifacts. Without

the help of region-wise generative adversarial mechanism, the

inpainting results contain some fold-like artifacts on contigu-

ous masks. Together with region-wise convolutions, non-local

correlation and region-wise generative adversarial mechanism,

our framework enjoys strong power to generate visually and

semantically close images to the ground truth.

We also list the quantitative evaluations in Table III, from

which we can observe that our full model obtains the best

performance almost in all cases. Note that in Table III, we

simply average the quantitative results on the two types of

masks. The differences between the results of our full model

and the others on SSIM and FID metric are not that obvious,

since the results are semantically reasonable in most patches

and mainly different in details. However, when measured in

terms of PSNR, ℓ1, ℓ2, our full model brings improvements

compared to the others, which further proves that each com-

ponent in our model is useful.

2) Analysis of Different Discriminators: To prove the ef-

fectiveness of the proposed region-wise discriminator in our

inpainting framework, We conduct experiments to analyze

different constraints put by different discriminators as shown

in Figure 8. By comparing Figure 8 (b) and the others, we
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0~10% 10~20% 20~30% 30~40% 40~50% 50~60% 60~70% 70~80% 80~90% 90~100%

Fig. 10: Qualitative result of images with 0%-100% mask in the CelebA-HQ dataset.

(a) Origin (b) Input (c) Output

Fig. 11: Object removal results (column (c)) using our model:
removing watermark, glasses, rocks and bike from original images
(column (a)) according to the input mask (column (b)).

can conclude that, with the help of different types of discrim-

inators, the inpainting models could remove artifacts caused

by contiguous missing area to a certain degree. But, different

choices of discriminators may perform differently in details.

For models with region-wise discriminators regularizing single

generator as shown in Figure 8 (c) and (d), there still are blur

and artifacts in the inpainting results, such as the in-filled eyes.

Models with standard discriminators as shown in (e) and (f)

cannot well handle the artifacts and still show unnatural folds

in the in-filled contents, such as the forehand or the mouth.

Among all of the results, our model shows the most natural

and reasonable performance. The quantitative results prove our

point that the region-wise discriminator could eliminate the

unwanted fold-like artifacts cause by large contiguous missing

areas and enhance the image quality.

3) Performance on Regular Masks: Previous works [4],

[14] usually restore images with regular missing regions,

which limits the utility of these models in application. Ac-

tually, inpainting models trained on irregular masks possess

strong generalization ability and are capable to restore images

with regular missing regions as well. The performance is

shown in Figure 9. PIC released two models respectively

trained on regular and irregular masks, denoted as “PICreg”

and “PICirr”. From the figure, we can observe that almost

all the models trained on irregular masks could recover the

missing semantic information in the regular missing region.

Among these models, our model achieves the best perfor-

mance. Although EC and PICirr could infill reasonable se-

mantic information, it fails to generate realistic details, such

as the eye or the face contour. It is surprising that CA and

PICreg which are trained on regular masks cannot handle

most regular missing regions. It works comparatively well

on center regular or small missing regions, but struggles to

accomplish the inpainting task on regular masks at random

locations. From the above observations, we can conclude that

models trained on irregular masks are capable of generalizing

to regular missing regions and thus are more practical.

4) Influence factors of inpainting performance: We find

that the performance of the inpainting model is related to

both the size of the missing area and the complex structure

of the missing position. As shown in the Figure 10, we can

find that, as the missing area grows from 0 to 100%, the

quality of inpainting results experiencing a downward trend.

However, the performance of the inpainting results is also

influenced by the missing position. The results of images

with 40-50% missing regions are better than those with 30-

40% missing regions (as marked in the red boxes), and the

results of images with 60-70% missing regions are better than

those with 50-60% missing regions (as marked in blue boxes).

It is because even though the missing areas are sometimes

smaller, they completely obscure the complex mouth and

teeth, leading to unnatural results. Besides, different datasets

also contain different levels of structural complexity, which

exhibit varying inpainting performance. As we mentioned in

the Section IV-B2, our model (as most inpainting models)

performs better on CelebA-HQ than other datasets, since

CelebA-HQ is well-structured and contains the single pattern

(namely, faces) compared to the complex nature scene datasets.

5) Unwanted Object Removal: Unwanted object removal is

one of the most useful applications of image inpainting, which

aims at improving the visual quality of images suffering from

watermarks or other obstructions in daily life. We also study

the performance of our method in this task as shown in Figure

11. We show the results of eliminating watermark, glasses

and rocks in the original images using the proposed model

respectively. It can be easily observed that our model has the

strong capability of removing unwanted objects and infilling
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TABLE IV
Complexity Comparisons of different methods.

Model CA PC EC PIC Ours

Testing time / Image (s) 0.02 0.01 0.03 0.04 0.03
Parameters (M) 3.6 51.6 24.3 9.2 4.7

semantically reasonable and visually realistic contents. It is

obvious that the inpainted images seem very natural and

harmonious, even if the unwanted objects appear with complex

shapes and backgrounds,proving the generalization ability and

robustness of our method.

6) Complexity Analysis: We count the number of parame-

ters of our comparison methods and the time it takes to process

one image. We evaluate all the methods with a GeForce RTX

2080ti. As shown in the table IV, we can find that all methods

can process one incomplete image fast according to the testing

time per image. Moreover, we also count the parameters of

these methods. The parameter size of our network is only

inferior to CA. We can find that with only a small increase in

parameters compared with CA, our region-wise operations can

handle both images with contiguous and discontiguous missing

regions and achieve better reconstruction results. Therefore,

our network not only achieves better inference results but also

is practical to store and conduct real-time inference.

V. CONCLUSION

We developed a novel generic inpainting framework capable

of handling images with both contiguous and discontiguous

missing areas in an adversarial manner, where region-wise

operations are deployed in both the generator and the dis-

criminator. Extensive experiments on various image datasets

including faces, street views and natural scenes proved that

our method improves the inpainting results qualitatively and

quantitatively on both contiguous and discontiguous missing

areas. We also investigate each component in our work in

detail, and analyze the generalization ability and the influence

factors of the inpainting performance. The proposed frame-

work offers a promising solution to inpainting for images with

both contiguous and discontiguous large missing areas, but

it remains an open question that how to generate complex

semantic features and analyze the inpainting framework from

a theoretical view. In the future, we will further delve into

these problems.
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