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A B S T R A C T

Machine learning methods are widely used to identify common, repeatedly occurring bugs and code

vulnerabilities. The performance of a machine-learned model is bounded by the quality and quantity

of training data and the model’s capability in extracting and capturing the essential information of

the problem domain. Unfortunately, there is a storage of high-quality samples for training code vul-

nerability detection models, and existing machine learning methods are inadequate in capturing code

vulnerability patterns.

We present DEVELOPER1, a novel learning framework for building code vulnerability detection

models. To address the data scarcity challenge, DEVELOPER automatically gathers training samples

from open-source projects and applies constraints rules to the collected data to filter out noisy data

to improve the quality of the collected samples. The collected data provides many real-world vul-

nerable code training samples to complement the samples available in standard vulnerable databases.

To build an effective code vulnerability detection model, DEVELOPER employs a convolutional neu-

ral network architecture with attention mechanisms to extract code representation from the program

abstract syntax tree. The extracted program representation is then fed to a downstream network - a

bidirectional long-short term memory architecture - to predict if the target code contains a vulnera-

bility or not. We apply DEVELOPER to identify vulnerabilities at the program source-code level. Our

evaluation shows that DEVELOPER outperforms state-of-the-art methods by uncovering more vulner-

abilities with a lower false-positive rate.

1. Introduction
Machine learning is an established technique for build-

ing predictive models to support code-related tasks like pro-

gram similarity assessment [27] and code vulnerability de-

tection [27]. By automatically learning the latent patterns

indicative of vulnerable code, machine-learned models can

exceed expert-crafted rules [30] and reduce development

time for tools [29].

While promising, there are two significant drawbacks

that limit the uptake of machine learning for software vul-

nerability detection: the lack of training samples and the

insufficient model capability in reasoning about program

semantics. Most machine-learning-based code vulnerabil-

ity detection methods rely on training data from standard

vulnerability databases like the Software Assurance Refer-

ence Dataset (SARD) or the national vulnerability database

(NVD) [28, 31, 58, 29]. These datasets, however, cannot

represent the diversity of real-world vulnerabilities and lag

behind the software evaluation. The lack of training data

negatively affect the quality of ML models, as they have

very sparse training data for typical high-dimensional pro-

gram space. Some methods of program synthesis may be

⋆
This work was supported in part by the National Natural Science

Foun- dation of China (NSFC) under grant agreements 61972314 and

61872294, CCF-Huawei Populus Grove Fund, and the International Co-

operation Projects of Shaanxi Province under grant agreements 2020KWZ-

013 and 2021KW-04.
∗Corresponding author

zytang@nwu.edu.cn (Z. Tang)

ORCID(s):

able to alleviate the above dilemma[4]. However, synthetic

programs are biased by the grammars, templates, or models

used to generate the programs, and they may not reflect the

diverse and evolving patterns of real-life programs. There-

fore, machine learning models learned over synthetic data

are hard to generalize to real-world code. To address the

lack of training samples, we need to collect a large number

of high-quality, real-world vulnerable code samples.

Insufficient reasoning about program semantics also

hinders bug patterns learning for models. Existing

approaches[42, 53] mostly rely on treating the source code

as text or surface syntactic information like abstract syntactic

tree (AST), which cannot catch well-defined structure infor-

mation like control and data flow in programs. For example,

LI et al. [29] based on data flow dependence and without

control flow dependence, which means they cannot clarify

execute path. Thus, flow sensitive vulnerability types like

Use After Free cannot be classified correctly due to the fact

that the model would mistakenly hold a view that one vari-

able is released twice.

Furthermore, code embedding technique is also an im-

portant factor in the performance of training model. Ex-

isting methods [42, 53] process code snippets into flat se-

quences and then use WORD2VEC [37] to encode text se-

quences. These words correspond to vectors one-to-one so

that vectors could represent code snippets. Unfortunately,

this approach cannot capture the well-structured relation-

ships and semantic information in programs, which will lead

to the poor performance of bug detection. In addition to
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WORD2VEC, which treats code as text embedding, an em-

bedding method similar to CODE2VEC [1] learns code se-

mantics through distributed representation. But CODE2VEC

shows in follow-up research [20] that embedding approaches

cannot be easily used in downstream models, and the contin-

uous representation of code tokens may not perform better

than baselines which treat code tokens simply as symbols.

To solve these two problems, in this paper, we present

DEVELOPER, a novel learning framework for building code

vulnerability detection models. To address the data scarcity

challenge, we gather real-world vulnerabilities from GitHub,

the world’s largest code hosting repository. GitHub contains

many projects and a large number of programmers with a

short review cycle and code edition iteration, which means

that GitHub contains more vulnerabilities, faster updates,

and a wider variety of vulnerabilities from the real world

compared to SARD (refer to as Standard). We can get abun-

dant code relationship information of vulnerabilities. Fur-

thermore, detection models trained by the real-world dataset

can better capture the semantic information and vulnerable

patterns from the source code due to their various coding

styles for the same function.

Another challenge is how to ensure the high quality of

vulnerable examples collected from large-scale open source

repositories. Some prior works simply use filter mod-

ule [57, 2, 47, 15, 19] with keywords or white word lists.

Nevertheless, these approaches usually collect vulnerabil-

ity commits with more than one vulnerability type in one

commit. To solve this problem, we perform syntactic analy-

sis [19] based on RE (regular expression) rules filtering. By

extracting the summary of commits message to obtain sen-

tences’ grammatical structure and dependency relationships

between words. By doing so, we can ensure that the training

data set will exclude Mixed-type commits [40] and belong to

the specific vulnerability type. Then, we use these commits

to obtain the security-relevant source code.

As mentioned above, the diversity and quality of vul-

nerable code samples during the training phase will impact

the detection model results. Furthermore, code slicing and

code embedding methods are beneficial to models to under-

stand vulnerabilities’ patterns and further reduce the false-

positive rate of bug detection. To avoid the problem that ex-

isting approaches poorly capture the actual running path pro-

grams and semantic information (for example, the detection

model mistakenly thought that statements in various control

branches were executed in order). Our approach is based on

data flow and control flow dependence to slice code on func-

tion level, which means we could improve the precision of

bug location to execution path level. To better extract in-

formation on code snippets, inspired by CODE2VEC [1], we

combine the AST path (All AST nodes between two AST

terminal nodes.) and attention mechanism. Based on the

AST path, code snippets are transformed into several AST

node sequences, including structural information. Then, we

convert sequences of nodes into numerical values and feed

into the network which includes a convolutional layer and

a fully connected layer, to learn the context representation

1 ...

2 reversedString[i] = '\0';

3 free(reversedString);

4 return reversedString;

5 ...

(a) Vulnerability sample from Standard

1 ...

2 if (errno == ENOENT) {

3 free(dir);

4 return ESP_ERR_NVS_NOT_FOUND;

5 }

6 wlerr("ERROR:␣Failed␣to␣get␣open␣%s\n", dir);

7 ...

(b) Fixed vulnerability sample from GitHub

Figure 1: Code (a) in Standard is an Use After Free vulnera-
bility sample, and code (b) in GitHub is a sample which fixed
the use after free vulnerability. Code sample (b) from real
world contain more branches and control flow and data flow
relationships than code (a).

of the path. To deal with the problem of learning one code

snippet representation from different AST paths. DEVEL-

OPER increases vulnerability weight based on the attention

mechanism, combines different paths’ features, and high-

lights important paths during vulnerability detection. Af-

ter these steps, DEVELOPER can represent code snippets in a

precise way.

We show advantages of DEVELOPER by applying it to

detect source-code vulnerabilities. We thoroughly evalu-

ate DEVELOPER on vulnerable programs from open source

repositories written in C and Java. Comparing with two

state-of-the-art (SOTA) vulnerability collection models [57,

51], two code embedding schemes [12, 1] and five SOTA

vulnerability detection methods [30, 29, 52, 22, 8]. Exper-

imental results show that DEVELOPER is superior to other

competitive methods by discovering more code vulnerabili-

ties with a lower false-positive rate as shown in Sec. 9.

In summary, our work has made the following contribu-

tions:

• We exploit a data collection method to collect high-quality

vulnerabilities from open source code repositories. Ex-

tending Standard training dataset with more real-world

vulnerabilities allows the model to detect more vulnera-

bilities in real-world scenarios.

• We introduced a code preprocessing method with atten-

tion mechanism, including a slicing and a embedding

module. It means the semantic gap can be narrowed.

• We design and implement DEVELOPER, a system for

source code vulnerability detection. Experiments show

that DEVELOPER performs the best overall performance

than other competing approaches.

2. Motivation

Deep learning (DL) techniques are proven to be effective

for modeling the program structures and semantics [55, 48].

Recently, researchers have proposed a number of DL-based
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Figure 2: Overview of Developer. Our detection model
takes code snippets from the Standard and GitHub on the
path level as input.

models to detect software vulnerabilities [29, 26, 30, 56].

While promising, DL-based models are sensitive to the train-

ing samples, making existing methods that are trained by

using samples from SARD and NVD suffering from lower

accuracy when targeting the real-world software (e.g., pro-

grams from GitHub).

In this section, we give a motivating example shown

in Figure 1, including two code snippets: one is an

use-after-free vulnerable code snippet in Figure 1(a) that

comes from SARD, the other is a benign code snippet in Fig-

ure 1(b) comes form GitHub.

In Figure 1(a), the variable reversedString at line 3

is freed before being returned at line 4, leading to an

use-after-free vulnerability. Unlike this case, the variable

dir in Figure 1(b) at line 3 is conditionally freed. This

use-after-free vulnerability is not liable to be triggered

when executing the statement at line 6.

However, poor code representation and slicing method

make existing detection models give a wrong classification

result when facing real-world programs like [10]. For exam-

ple, WU et al. [53](treats the code as text) and VULDEEP-

ECKER [29] (using code’s data flow information) regard both

example as use-after-free vulnerability, because the bug

pattern they learned from Standard data set cannot fully han-

dle complicated code relationships in GitHub.

Compared with Standard code samples, codes from real

world contain more control and data flow information. Most

of the code samples from Standard are similar to the sample

in Figure 1(a), but in GitHub, the complexity of real-world

programs is higher than Standard, (Sec. 9.1 can demonstrate

our findings). It means that existing vulnerability detection

models based on Standard [30, 29, 28] cannot identify vul-

nerabilities even with the same vulnerable type in the real-

word due to the fact that Standard training samples do not

have enough code relationship information.

Thus, DEVELOPER extends vulnerabilities from GitHub

and exploits a useful code representation approach to capture

enough code relationship information to reduce the false-

positive rate of vulnerability detection models.

3. Overview of our approach

Figure 2 shows the high-level overview of DEVELOPER,

including the following parts:

Data collection. The dominant open source platform, such

as GitHub, helps us collect high-quality data for the training

model. (Sec. 4)

Code slicing. Generating the code snippets by data flow de-

pendence and control flow dependence. (Sec. 5)

Embedding. The embedding method uses the AST path and

Table 1

Low-quality commits message in GitHub.

Commit-type Type description Example

How-type commit Sufficient to indicate
the intention to
change.

Add a new line in 736,
delete line in 690.

ID-type commit Without description,
only the commit ID.

Fixed-13f79535-
47bb-ffa450edef68

Mixed-type commit Containing more than
one reasons for the
modification, and it
is impossible to intu-
itively see which part
of the code was mod-
ified for what reason.

Fix compile error and
fix stackoverflow and
fix NPE.

attention mechanism with vulnerability weight to represent

code snippets. (Sec. 6)

Training detection model. Training vulnerability detection

models through deep neural network BiLSTM with High-

way network. (Sec. 7)

Prediction. Feeding code snippets into the detection model

and finishing the vulnerability detection.

The rest of the paper is organized as follows. In Sec. 4

to 7, we describe our vulnerability detection model design,

which respectively corresponds to different stages, among

which, Sec. 4 describes the data collection, Sec. 5 describes

the code slicing, Sec. 6 describes the data embedding, and

Sec. 7 describes the training network. Sec. 8 and Sec. 9 de-

scribe our experimental evaluation of DEVELOPER and re-

sults. Sec. 10 illustrates the limitation of our work and fu-

ture work. Sec. 11 describes the related prior work. Sec. 12

concludes this paper.

4. Data collection

To collect high-quality vulnerability data in a real devel-

opment environment, DEVELOPER uses commit messages

from GitHub and constructs a list of RE rules. In this sec-

tion, we introduce how to collect high-quality vulnerabilities

from GitHub.

4.1. Data acquisition
Commits are changes to a file (or set of files). Commits

usually contain a commit message, which is a brief descrip-

tion of what changes were made. We define a bug-fix file

snapshot Pair(bug, fixed) as a code paired group of before

and after fixed bugs. The difference between pre-bug-fix

code and post-bug-fix code Diff(bug, fixed) is treated as a

diff block.

For example, a commit with “fix a bug in Line 456"

as the commit message, Bug-file is a file that has vulner-

abilities in Line 456 before modification, and Fix-file is a

file that does not contain vulnerabilities in Line 456 after

modification. However, the application scenarios are far

more complex than the example listed above; many com-

mits contain imprecise information. The following three

low-quality commit types shown in Table 1 lead a poor per-

formance [40]:

• How-type commits. This type of commits does not indi-

cate the change reason. They only show how and where
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the change location;

• Mixed-type commits. This type of commits contains

multiple modifications, which make models impossible

to know which modification corresponds to which the

changed lines of code;

• ID-type commits. This type of commits has no descrip-

tion of the change code but the ID.

At present, many researches use historical modification

information on GitHub to collect data [40, 57, 2, 47, 15, 19].

They all use the GitHub API directly to filter the com-

mit messages by keywords. However, the results obtained

by this method alone are imprecise, not only with many

low-quality commits, but also, keywords are distributed in

different sentences, which results in no semantic relation-

ship between these individual keywords. To collect high-

quality commits, we first choose to collect commits from the

highest-ranked repository.

Currently, most of the work related to collecting data

from GitHub is sorted by Star [11]. In the experiment, the

quality of the screened repositories using Fork as the sorting

rule is much higher than screened repositories by Star. The

reason is that when users Fork the repository, they are most

likely to participate in code editing, and the Star repository

is often used to show appreciation, so we sort the GitHub

repositories by Fork and select the top 7% of the reposito-

ries to get commits. We need to clarify that our approach

is designed to process commits where the bug is fixed in a

single commit. This scenario commonly exists in GitHub.

For example, we review 1,000 randomly selected code com-

mits and found that 81.2% of vulnerabilities were fixed in

one single commit.

4.2. Initial data filtering
based on keywords

Some RE rules and keywords are shown in Table 2 helps

to avoid a low Precision. Specific steps are as follows:

(1) To filter commits that do not match keywords (mainly

filter How-type commits and ID-type commits). DEVEL-

OPER build RE rules by GitHub APIs. Refer to “2020

CWE Top 25 Most Dangerous Software Errors" in CWE

[7], and select the five most common vulnerabilities in

C/C++ (CWE-119, CWE-399, CWE-401, CWE-415,

CWE-416) and JAVA (CWE-020, CWE-022, CWE-129,

CWE-400, CWE-476). Then, we summarize a list of cor-

responding keywords and RE rules according to the vul-

nerability in Table 2) to filter unrelated commits.

(2) To filter commits that match keywords but are not

related to vulnerabilities. To illustrate the necessity

of this step, please refer to a commit after filtering

through the previous step, “Fix invalid helps and

description of session UUID verification". Although

"invalid" and "verification" form the keyword "invalid

verification", this commit has nothing to do with in-

valid verification vulnerabilities. So after using the Re

rule constructed with the above keywords to filter irrel-

evant commits, we use the commit message characteris-

tics to filter further. The first step is to construct RE rules

Table 2

Description and keywords of different vulnerability types col-
lected from GitHub.

Bug type Type description Key words

CWE-119 This category is related to
improper operation restric-
tions within the memory
and buffer area.

buffer overflow/ buffer un-
derflow/ integer overflow/
integer underflow/ buffer
under-read/ incorrect
buffer access

CWE-399 Vulnerabilities in this
category are related to
improper management of
system resources.

unsafe reflection/ file
descriptor leak/ insuf-
ficient resource pool/
uncontrolled memory
allocation/ improper path
traversal

CWE-401 This category is related to
memory leaks.

memory leak

CWE-415 This category is called
twice with the same pa-
rameter as the program
Related to the program
crash caused by free().

double free

CWE-416 This category is related to
the program crash caused
by re-referencing the mem-
ory after releasing the
memory.

use after free/ dangling
pointer/ wild pointer/
freed pointer dereference

CWE-020 This category is related to
improper input validation.

improper input validation/
invalid verification

CWE-022 This category is related to
not properly restricting file
paths.

path traversal/ directory
traversal

CWE-129 This category is related
to unreasonable verifica-
tion of array indexes.

array index underflow/ ar-
ray index out of bound/ ar-
ray index out of bounds ex-
ception

CWE-400 This category is related to
uncontrolled resource con-
sumption.

uncontrolled resource con-
sumption/ resource leak

CWE-476 This category is related to
null pointer references.

null pointer dereference/
null pointer exception/
null pointer/ null check/
npe/ unchecked return
value

which could delete merged and rolled back commits [19].

Next, constructing other RE rules to delete commits that

contain keywords such as “delete, remove, discard, unin-

stall". Because these commits usually are not within the

scope of vulnerability repair. The third step is to delete

commits larger than 1 MB. According to our observa-

tions, most commits over 1 MB are not bug fixes. Finally,

extracting the first sentence of the commit message as a

summary of the entire commit message [15], and filter

commits using RE rules and keywords. Our purpose is

to ensure that the keywords in table 2 are present in the

summary of the vulnerable commit message instead of

unrelated commits.

4.3. Secondary data filtering
based on syntactic analysis

Since Mixed-type commits(see Table 1) may submit fixes

containing multiple vulnerability types or functions (this

means that multiple files and codes have been modified),

which will cause the description information in the commits

message and the sets of fixed code lines to fail to correspond.

Furthermore, Mixed-type commit causes the bug and fixed

in Pair(bug, fixed) to fail to map one by one, and the corre-

spondence between this ambiguous bug and fixed will con-

fuse the vulnerability detection model.
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S
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fix NN NN

date format
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S

VP CC VP

AND VB NP

(a)fix npe     (b)fix npe when SPL type checking   (c) add checks to fix npe    (d)fix npe and fix date format

Figure 3: The grammatical structure of commit message. (a)
(b) (c) have only one verb-object structure like “fix npe", which
could exclude Mix-type vulnerability; (d) have two verb-object
structures, which is a Mix-type commit message.

To filter out Mixed-type commits, our approach syntac-

tically analyzes commit messages [19]. The primary task

of syntactic analysis is to determine the grammatical struc-

ture and the dependence between words in a sentence. DE-

VELOPER used the natural language processing tool Stan-

ford CoreNLP [34] to perform syntactic analysis. Taking

the “null pointer dereference"(NPE) vulnerability as an ex-

ample, we traverse the syntax tree of the commit and find

only a verb-object construction subtree of “fix + noun" (fix

npe) in Figure 3(a), which indicates that the commit has only

one modification intention. As shown in Figure 3(b) and (c)

both contain such subtrees (marked in purple). However, if

the parent node of the subtree is found to have conjunction,

and a subtree containing another verb-object construction,

then the commit does not meet the requirements. As shown

in Figure 3(d), the yellow mark represents the conjunction,

and the green subtree represents another verb-object con-

struction. It contains two verb-object construction, we can-

not clearly correspond to the modification intention and lines

of change code, so it does not meet the requirements.

5. Code slicing

After collecting data, DEVELOPER uses data and con-

trol flow dependence to slice Pair( bug, fixed). This slic-

ing method preserves the semantic information of source

code [38]. It identifies the vulnerability on a specific exe-

cution path instead of the usual function level.

5.1. Parse Pair(bug,fixed)
We use commits to obtain the code Pair(bug,fixed) and

delete unnecessary spaces as well as line breaks in the

Pair(bug,fixed), parse the Pair(bug,fixed) to obtain accurate

information of code for adding and deleting lines. Figure 4

shows a commit that fixes the null pointer dereference.

The commit deleted code line 5, and added code lines 5 to 8

to repair the vulnerability. Among them, the difference be-

tween Bug-file and Fixed-file in the commit is the collection

of purple and green code lines in Figure 4, which is Diff(bug,

fixed).

5.2. Slicing and labeling
After parsing Pair, Figure 5 shows the process of slicing

the Bug-file into three snippets (similar as fixed-file). Be-

cause line 4 involves an if conditional statement, the code

would be divided into two branches, one branch meets the

control condition, and the other does not. The code is di-

vided into two snippets according to the number of branches:

one is snippet1, the condition (line 4) and the statement (line

5) are not executed in this function, then the execution path

to the end of the function. Another is snippet2, that is, codes

of line 4 and line 5 are executed, and then executed until the

execution path at the end of the function.

We label snippets containing the deleted code line as

negative samples, and the label that does not have the deleted

code line as positive samples. According to this method, the

negative samples are snippet1, snippet2, in Figure 6. But

during the slicing process, it was found that the positive and

negative snippets were not balanced, and too many negative

snippets would lead to poor model performance.

Therefore, for each Bug-file, we take all code lines from

the beginning of the function to deleted code lines as a set

and then generate a positive snippet. DEVELOPER expands

the number of positive samples in this way. For example,

generate snippet3 (see Figure 6 (c)) from Bug-file (see Fig-

ure 4 (b)), it includes code lines from 1 to 5. Besides, We

also remove duplicate samples in our datasets.

5.3. Normalization
When a developer writes a program, there are many dif-

ferent forms of variable names and function definitions that

appear in the program according to the specification require-

ments. To ensure that subtle semantic differences in pro-

grams (such as the choice of variable names or the inser-

tion of comments) do not affect the learned model, uniform

symbols would replace user-defined variables and functions

(user-defined nodes) in this paper. We delete non-ASCII

characters and comments in the code because they are not

related to the vulnerability. Further, replacing the same vari-

ables and functions with “Var1", “Var2" and “Func1", “Func2"

to distinguish the variables and functions in the same snip-

pets. When multiple variables or functions appear in dif-

ferent snippets, they would be mapped to the same sym-

bol name. Figure7 shows the symbol replacement for snip-

pet2. We replace the parameters msg, ex, os, ignore, and

handleException with Var1, Var2, Var3, Var4 and Func1.

6. Embedding

DEVELOPER uses AST and attention mechanism with

vulnerability weight to embed code snippets. Many works

have proved that AST can help us capture the semantic in-

formation of the program (code clone detection [45, 3, 50],

code change patterns [35, 36]). We also introduce an atten-

tion mechanism with vulnerability weight to solve the prob-

lem of learning the embedding of entire snippet from mul-

tiple AST paths: integrate the feature information on these

different paths to describe the correspondence between the

path set and the label. The process of embedding is shown

in Figure 8, it consists of two parts, the first is to use AST

to extract the AST path, and the second is to use the AST

path and the attention mechanism with vulnerability weight

to learn the contextual representation of the source code.

6.1. AST path extraction
First, we generate the AST of the source code and then

extract the AST path. We use the Eclipse JDT and CDT to

Rongze Xu et al.: Preprint submitted to Elsevier Page 5 of 21
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1.      private void handleException(String msg, Exception e){

2.      try{

3.          os.write(msg.getBytes());

4.          if (ex!= null){

5.    -         os.write(ex.getMessage().getBytes());

   5. +         String msg2 = ex.getMessage();

   6. +         if (msg2 != null){

   7. +             os.write(msg2.getBytes());

   8. +         }

6. 9.       }

7. 10.   }catch(IOException Ignore){}

8. 11.  }

(a) Commit

1.  private void handleException(String msg, Exception e){

2.  try{

3.      os.write(msg.getBytes());

4.      if (ex!= null){

5.         os.write(ex.getMessage().getBytes());

6.      }

7.  }catch(IOException Ignore){}

8.  }

(b) Bug-file

1.  private void handleException(String msg, Exception e){

2.  try{

3.      os.write(msg.getBytes());

4.      if (ex!= null){

5.          String msg2 = ex.getMessage();

6.          if (msg2 != null){

7.              os.write(msg2.getBytes());

8.          }

9.      }

10. }catch(IOException Ignore){}

11. }

(c) Fixed-file

Figure 4: Figure 4(a) is a commit on GitHub which fixes a NPE (NULL Pointer Dereference) vulnerability. The vulnerability in
this commit is extracted to Figure 4(b) and the content of bug fixed is extracted to Figure 4(c).

os.write(msg.getBytes())

os.write(ex.getMessag

e().getBytes())

return

1

3

4
5

6

2
ex==null

IOException
ex!=null

snippet1      snippet2      snippet3

1

3

4

6

1

3

5

6

1

3

5

Figure 5: Data and control flow dependence are used to divide
Bug-file into two execution paths, snippet1 and snippet2. To
extend the number of positive samples, snippet3 is generated
from line 1 to the deleted line.

generate source code AST. AST uniquely represents source

code fragments with a given structure and syntax. AST’s

leaf nodes are called terminal nodes, which usually refer

to user-defined values, such as identifiers or names in the

source code. Non-leaf nodes are called non-terminal nodes

representing some structures with special meaning in the

source code, such as loops, expressions, and variable dec-

larations.We extract the sets of AST nodes between two ter-

minal nodes as AST paths. In other words, the AST path is a

sequence of terminal nodes and non-terminal nodes. Finally,

we learn the contextual representation of the code snippet

from all the extracted AST paths. As shown in Figure 9, (a)

shows the source code, (b) shows the AST structure, and the

four extracted paths. For each path P, it can be represented

as a set of node sequences. The AST Sequence 1 represents

Path2 in Figure 9(b).

Patℎ2 = {int,P arameter,metℎodDeclaration,P arameter,b}

(1)

In particular, to prevent the problems that path from be-

ing too long and not conducive to the model’s training, we

selected three types of AST nodes: The first type node is as-

sociated with class instantiation and method invocation, uses

the function names or class names of these nodes as token in

this paper.The second type is the declaration class node, such

as method declaration, type declaration, interface declara-

tion, and enumeration declaration. The last type is control

dependent node, such as condition control (IfStatement),

cyclic control (ForStatement, WhileStatement), and abnor-

mal control (ThrowStatement, CatchClause). For the node’s

content, we try our best to summarize the content of the node

into one word. For example, during parsing of AST, the child

node "{}" of the node BlockStatement, we regard it as a word.

6.2. The contextual representation of snippets
To learn the context representation vector of the code

snippet from many AST paths, we first generate representa-

tion vectors of AST paths, add vulnerability weight for cer-

tain AST paths, then learn the contextual representation of

each AST path. Finally, we use the attention mechanism to

fuse multiple AST paths into a one-dimensional vector to

represent the entire code snippet. The specific steps are as

follows.

6.2.1. The representation vectors of AST path

To convert each AST path into a value that the neural

network can input. We map each node in the AST path to

a word. Use WORD2VEC to learn on this corpus, where

we choose the CBOW model to learn the vector represen-

tation of these AST nodes [37]. The CBOW model is de-

signed to predict the conditional probability of the central

word w under a given context, such as wt−2, wt−1, wt+1,

wt+2, and word vectors are generated by the training pro-

cess. The model consists of three layers: an input layer,

which reads word vectors in the context of word w; a projec-

tion layer, which sums vectors of input layer; and an output

layer that uses softmax to predict the conditional probabil-

ity of w. The model first randomly initializes vectors of all

words in the corpus, and then these vectors are trained and

updated together with the model’s parameters. After train-

ing the CBOW model, it generates a mapping table of words

and their corresponding vectors. Through the model, each

node ni of the path P = n1, n2,..., ni can be mapped to a

word vector NodeVi. The loss function of the model is de-

fined as for formula (2). The loss function of the model is

defined as for formula (2). Where Loss is the loss func-

tion of nodes in P = n1, n2,..., n3, NNS is a set of neigh-

bor nodes of node n, NodeVk represents the feature vector

of node Nk, NodeVj represents the feature vector of node

Nj , HS{NodeVk |NodeVj} stands for hierarchical softmax

function.

Loss
i
= min

i

1

i

i∑

j=1

∑

k∈NNSr

− logHS{NodeVk|NodeVj}

(2)

6.2.2. Adding the vulnerability weight

To integrate feature information about vulnerabilities

into the representation vectors of the AST path, we refer to

the method of LI et al.[25] and take the following princi-

ple in this paper: if any node ni in the path p = {NodeVi,
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1.  private void handleException(String msg, Exception e){

2.  try{

3.      os.write(msg.getBytes());

4.      if (ex!= null)

7.  }catch(IOException Ignore){}

8.  }

(a) snippet1

1.  private void handleException(String msg, Exception e){

2.  try{

3.      os.write(msg.getBytes());

4.      if (ex!= null){

5.          os.write(ex.getMessage().getBytes());

6.      }

7.  }catch(IOException Ignore){}

8.  }

(b) snippet2

1.  private void handleException(String msg, Exception e){

2.  try{

3.      os.write(msg.getBytes());

4.      if (ex!= null){

5.              os.write(ex.getMessage().getBytes());

(c) snippet3

Figure 6: Using the three execution paths in Figure 5 to divide the Bug-file into three snippets.

1.  private void Func1(String Var1, Exception Var2){

2.  try{

3.      Var3.write(Var1.getBytes());

4.      if (Var2!= null){

5.         Var3.write(Var2.getMessage().getBytes());

6.      }

7.  }catch(IOException Var4){}

8.  }

Figure 7: Normalization of the snippet2 in Figure 6. Uniform
symbols would replace user-defined variables and functions in
snippet2, and delete non-ASCII codes and comments.

Code Snippets

Connection layer and 

Attention weight

Extract the AST path    

...

Bug

......

Convolution layer Snippet representation

Learn the contextual representation of snippet

...

1 2

Figure 8: Embedding process. It consists of two steps. First,
Developer extract the AST path, and then use AST and
attention mechanism with vulnerability weight

to generate contextual representation of snippet.

1.  public static compare(int a, Integer b){

2.      return a == b;

3.  }

Method Declaration

boolean compare Parameter Parameter BlockStmt

ReturnStmt

==

a bint Integer

a b

Path1

Path2

Path3

Path4

Figure 9: Source code and its four AST paths. AST path
refers to the sets of AST nodes between two terminal AST
nodes.

NodeVi+1,..., NodeVn} contains AST nodes of the vulner-

able code line, the same weight w is applied to all AST

nodes in the path, namely p = w ∗{NodeVi, NodeVi+1,...,

NodeVn}. Conversely, if the path does not contain a vulner-

able code line’s AST nodes, the path would add no weight.

(As shown in Figure 16 (a), only AST paths containing pur-

ple nodes are multiplied by w.) Thereby, we can distinguish

the vulnerability and non-vulnerability AST path by whether

it increases the weight.

6.2.3. The contextual representation of AST path

We extract the AST path features from a series of AST

nodes by a convolutional layer. Specifically, the sequence of

AST node vectors is represented as a matrix D of size n ∗ d.

n is the number of nodes, and d is the word vector’s length

mapped by each AST node. The core of the convolution is

the filter. By linearly transforming the local information in

different spatial ranges, it can mine the important features of

different AST nodes in the path. Specifically, the local recep-

tive fields and weights of the filter share the local space in-

put vector. The information is convolved to extract features.

The calculation of the fully connected layer is formula (4),

where ĉi is the output of the fully connected layer, W refers

to the weight matrix, and the tanℎ function is a commonly

used nonlinear activation function, its output range is (-1,1

), each element of the vector would apply it. DEVELOPER

takes such feature extraction operations for each path. Up-

dating the weight parameters of the convolutional layer and

the fully connected layer by training the network. For every

AST path, the model focuses on different nodes.

ci=�(W ⋅ xi∶i+n−1 + b) (3)

ĉi= tanh(W ⋅ ci) (4)

6.2.4. The contextual representation of snippets

We use the attention mechanism to emphasize certain

AST paths with important vulnerability information. Specif-

ically, we take the following inputs: a training target vector

(T ), input from fully connection layer after convolutional

layer, namely V I
i

, and output from fully connection layer

after convolutional layer, namely V O
i

. We define a target

vector to have the same length as the input vector. Also, we

set all values in the T as 1 for buggy and 0 for non-buggy.

V I
i

and V O
i

are both obtained in the previous step in Section

6.2.3. Then we conduct a dot product between the T and

the V I
i

, and scale the product result. We apply a softmax

function on the result of the scaling process, so we get the

attention weight �i of each V O
i

(such as formula (5)). Fi-

nally, the calculation of the context vector of snippet v (as

formula (6)) through V O
i

and �i .

In natural language processing, the attention mechanism

can make the model focus on some important words in the

sentence. Similarly, in vulnerability detection, it is expected

to help the vulnerability detection model give more weight

to certain paths that contain important vulnerability infor-

mation.

�i =
exp(V I

i
⋅ T )

n∑
j=1

exp(V I
i
⋅ T )

(5)

v =

n∑

i=1

�i ⋅ V
O
i

(6)

7. Training detection model

7.1. Highway BiLSTM Neural Network
DEVELOPER uses a Highway BiLSTM to train the de-

tection model. Compared with other neural networks such
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as RNN and LSTM, BiLSTM has the main advantage of

adding a two-way feedback mechanism. It has two LSTM

hidden layers, forward and backward. The input vector of

the forward hidden layer is from front to back. We use the

forward information to detect the backward information to

capture the contextual relationship. The input vector of the

backward hidden layer is from back to front. We use the

backward information to detect the forward information to

capture the contextual relationship from another perspective.

Finally, both hidden layers are connected to the same output

layer. The LSTM hidden layer is composed of many LSTM

units. Therefore, BiLSTM can better capture contextual in-

formation in both historical and future directions.

Furthermore, inspired by previous work in natural lan-

guage processing [43, 23] that applies highway gates [46] to

help the information propagation between cells, we also em-

ploy highway gates to our BiLSTM: With propagation depth

M which means M sub layers in a single Highway LSTM

layer. the outpur of sub layer m by st
m

. yt is read from the

last sub-layer and fed into the first layer by letting: st
0
= yt−1.

The layer is defined for m = 1, ..., M by:

st
m
= ℎt

m
⋅ T t

m
+ st

m−1
⋅ C t

m
(7)

ℎt
m
= tanh(WHxt�1,m + RHm

st
m−1

+ bHm
) (8)

T t
m
= �(WT x

t�1,m + RTm
st
m−1

+ bTm
) (9)

C t
m
= �(WCx

t�1,m + RCm
st
m−1

+ bCm
) (10)

�i,j is the Kronecker delta, and W , b are the matrix and

bias terms that parametrize the connection. Thus the output

of the first sub-layer, st
1

is obtained from current input xt,

and the previous output, yt−1 and the rest of the computa-

tion is done in a feed-forward manner with internal Highway

skip connections. This formulation shares an arbitrarily deep

mapping for the layers’ transition and transfer functions.

7.2. Building detection model
Highway BiLSTM helps us automatically learn vulnera-

bility features, solve existing work shortcomings requiring a

manual definition of vulnerability features. Figure 10 high-

lights the structure of the BiLSTM neural network, which in-

cludes a BiLSTM layer, a Highway gate layer, a dense layer,

and a softmax layer. The BiLSTM layer consists of several

BiLSTM unit, mainly used to capture the source code’s data-

dependent features and structural features. The Highway

network layer can effectively alleviate the vanishing and ex-

ploding gradient problems during the training network, en-

able the model to capture much more semantic information

[33]. The dense layer, the fully connected layer, aims to map

the features learned in the previously hidden layers to the

sample’s label space and integrate the previously highly ab-

stracted features. The Sigmoid layer is the activation layer.

For deep neural networks, the output of the intermediate hid-

den layer must have an activation function.

For the target file to be detected, we follow Sec.5 to ex-

tract many function fragments in the file and generate sets

[ v1                              v2                                       vn-1                               vn ]

LSTM LSTM LSTM LSTM...

LSTM LSTM LSTM LSTM...

...

w

y1

w

y2

w

yn-1

w

y1

...

...

Output

Sigmoid

Dense

Highway

BiLSTM

Input

0/1

Figure 10: Overview of Highway BiLSTM neural network.

of snippets. Then use the trained detection model to clas-

sify it. For each snippet, the model can generate a label for

it to achieve the detection purpose. DEVELOPER can detect

vulnerabilities at source-code-level.

8. Evaluation

This section introduces preparations for DEVELOPER

evaluation, including implementation platform, evaluation

datasets, evaluation methodology, and competitive ap-

proaches.

8.1. Implementation
The hardware platform used for model training is

NVIDIA GeForce GTX 1080 GPU, Intel Xeon E5-1620

CPU. In the Embedding phase, each word’s vector dimen-

sion is 200 dimensions, and the maximum length of a sam-

ple is 500 words. In the training phase, the dimension of

hidden layer nodes in BiLSTM is 300. Because there are

many types of vulnerabilities, we adjust the hyperparame-

ters of the model within a certain range and choose the best

effect, such as size of epoch, the value range of is (100, 200,

300), the value range of size of batch is (32, 64, 128, 256),

the value range of Learning rate is (0.005, 0.010, 0.015).

8.2. Datasets evaluation

Open source benchmark database: Benchmark. We gen-

erate Benchmark from two sources: NVD and LIU et al. [32].

NVD contains vulnerabilities in production software. The

detailed page for each vulnerability may contain a mapping

link to GitHub, containing Diff(bug, fixed) files that describe

the difference code snippet between the vulnerable and fixed

versions (see Section 5.1). So we search in NVD textual de-

scription by vulnerability keyword, get the candidate CVE

list, and pay attention to whether the Diff(bug, fixed) can be

obtained from the mapping link and further extract vulnera-

ble code snippets. The above method is similar to the data

collection method of [29, 27, 28]. LIU et al. builds their

dataset based on five diversified large-scale open-source C

projects that incorporate high complexity and variety of real

source code instead of synthesis code used in previous works

by the manual label. We obtain Diff(bug, fixed) files by
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Table 3

Details of the experimental data in GitHub and Standard.

Bug type Compliant
commit(G)

Filtered
commit(G)

Snippets(G) Snippet(Standard)

CWE-119 68738 27840 50440 14937
CWE-399 48760 25070 37200 15297
CWE-401 34509 15640 27730 19320
CWE-415 15700 11426 24390 905
CWE-416 27000 17650 24490 459
CWE-020 57699 34350 48600 5637
CWE-022 65430 25470 32070 3290
CWE-129 210045 14230 52000 339
CWE-400 374783 20800 37000 2199
CWE-476 356729 20034 54200 2619

searching for the commit link provided by LIU et al. in

GitHub. Then we process code files into snippets accord-

ing to the DEVELOPER’s data preprocessing method (slicing

and code embedding).

Open source repositories: GitHub. Our approach collects

378,631 repositories from GitHub and 212,510 commits of

10 vulnerability types in these repositories. Slicing accord-

ing to Sec. 5, we finally obtain 338,120 code snippets. To

ensure the data is reliable, we set up a professional review

team of 9 people to conduct sampling check on 10% of the

data, dividing it into 50 partitions according to fork ranking,

and randomly select an equal number of commits in each par-

tition. Before the filtering phase in Sec. 4, there are 27.7%

commits that do not meet the requirements; after filtering,

only 0.3% of the commits did not meet the requirements in

three months of manual inspection. The main reason is that

the file modification is different from its description.

Standard vulnerability databases: Standard. We gener-

ate Standard from SARD. The dataset has been marked as

positive, negative, or mixed samples. Finally, we obtained

41,625 vulnerability files from SARD. After slicing files to

the function level with Eclipse JDT and C, we finally obtain

65,002 snippets.

Table 3 shows the number of data for each vulnerability

type.

8.3. Evaluation Methodology
DEVELOPER is evaluated on a ten-fold cross-validation

technique and uses the confusion matrix to generate metrics

evaluation models for Precision, Recall, F1-Score, FNR, and

FPR. Precision measures the correctness of the detected vul-

nerabilities; Recall measures the ratio of the true positive

vulnerabilities to the entire population of vulnerable sam-

ples; F1-Score is the harmonic mean of Precision and Re-

call; FNR measures the ratio of false-negative vulnerabilities

to the entire population of vulnerable samples; FPR mea-

sures the ratio of false-positive vulnerabilities to the entire

population of invulnerable samples.

8.4. Competitive Approaches
In this paper, DEVELOPER was compared with seven ad-

vanced work:

• VULDEEPECKER [29]

VulDeepecker is a fine-grained, automated vulnerability

detection model. The core idea of the model is to slice

the source code through API call and library call. And

collect all code lines related to it, named “Code Gadget."

Then using the deep neural network, automatically learns

these “Code Gadgets." Their work is based on the data set

created by the vulnerability libraries NVD and SARD.

• VUDDY [22]

VUDDY is an approach that uses hash function to scal-

able yet accurate code clone detection in C/C++. The

design principle of VUDDY aims to detect vulnerable

clone source software in the open-source repositories at

the function level.

• LIN et al. [30]

LIN et al. is a software vulnerability detection framework

via Learning multi-domain knowledge bases. The frame-

work uses Long-short Term Memory (LSTM) cells to de-

tect software vulnerability from SARD and real-world at

the function level.

• FLAWFINDER [52]

FLAWFINDER is an open-source code static analysis tool

that can detect vulnerabilities in C/C++ language. It

mainly relies on vulnerability rules of user-defined to

achieve vulnerability detection.

• FINDBUGS [8]

FINDBUGS is an open-source code static analysis tool that

could detect vulnerabilities in Java. It uses a variety of

static analysis techniques and defines more than 300 dif-

ferent vulnerability rules.

• TREE-LSTM [5]

TREE-LSTM is a generalization of LSTMs to tree-

structured network topologies, which network in line with

source code AST structure. It is superior to the LSTM in

predicting the semantic relevance of the two sentences.

• CODE2VEC [1]

CODE2VEC is a state-of-art code embedding method. The

CODE2VEC uses a neural network model to represent a

code snippet as a single fixed-length code vector, which

can be used to predict semantic properties of the snippet.

9. Evaluation result

The main contribution of our method has proposed a

method for collecting high-quality vulnerabilities from open

source code repositories and a way of data preprocessing that

tries to preserve the source code information. Our evaluation

aims to answer the following questions:

• Why do we not just use Standard datasets for vulnerabil-

ity detection? Is the distribution of vulnerable code dif-

ferences between the real world and the standard vulner-

ability library (Sec. 9.1)?

• Can the high-quality vulnerability data we collect from

the real world improve the model’s detection performance

(Sec. 9.2)?

• How well can our detection model on different datasets

and different languages (Sec. B.1)?
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Figure 11: CDF (Cumulative Distribution Function) reflects
the probability distribution of the number of control branches
in the source code snippets on GitHub and Standard. Vul-
nerabilities on GitHub are more complex than Standard and
contain more control information.

Table 4

Statistics of code lines and code branches in GitHub and Stan-
dard.

Datasets min max mean

code line
Standard 1 200 20
GitHub 1 5698 176

branch
Standard 0 28 1
GitHub 0 674 8

• Can the slicing method of source-code-level with data and

control flow information capture the source code informa-

tion more accurately? Can this slicing method be used for

other models (Sec. 9.4)?

• Is it necessary to normalize code (Sec. 5.3)? How much

does the semantic information of user-defined function

names and method names affect the results of the detec-

tion model (Sec. 9.5)?

• Does the embedding method of using AST path with vul-

nerability weight and attention mechanism outperform

other SOTA methods (Sec. 9.6)?

• Does the High-way BiLSTM Networks network per-

form better in vulnerability detection than other networks

(Sec. 9.7)?

In addition, it should be noted that in each experiment,

we train model and tune parameters with the same dataset

using the parameter tuning tool NNI [39].

9.1. Analysis of vulnerability distribution
The purpose of this experiment is to illustrate the ne-

cessity of DEVELOPER’s collection of GitHub data to detect

real-world vulnerabilities. Figure 11 shows the distribution

probability of code lines and control branch in code snip-

pets on Standard and GitHub. The number of code lines

in Standard is distributed in the range of 0 to 120, while

in GitHub, it is distributed in the range of 0 to 500; The

number of branches in Standard is distributed in the range

of 0 to 4, and it is distributed in the range of 0 to 20 in

GitHub. Compared with the real-world vulnerability, the

Standard contains fewer code lines and branches. It means

that the Standard’s vulnerabilities are too simple to support

the model to capture the vulnerability patterns well. Further-

more, We count the average, minimum, maximum number

of code lines and branches on Standard and GitHub (see Ta-

ble 4). The vulnerability from Standard contains less con-

trol flow information, which means it is not enough to sup-

Table 5

Performance improvement over the baseline detection models
when supplement different training samples.

Precision Recall F1 FNR FPR

Standard 64.2% 55% 59.2% 45.0% 31.4%
Wang 67.9% 57.2% 62.0% 42.8% 23.0%
Zhou 70.3% 62.4% 66.1% 37.6% 22.8%
Developer 76.2% 68.9% 72.4% 31.1% 17.7%

port the predictive model to detect vulnerabilities of the real-

world.

9.2. Evaluation on Data collection module
In this experiment, we evaluate whether the high-quality

dataset collected by DEVELOPER could improve the perfor-

mance of the vulnerabilities detection model. To isolate the

impact of our neural network model, we test whether the

training data set collected by data collection method could

improve the performance of VULDEEPECKER [29], and we

take 2,000 data in Benchmark dataset to learn the baseline

detection model. Then, we use additional 1,000 code sam-

ples (with an equal positive-negative split) that are collected

by DEVELOPER, ZHOU et al. (Zhou dataset) [57], WANG

et al. (Wang dataset) [51] to the training dataset to learn a

tuned model. We then apply 1,000 test samples from Bench-

mark, where half of the samples are vulnerabilities. Among

them, the data instance of ZHOU et al. and WANG et al. are

code fragments at the function level containing positive and

negative samples. Then we process code files into snippets

according to the DEVELOPER’s data preprocessing method

(slicing and code embedding).

As shown in Table 5, additional training data could im-

prove the performance of the detection model. In addition,

we notice that DEVELOPER delivers the best overall perfor-

mance compared with the other three datasets with a 72.4%

F1-Score and 17.7% FPR. Standard gives the lowest perfor-

mance with a 59.2% F1-Score, the reason is that Standard

samples usually give old-fashioned cases of vulnerabilities

and insufficient amount. WANG et al. and ZHOU et al. give

an improvement to original training samples with 62.0% F1-

Score and 66.1% F1-Score. Due to the fact that our data

collection method exploits strict filtering rules and manual

review, our system could achieve the highest F1-Score than

others.

9.3. Evaluation on Bug Detection
To evaluate the performance of DEVELOPER on both

GitHub and Standard data sets. We compared three rep-

resentative works, VULDEEPECKER, VUDDY, and LIN

et al., on the GitHub and four works, VULDEEPECKER,

FLAWFINDER, LIN et al., FINDBUGS, on Standard.

(1) Evaluation on GitHub.

Compared with VULDEEPECKER and VUDDY in

C/C++. We use five kinds of vulnerabilities in C/C++ lan-

guage for evaluation. Figure 13(a) reports the detection ef-

fect of DEVELOPER on each vulnerability type, and Figure

14(a) shows the average metric of three different vulnerabil-

ity detection frameworks where the min-max bar shows the

variance across experimental results.
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Among the three different models, Precision, Recall, and

F1-Score of DEVELOPER are the highest, FNR is the low-

est. It means that DEVELOPER can accurately detect more

vulnerabilities. A detection model with a lower FPR can re-

duce developers’ workforce and material resources to check

the vulnerabilities. VUDDY performs a high Precision with

the lowest Recall 15% , which means VUDDY could only

detect less than 15% of all vulnerable samples in the test set.

VULDEEPECKER shows a higher FPR since they only

use the code data flow information when constructing code

gadgets, which could not capture the in-depth code informa-

tion. For instance, they detect Double Free samples based on

the word ’free,’ which neglects control flow information and

causes a high FPR. The research from Sec. 9.1 shows that

control dependence is significant for detecting real-world

vulnerabilities. DEVELOPER uses data flow and control flow

to disperse the structural information of a code fragment into

the sequential information of multiple code snippets. This

relieves the model’s task of capturing structural information

of the code and indirectly strengthens the model’s ability to

capture structural code information. Furthermore, DEVEL-

OPER adds an attention mechanism with vulnerability weight

based on word2vec in the embedding phase. At the same

time, to consolidate network propagation and better learn the

features of vulnerabilities, DEVELOPER has added a highway

gate based on BiLSTM. For the above reasons, the F1-Score

of DEVELOPER is higher than VULDEEPECKER, which ig-

nores semantic code information such as control flow.

However, DEVELOPER has a low precision when facing

CWE-401 ( still higher than 75% ), the memory leak. Be-

cause most memory leak vulnerabilities have nothing to do

with the code structure, DEVELOPER cannot learn the vul-

nerable pattern through control dependencies and data de-

pendencies. As shown in Figure 12, the variable split ap-

plies to allocate space on line 2 and releases space on line

5, but the structure information of the code before and after

the repair has not changed. This is a problem with the ex-

isting static vulnerability detection model, which might be

improved by adding dynamic features.

Compared with LIN et al. in JAVA. We collect five types

of common vulnerability in JAVA from open source repos-

itories to evaluate our system. Figure 13(b) reports the de-

tection effect of DEVELOPER on each vulnerability type and

Figure 14(b) shows the average detection performance of

LIN et al. and DEVELOPER. We can observe from results

that the detection effect of DEVELOPER is better than LIN

et al. among these three types of metrics, Precision, Re-

call, and F1-Score, DEVELOPER is 15.9%, 14.1%, and 15.1%

higher than LIN et al., respectively. This means that DEVEL-

OPER can detect more vulnerable samples while ensuring the

Precision of the model. In terms of FNR and FPR, DEVEL-

OPER is 14.1% and 18.0% lower than LIN et al., which allow

DEVELOPER with higher usability than LIN et al..

Although LIN et al. uses AST to reserve syntax informa-

tion, regards code as text directly, and applies WORD2VEC

to encode source code, the code is only trained as words. The

1 Continent& MapLoader :: createContinent(string& line)

{

2 vector <string >& split = splitInput(line , '␣

');

3 string name = split [0];

4 Continent* continent = new Continent(name);

5 return *continent;

6 }

(a) Vulnerability sample(CWE-401)

1 Continent& MapLoader :: createContinent(string& line)

{

2 vector <string >& split = splitInput(line , '␣

');

3 string name = split [0];

4 Continent* continent = new Continent(name);

5 delete& split;

6 return *continent;

7 }

(b) Fixed vulnerability sample(CWE-401)

Figure 12: Code (a) in GitHub is a memory leak vulnerability
sample, and Code (b) in GitHub is a sample which fixed the
vulnerability. Code (a) and Code (b), there is no change in the
code structure.
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(a) Evaluation DEVELOPER on GitHub in C/C++

CWE-020 CWE-022 CWE-129 CWE-400 CWE-476 GeoMean0
0.2
0.4
0.6
0.8

1
FNR FPR Precision Recall F1 Score

(b) Evaluation DEVELOPER on GitHub in JAVA

Figure 13: Evaluation Developer on GitHub in C/C++ and
JAVA. Developer gives the better Precision, Recall , FNR,
FPR, F1-Score.

FNR FPR PrecisionRecall F1
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1
VUDDY VulDeePecker DEVELOPER

(a) Evaluation in C/C++

FNR FPR Precision Recall F1
0

0.2
0.4
0.6
0.8

1
Lin et al. DEVELOPER

(b) Evaluation in JAVA

Figure 14: Compared Developer with four SOTA vulnera-
bilities detection frameworks on GitHub. Developer gives
the best Precision, Recall , FNR, FPR, F1-Score.

structure and semantic information of the source code will

be ignored. In this paper, we not only slice the source code

according to data and control flow dependence but also use

a novel code representation method based on the AST path

and attention mechanism. As a result, DEVELOPER extracts

vulnerability features more precisely to train the detection

model.

(2) Evaluation on Standard.

We evaluate the model’s performance on the Standard vul-

nerability datasets. We selected four data types which have

largest amount in SARD data set for experimental evalua-
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Table 6

Evaluation VulDeePecker, Flawfinder and Developer

on Standard in C/C++.
Bug type Precision Recall F1 FNR FPR

VulDeepecker
CWE-119 91.7% 82.0% 86.6% 18.0% 2.9%
CWE-399 94.6% 95.3% 95.0% 4.7% 2.8%

Flawfinder
CWE-119 26.9% 30.5% 28.6% 69.5% 83.1%
CWE-399 24.1% 22.0% 23.0% 78.0% 69.5%

Developer
CWE-119 97.1% 91.5% 94.2% 8.5% 2.7%
CWE-399 97.9% 96.1% 97.0% 3.9% 2.0%

Table 7

Evaluation Lin et al., FindBugs and Developer on Stan-
dard in JAVA.

Bug type Precision Recall F1 FNR FPR

Lin et al.
CWE-400 85.8% 82.9% 84.3% 17.1% 13.7%
CWE-476 83.6% 86.4% 85.0% 13.6% 16.9%

Findbugs
CWE-400 24.6% 25.4% 25.0% 74.6% 78.0%
CWE-476 25.0% 28.8% 26.8% 71.2% 86.4%

Developer
CWE-400 91.2% 91.2% 91.2% 8.8% 8.8%
CWE-476 89.6% 91.5% 90.5% 8.5% 10.7%

tion.

Compared with VULDEEPECKER, FLAWFINDER in

C/C++.

We compared with VULDEEPECKER, FLAWFINDER, and

DEVELOPER in CWE-119 and CWE-399 of C/C++, the ex-

perimental results are shown in Table 6.

Compared with LIN et al., FINDBUGS in JAVA. Compared

LIN et al., FINDBUGS, and DEVELOPER in CWE-400 and

CWE-476 of JAVA, the experimental results are shown in

Table 7.

Observing Table 6 and Table 7, it can be concluded that

DEVELOPER can achieve higher F1-Score and lower false-

positive rates on the four types of vulnerability, including

CWE-119, CWE-399, CWE-400, and CWE-476, and bet-

ter than VULDEEPECKER, LIN et al., FLAWFINDER, FIND-

BUGS. The following facts can explain the high FPR and

FNR: FLAWFINDER and FINDBUGS rely on manual-defined

rules; they can only detect most of the vulnerabilities with

prominent features, which leads to a very high rate of false

negatives and false positives. The false-negative rate of DE-

VELOPER on CWE-119 is higher than that of CWE-399. Af-

ter analyzing the false-negative samples of DEVELOPER

detected, it is found that the main reason is that there is

a small number of buffer overflow vulnerability codes that

have nothing to do with control flow, which is also one of

the limitations of DEVELOPER. In summary, DEVELOPER

can maintain a high F1-Score on the Standard. At the same

time, we achieved a low false-positive rate and a low false-

positive rate.

9.4. Evaluation on code slicing
In this experiment we evaluate the impact of that slic-

ing of source-code-level with data and control flow informa-

tion, and function-level slicing without other information on

model detection capabilities. we used the control and data

flow dependence slicing method and the function block slic-

ing method to compare the ten kinds of vulnerability col-

lected from the GitHub (the data is collected according to

the method in Sec. 4). The method function block slicing,

Table 8

Evaluation slicing methods of Function-Slice and Devel-

oper on GitHub.

PrecisionRecall F1 FNR FPR IoU

Function-Slice 73.0% 74.9% 73.8% 25.1% 28.1% 25.7%
Developer 82.2% 86.2% 84.1% 13.8% 18.9% 61.3%

called FUNCTION-SLICE, combined the source vector repre-

sentation method based on the AST path and attention mech-

anism. Furthermore, to better illustrate the benefits of source

code detection granularity, we introduce the IoU score [26].

As shown in formula 11, where A represents the number of

lines of real vulnerabilities in the code slicing, and B repre-

sents the number of lines of vulnerabilities detected by the

model. The closer the IoU is to 1, the more accurately the

model can locate the vulnerability. Table 8 shows the aver-

age Precision, Recall, F1-Score, FNR, FPR, and IoU of the

two methods.

IoU =
A ∩ B

A ∪ B
(11)

The Table 8 shows the average Precision, Recall, and F1-

Score of DEVELOPER, which are respectively 9.2%, 11.3%,

and 10.3% higher than those of FUNCTION-SLICE. FNR and

FPR are 11.3% and 9.3% lower than FUNCTION-SLICE. And

IoU of DEVELOPER is much higher than FUNCTION-SLICE.

In order to further verify whether our proposed slicing

method is suitable for other vulnerability detection models,

we select VULDEEPECKER with the best vulnerability detec-

tion effect in C/C++ and LIN et al. in JAVA. We verify the

average effect of the model with and without the DEVEL-

OPER’s slicing method on GitHub. The results are shown

in Table 9. Among them, the letter before "-" is the ab-

breviation of the model, L means LIN et al. and V means

VULDEEPECKER, "S" after "-" indicates the slicing method

of the model itself, and "D" indicates the DEVELOPER’s slic-

ing method. It can be seen that after using the DEVELOPER’s

slicing method, the false positive rate of VULDEEPECKER

and LIN et al. dropped significantly by 19% and 22%, re-

spectively. That shows that VULDEEPECKER only captures

the information of API-related streams and cannot wholly

summarize the structural information of code. LIN et al.

only slices at the function-level, which hardly covers the

structural information of the code, resulting in a high false-

positive rate. DEVELOPER uses data flow and control flow to

disperse the structural information of a code fragment into

the sequential information of multiple code snippets. This

relieves the model’s task of capturing structural informa-

tion of the code and indirectly strengthens the model’s abil-

ity to capture structural code information. In summary, the

slicing method on the source-code-level is superior to the

the coarse-grained-level and improves the detection perfor-

mance of other models.

9.5. Evaluation on Code Normalization
In order to evaluate the impact of the semantic infor-

mation of the variable names and function names defined

by developers (user-defined nodes) on the model, we con-
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Table 9

Evaluation of the generalizability of the Developer slicing
method on GitHub.

Precision Recall F1 FNR FPR

V-S 61.1% 69.5% 68.2% 31.1% 58.7%
V-D 65.7% 76.2% 72.9% 24.2% 39.8%
L-S 57.4% 65.3% 66.2% 34.3% 65.4%
L-D 68.1% 74.3% 71.6% 25.5% 34.1%

Table 10

Evaluation on code Normalization and Non-Normalization
methods in open source Benchmark database.

Precision Recall F1 FNR FPR

B-N 83.7% 90.1% 86.5% 25.1% 10.7%
B-Non 74.5% 85.3% 73.1% 53.7% 14.2%

ducted validation experiments on the open-source Bench-

mark database (B). The experimental results are shown in

Table 10. The "N" after "-" indicates that user-defined nodes

are replaced. The comprehensive metrics F1 of the nor-

malization method is 7% higher than the non-normalization

method, which shows that model will be disturbed by noise

due to uncertainty of real-world code quality. So, to re-

duce the negative impact of uncontrollable semantic infor-

mation, code normalization is necessary. Furthermore, on

the Benchmark dataset, which is closer to the real-world vul-

nerability situation, using the code normalization method to

replace the semantic information of user-defined nodes is

better than the non-normalized. It shows that DEVELOPER

does not rely on the semantics of user-defined nodes for clas-

sification. At the same time, Tables 8, 9 in Section 9.4, and

11 in Section 9.6 indicate that DEVELOPER relies on struc-

tural code information for classification.

9.6. Compared with code embedding approaches
In this experiment we evaluate the embedding method’s

impact on the model detection ability. We evaluated

the embedding methods of the token sequence (called

WORD2VEC), CODE2VEC, a distributed represent of code,

and DEVELOPER in GitHub. Among them, the embedding

method of the token sequence uses the VULDEEPECKER

processing method, which treats the code gadget as text,

slices it, and uses WORD2VEC’s CBOW model to vector-

ize the it. CODE2VEC first decomposes the code into a col-

lection of paths in its AST, called path contexts. Then the

network learns the atomic representation of each path con-

texts while simultaneously learning how to aggregate a set

of them by attention mechanism. Table 11 shows the aver-

age Precision, Recall, F1-Score, FNR, and FPR of the com-

parison experiments. The table presents findings that the

F1-Score of WORD2VEC is the lowest among the three ap-

proaches, and FNR and FPR are also the highest. The ex-

perimental effect of CODE2VEC is second. The main rea-

son is WORD2VEC treats the code gadget as text. In that

case, the connection between program semantics and vul-

nerability features is lost, resulting in poor detection results.

The behavior of CODE2VEC embedding the AST path as the

monolithic symbol will cause sparsity and make its effect

poor [20]. Moreover, because CODE2VEC retains the natu-

Table 11

Evaluate embedding methods of Word2Vec, Code2Vec

and Developer on GitHub.

Precision Recall F1-

Score

FNR FPR

Word2Vec 71.1% 73.7% 72.3% 26.3% 30.2%
Code2Vec 74.8% 84.6% 79.3% 15.4% 35.6%
Developer 82.2% 86.2% 84.1% 13.8% 18.9%

Table 12

Evaluate different networks on GitHub.

Precision Recall F1-

Score

FNR FPR

CNN 71.1% 72.6% 71.8% 27.4% 30.6%
LSTM 74.4% 76.8% 75.6% 23.2% 28.1%
BiLSTM 76.2% 78.4% 77.3% 21.6% 26.1%
GRU 74.1% 75.3% 74.7% 24.7% 27.1%
BiGRU 76.7% 79.7% 78.1% 20.3% 26.5%
TreeLSTM 78.2% 81.5% 79.8% 18.5% 25.5%
Developer 84.1% 86.1% 85.1% 13.9% 18.1%

ral language information of all terminal nodes, it overly de-

pends on the quality of the code written by the programmer,

resulting in a limited effect.

To further illustrate the advantages of DEVELOPER for

code vulnerability detection, considering the two code snip-

pet in Figure 15 from two different repositories hosted on

GitHub. Both code samples contain an null pointer derefer-

ence vulnerability, where the program ignores null pointers

when referencing pointers. Specifically, snippet1 does not

consider the case where args is null: the length of args is

referenced in the for loop’s control condition, and the args’

value is referenced in the loop body. The same structure ap-

pears in the do-while of snippet2. Two snippets generate

very different token sequences by WORD2VEC, resulting in

different prediction results. DEVELOPER uses AST to con-

sider the code’s structural information (AST see Figure 16)

and find that their AST is similar.

DEVELOPER adds vulnerability weights on the

path(marked as purple) to help the model training.

9.7. Compared with different neural networks
In this experiment we evaluate the impact of High-

way BiLSTM Networks on model detection capability. We

chose six novel neural networks in the current field, includ-

ing CNN [24], LSTM [17], BiLSTM [13], GRU [13], Bi-

GRU [16], Tree-LSTM [5] to compare with our network.

The experimental dataset is the data of ten vulnerabilities

collected in the GitHub. Before using competition networks

to learn vulnerability features, we use data flow and control

flow to slice the code, and then use the AST path and at-

tention mechanism to embed the code. Table 12 shows the

average detection effect of seven different models.

We observe that Highway BiLSTM Networks gives the

best performance of all SOTA networks in the ten types of

vulnerabilities.

CNN shows the lowest F1-Score in all types of vulnera-

bilities with 71.8% F1-Score, which means the network ig-

nores the relevance of the part to the global due to their lim-

itations, such as translation invariance [21] in CNN. LSTM

its ordinary variant like GRU, BiLSTM, BiGRU give simi-

lar F1-Score performance in several vulnerabilities between
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1.     public final String getExpressionString(final String[] args) {

2.           final StringBuilder sb = new StringBuilder(getExpressionName());

3.           sb.append("(");

4.           for (int i = 0; i < args.length; i++) {

5.                  if (i > 0) {

6.                      sb.append(",");

7.                   }

8.                  sb.append(args[i]);

9.           }

10.         sb.append(")");

11.         return sb.toString();

12.    }

(a) code Snippet1 from GitHub.

1. public String saveTeacher(String[] selectClass,String[] selectSubject) {

2.    List<Integer> selectClassList = new ArrayList<>();

3.    List<Integer> selectSubjectList = new ArrayList<>();

4.    int i=-1;

5.    do{

6.        i++;

7.        if (!selectClass[i].equals("") && !selectSubject[i].equals("")) {

8.            selectClassList.add(Integer.parseInt(selectClass[i]));

9.            selectSubjectList.add(Integer.parseInt(selectSubject[i]));

10.        }

11.    }while( i < selectClass.length);

12.    return "teacher/add-teacher";

13.}

(b) code Snippet2 from GitHub.

Figure 15: Both (a) and (b) contain a NPE vulnerability. Although the programs are not similar grammar and from two different
open source repositories, they have similar control and data flows that lead to a common vulnerability.

Method Declaration

getExpressionString String Parameter BlockStmt

ForStmt ExpressionStmt ReturnStmtExpressionStmtExpressionStmt

BinaryExpr BlockStmt

IFStmt ExpressionStmt

BinaryExpr BlockStmt

ExpressionStmt

VariableDeclaratioExpr

(a) AST of snippet1.

Method Declaration

saveTeacher String Parameter BlockStmt

DoStmt ExpressionStmt ReturnStmtExpressionStmtExpressionStmt

BinaryExpr BlockStmt

IFStmt ExpressionStmt

BinaryExpr BlockStmt

ExpressionStmt ExpressionStmt

(b) AST of snippet2.

Figure 16: The AST of two snippets in Figure 15. Developer uses the attention mechanism to add weight to the vulnerability
path(marked as purple.)

75.6% to 78.1%. However, relying on the minor update

of these variants, their bug detection difference is minimal

compared with TreeLSTM. The Precision of TreeLSTM is

higher than these LSTM’s variant networks about 4%, which

directly matches the Abstract Syntax Tree representation of

source code [5]. DEVELOPER gives the best performance

of vulnerabilities detection task due to its networks so that

it achieves an 85.1% F1-Score, higher about 10% than oth-

ers. It means Highway Networks allow information to pass

through each layer of the deep neural network at high speed

without obstruction, which effectively alleviates the problem

of gradient boom and allows deep neural networks to trans-

form information with a deeper neural network [46].

10. Limitation and future work

DEVELOPER uses vulnerability data from open source

repositories to build a deep learning detection framework.

The experiments above show that this approach has a high

accuracy rate for detecting vulnerabilities in real develop-

ment environments, but there are still some limitations in

this paper’s work.

The framework relies on existing expert rules to collect

vulnerability data, and the ruleset’s quality impacts the col-

lection results. Moreover, the current rules do not cover all

cases on the open-source repository. In the future, we will

explore the possibility of automatically collecting vulnera-

bility data on open source repositories.

As mentioned above, to represent the structured infor-

mation of the vulnerability, we utilized the AST node mod-

eling program. However, we also found that DEVELOPER

has a low accuracy rate on some vulnerabilities, such as API

abuse and memory leaks. The reason is that these vulnerabil-

ities are either related to a specific function or not related to

the structural code information. At the same time, to reduce

the dependence on the quality of the code written by devel-

opers, we ignore some semantic information about function

and variable names. Next, we will consider how to preserve

vital static features of the vulnerability code.

In addition, DEVELOPER uses Highway-BiLSTM in con-

structing the network model module. At present, deep learn-

ing technology has the problem of relying on black boxes. It

is our future work to provide a theoretical explanation for the

underlying working mechanism of DEVELOPER.

Finally, DEVELOPER’s data set is mainly in C, C++, and

Java. However, DEVELOPER does not limit the language

type. Therefore, we can research multiple programming lan-

guages and the differences in the performance of models

across programming languages in future work.

11. Related work

11.1. Classic vulnerability detection technology
The current mainstream thinking divides static vulnera-

bility detection into two methods: detection based on pat-

tern matching and code similarity [27, 22, 9, 18]. The detec-

tion method based on pattern matching generally uses ma-

chine learning technology, and its detection results largely

rely on the accuracy of the features defined by human ex-

perts [27, 6, 14, 54]. Two popular examples of this type of

approach are FLAWFINDER [52], and FINDBUGS [8] in the

business world. However, these features cannot obtain the

semantic information of the source code, the accuracy of the

detection model is not high, and the FNR is high. A detec-

tion method based on code similarity uses known vulnera-
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ble code instances to detect the same vulnerable code in the

target file [44], the effect depends on the code similarity al-

gorithm designed by human experts. Even if it takes a lot of

workforce and material resources, high-risk code caused by

code cloning cannot be detected.

11.2. Deep learning-based vulnerability detection
Since deep learning can automatically learn features,

many using deep learning technology for vulnerability detec-

tion have slowly emerged. [49] extracts the token sequence

from the program AST and then uses the deep belief net-

work to learn semantic features from it. PANG et al. [41]

uses the Long Short-Term Memory (LSTM) network learn-

ing vulnerability features in deep learning technology to re-

alize automatic vulnerability detection on software compo-

nents. LIN et al. also designed a deep-learning-based frame-

work with LSTM cells. Their framework combines the het-

erogeneous data sources to learn unified representations of

the patterns of the vulnerable source codes. DAM et al. [5]

used the TREE-LSTM network to learn source code features

to achieve defect prediction automatically. WU et al. [53]

uses the method body as the granularity of vulnerability de-

tection to study and compare the detection effect of different

deep learning models and Multi-Layer Perceptron (MLP).

PRADEL et al. [42] proposed a name-based vulnerability

detection method, DeepBugs, which distinguishes seman-

tically similar identifiers from semantically different iden-

tifiers, then uses deep neural networks to implement clas-

sifiers. The vulnerability detection granularity of the above

several methods is very large. Most of the vulnerabilities are

located in a file. LI et al. [29] proposed a BiLSTM-based

fine-grained vulnerability detection method, which can de-

tect vulnerabilities caused by improper library/API calls.

Based on related work, our work has improved some of the

shortcomings of existing work.

11.3. Vectorization technology
In the field of natural language processing, GOLDBERG

et al. [12] has proposed a technology called word embed-

ding. The result of word embedding generates a word vector,

which can capture the semantic similarity between words.

There are two main source vectorized representation tech-

niques: vectorized representation based on token sequence

and vectorized representation based on AST analysis. Based

on the vectorized representation of the token sequence, the

core idea is to treat the source code as text, slicing it, and

generating the token sequence. The token sequence can be

obtained from the source code or the AST. Then use the

representation learning technology in natural language pro-

cessing to process the token sequence into a vector. WANG

et al. [49] arranged the tokens in the order in which they

appeared in the source code and AST and then converted

the tokens into the tokens’ index subscripts in the bag of

words. For example, existing works such as [29, 42, 40]

flattened program fragments into sequences, and then used

WORD2VEC’s CBOW model to generate word vectors, and

then replaced the tokens with corresponding vectors accord-

ing to the table lookup method. The vectorized represen-

tation method based on the token sequence constructs the

source code as an order-sensitive function of the token se-

quence. Still, it loses the hierarchical structure and gram-

matical information of the source code.

CODE2VEC [1]is a model based on the AST path and at-

tention mechanism to predict the name of the Java method.

Specifically, this method first parses the code into a set of

AST paths, then learns the atomic representation of each

path context through the network, and uses the attention

mechanism to aggregate the AST paths to learn the repre-

sentation of the code snippet. However, the generalization

ability of the DL detection model may be weakened if only

the atomic representation of the AST path is learned. In or-

der to alleviate the sparsity of the model and data-hunger

problems, DEVELOPER assembles the embedded AST node

vectors into an AST path.

CODE2VEC also preserves all the information of ter-

minal nodes. However, considering the noise that

the imbalance of real-world code quality may bring,

we use normalization (replacing used-define nodes with

Func+Number/Var+Number) to ensure that used-define

nodes do not affect the training of the model. It is worth not-

ing that the used-define nodes in DEVELOPER and the ter-

minal nodes in CODE2VEC are different. The latter refers

to the leaf nodes of the AST path (only part of them are

user-defined nodes), so the conclusion of the ablation exper-

iment in CODE2VEC does not apply to DEVELOPER. Sec-

ond, DEVELOPER relies on code structure information rather

than node semantics for classification. The semantic infor-

mation of terminal nodes is not helpful for all tasks [20]. Ad-

ditionally, to help the model better focus on the vulnerabil-

ity feature of the code, DEVELOPER also added vulnerability

weights when embedding the AST paths.

12. Conclusion

We have presented DEVELOPER, which is a novel model

for vulnerability detection at the source-code level. To ob-

tain a sufficient amount of real-world vulnerability data, DE-

VELOPER uses syntactic analysis and multiple regular rules

to filter high-quality vulnerability data based on GitHub.

And we proposed a code preprocessing method that includes

a slicing technique, which uses control flow and data flow

information, and an embedding technique with an attention

mechanism and vulnerability weight. Simultaneously, use

the BiLSTM with highway network to train the vulnerabil-

ity data so that we can accurately capture the grammatical

and semantic features of the code. Experiments show that

DEVELOPER has a higher F1-Score and a lower FPR than

SOTA works.
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Supplemental Materials

In the supporting material, we show the detailed experimental results of Section 9. The data in the table is in the form of

[ minimum value, maximum value ] geomean value.

A. Evaluation on Data collection module

Table 1 shows performance improvement over the baseline detection models when supplementing different training sam-

ples.

Table 1

Performance improvement over baseline detection models when supplement different training samples.

Precision Recall F1 FNR FPR

Standard [0.61,0.69] 0.64 [0.51,0.63] 0.55 [0.51,0.62] 0.59 [0.33,0.49] 0.45 [0.25,0.36] 0.31
Wang [0.63,0.75] 0.68 [0.54,0.61] 0.57 [0.57,0.69] 0.62 [0.39,0.49] 0.43 [0.11,0.36] 0.23
Zhou [0.67,0.76] 0.70 [0.57,0.69] 0.62 [0.61,0.76] 0.66 [0.29,0.42] 0.37 [0.21,0.29] 0.23
Developer [0.71,0.81] 0.76 [0.65,0.74] 0.69 [0.67,0.79] 0.72 [0.25,0.34] 0.31 [0.05,0.23] 0.18
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B. Evaluation on Bug Detection

B.1. Evaluation on GitHub

Evaluation DEVELOPER on GitHub in C/C++.

Table 2 shows the evaluation result of DEVELOPER on GitHub in C/C++.

Table 2

Evaluation Developer on GitHub in C/C++.

Precision Recall F1 FNR FPR

CWE-119 [0.75,0.84] 0.81 [0.79,0.87] 0.83 [0.78,0.85] 0.82 [0.10,0.20] 0.16 [0.15,0.24] 0.20
CWE-399 [0.79,0.84] 0.82 [0.82,0.88] 0.85 [0.80,0.86] 0.83 [0.11,0.14] 0.15 [0.15,0.23] 0.19
CWE-401 [0.74,0.80] 0.77 [0.70,0.75] 0.72 [0.71,0.80] 0.74 [0.19,0.32] 0.28 [0.14,0.20] 0.18
CWE-415 [0.76,0.85] 0.81 [0.84,0.92] 0.88 [0.82,0.89] 0.84 [0.07,0.22] 0.12 [0.15,0.24] 0.21
CWE-416 [0.80,0.87] 0.85 [0.81,0.89] 0.85 [0.81,0.90] 0.85 [0.08,0.20] 0.15 [0.10,0.18] 0.15
GeoMean [0.77,0.83] 0.81 [0.79,0.86] 0.83 [0.78,0.86] 0.82 [0.08,0.21] 0.16 [0.13,0.21] 0.18

Compared with VULDEEPECKER and VUDDY in C/C++.

Table 3 shows the evaluation result of three different vulnerability detection approaches in C/C++.

Table 3

Compared with VulDeePecker and VUDDY in C/C++.

Precision Recall F1 FNR FPR

VUDDY [0.42,0.82] 0.62 [0.06,0.21] 0.15 [0.11,0.30] 0.24 [0.60,0.98] 0.85 [0.02,0.87] 0.10
VulDeePecker [0.48,0.84] 0.65 [0.28,0.85] 0.75 [0.44,0.87] 0.72 [0.02,0.57] 0.24 [0.00,0.82] 0.39
Developer [0.74,0.87] 0.80 [0.70,0.92] 0.82 [0.70,0.90] 0.81 [0.07,0.32] 0.16 [0.10,0.24] 0.18

Evaluation DEVELOPER on GitHub in JAVA.

Table 4 shows the evaluation result of DEVELOPER on GitHub in JAVA.

Table 4

Evaluation Developer on GitHub in JAVA.

Precision Recall F1 FNR FPR

CWE-020 [0.81,0.87] 0.83 [0.83,0.88] 0.86 [0.81,0.87] 0.84 [0.09,0.18] 0.14 [0.13,0.20] 0.17
CWE-022 [0.77,0.84] 0.80 [0.84,0.91] 0.88 [0.80,0.87] 0.84 [0.11,0.23] 0.20 [0.14,0.25] 0.22
CWE-129 [0.83,0.90] 0.86 [0.82,0.89] 0.84 [0.81,0.88] 0.85 [0.13,0.18] 0.15 [0.09,0.16] 0.14
CWE-400 [0.79,0.89] 0.85 [0.83,0.90] 0.86 [0.82,0.89] 0.86 [0.07,0.15] 0.14 [0.12,0.17] 0.17
CWE-476 [0.81,0.88] 0.86 [0.87,0.95] 0.91 [0.83,0.92] 0.88 [0.04,0.12] 0.09 [0.10,0.20] 0.15
GeoMean [0.80,0.87] 0.84 [0.84,0.94] 0.87 [0.81,0.89] 0.86 [0.08,0.16] 0.13 [0.11,0.19] 0.16

Compared with LIN et al. in JAVA.

Table 5 shows the evaluation result of two different vulnerability detection frameworks in JAVA.

Table 5

Compared with Lin et al. in JAVA.

Precision Recall F1 FNR FPR

Lin et al. [0.64,0.78] 0.68 [0.06,0.86] 0.74 [0.11,0.78] 0.71 [0.00,0.98] 0.25 [0.00,0.47] 0.33
Developer [0.77,0.90] 0.83 [0.83,0.94] 0.87 [0.80,0.92] 0.85 [0.04,0.20] 0.12 [0.09,0.25] 0.16

B.2. Evaluation on Standard

Compared with VULDEEPECKER, FLAWFINDER in C/C++.

Table 6 shows the evaluation result of three different vulnerability detection frameworks in C/C++.
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Table 6

Evaluation VulDeePecker, Flawfinder and Developer on Standard in C/C++.

Bug type Precision Recall F1 FNR FPR

VulDeepecker
CWE-119 [0.81,0.98] 0.92 [0.77,0.87] 0.82 [0.81,0.92] 0.86 [0.12,0.26] 0.18 [0.00,0.05] 0.02
CWE-399 [0.84,1.00] 0.95 [0.82,1.00] 0.95 [0.89,0.98] 0.95 [0.02,0.08] 0.05 [0.00,0.10] 0.03

Flawfinder
CWE-119 [0.05,0.36] 0.27 [0.03,0.35] 0.29 [0.19,0.32] 0.28 [0.59,0.74] 0.69 [0.71,0.82] 0.74
CWE-399 [0.03,0.42] 0.24 [0.05,0.36] 0.23 [0.07,0.26] 0.23 [0.72,0.84] 0.78 [0.82,0.96] 0.93

Developer
CWE-119 [0.91,1.00] 0.97 [0.85,0.95] 0.91 [0.91,1.00] 0.94 [0.02,0.18] 0.08 [0.00,0.13] 0.03
CWE-399 [0.88,1.00] 0.98 [0.91,1.00] 0.96 [0.92,1.00] 0.97 [0.00,0.11] 0.04 [0.00,0.09] 0.02

Compared with LIN et al., FINDBUGS in JAVA.

Table 7 shows the evaluation result of three different vulnerability detection frameworks in JAVA.

Table 7

Evaluation Lin et al., FindBugs and Developer on Standard in JAVA.

Bug type Precision Recall F1 FNR FPR

Lin et al.
CWE-400 [0.79,0.93] 0.86 [0.76,0.84] 0.82 [0.81,0.80] 0.84 [0.12,0.24] 0.17 [0.08,0.20] 0.14
CWE-476 [0.77,0.89] 0.84 [0.81,0.89] 0.86 [0.79,0.88] 0.85 [0.02,0.21] 0.13 [0.05,0.21] 0.17

FindBugs
CWE-400 [0.21,0.36] 0.25 [0.17,0.29] 0.25 [0.19,0.31] 0.25 [0.69,0.82] 0.74 [0.74,0.82] 0.78
CWE-476 [0.19,0.31] 0.25 [0.15,0.36] 0.29 [0.15,0.31] 0.28 [0.63,0.79] 0.71 [0.77,0.89] 0.86

Developer
CWE-400 [0.87,1.00] 0.91 [0.88,0.95] 0.91 [0.88,1.00] 0.91 [0.04,0.12] 0.09 [0.01,0.12] 0.08
CWE-476 [0.85,1.00] 0.89 [0.89,1.00] 0.92 [0.87,1.00] 0.92 [0.00,0.10] 0.08 [0.00,0.13] 0.10

C. Evaluation on code slicing

Table 8 shows the evaluation result of FUNCTION-SLICE and DEVELOPER on code slicing.

Table 8

Evaluation slicing methods of Function-Slice and Developer on GitHub.

Precision Recall F1 FNR FPR IoU

Function-Slice [0.79,0.93] 0.73 [0.71,0.79] 0.75 [0.69,0.81] 0.74 [0.17,0.29] 0.25 [0.21,0.32] 0.28 [0.19,0.29] 0.26
Developer [0.77,0.89] 0.82 [0.81,0.89] 0.86 [0.79,0.88] 0.84 [0.08,0.21] 0.14 [0.11,0.23] 0.19 [0.55,0.63] 0.61

Table 9 shows the evaluation result of the generalizability of the DEVELOPER slicing method on GitHub.

Table 9

Evaluation of the generalizability of the Developer slicing method on GitHub.

Precision Recall F1 FNR FPR

V-S [0.57,0.65] 0.61 [0.63,0.73] 0.69 [0.61,0.73] 0.68 [0.27,0.42] 0.31 [0.51,0.62] 0.58
V-D [0.59,0.68] 0.65 [0.71,0.82] 0.76 [0.68,0.79] 0.72 [0.13,0.27] 0.24 [0.24,0.47] 0.39
L-S [0.55,0.61] 0.57 [0.62,0.67] 0.65 [0.62,0.69] 0.66 [0.19,0.44] 0.34 [0.45,0.69] 0.65
V-D [0.62,0.72] 0.68 [0.71,0.80] 0.74 [0.65,0.76] 0.71 [0.11,0.18] 0.25 [0.28,0.39] 0.34

D. Evaluation on Code Normalization

Table 10 shows the evaluation result of code Normalization and Non-Normalization methods in Standard and Benchmark

datasets.

Table 10

Evaluation on code Normalization and Non-Normalization methods in Standard and Benchmark datasets.

Precision Recall F1 FNR FPR

S-N [0.90,1.00] 0.95 [0.90,1.00] 0.93 [0.85,0.96] 0.93 [0.00,0.05] 0.03 [0.00,0.12] 0.07
S-Non [0.95,1.00] 0.98 [0.96,1.00] 1.00 [0.88,1.00] 0.97 [0.00,0.03] 0.01 [0.00,0.08] 0.04
B-N [0.75,0.86] 0.83 [0.82,1.00] 0.90 [0.79,0.89] 0.86 [0.10,0.30] 0.25 [0.05,0.16] 0.10
B-Non [0.62,0.76] 0.74 [0.79,0.91] 0.85 [0.69,0.77] 0.73 [0.34,0.62] 0.53 [0.07,0.23] 0.14
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E. Compared with code embedding approaches

Table 11 shows the evaluation result of WORD2VEC, CODE2VEC and DEVELOPER on GitHub.

Table 11

Evaluate embedding methods of Word2Vec, Code2Vec and Developer on GitHub.

Precision Recall F1-Score FNR FPR

Word2Vec [0.67,0.75] 0.71 [0.71,0.79] 0.74 [0.69,0.76] 0.72 [0.21,0.37] 0.26 [0.22,0.34] 0.30
Code2Vec [0.71,0.76] 0.75 [0.75,0.89] 0.85 [0.73,0.82] 0.79 [0.10,0.21] 0.15 [0.31,0.41] 0.35
Developer [0.79,0.84] 0.82 [0.82,0.89] 0.86 [0.77,0.87] 0.84 [0.05,0.18] 0.14 [0.09,0.23] 0.19

F. Compared with different neural networks

Table 12 shows the evaluation result of different networks on GitHub.

Table 12

Evaluate different networks on GitHub.

Precision Recall F1-Score FNR FPR

CNN [0.67,0.75] 0.71 [0.65,0.79] 0.72 [0.64,0.76] 0.72 [0.21,0.37] 0.27 [0.22,0.34] 0.30
LSTM [0.71,0.81] 0.74 [0.72,0.85] 0.77 [0.69,0.82] 0.76 [0.10,0.26] 0.23 [0.16,0.35] 0.28
BiLSTM [0.69,0.82] 0.76 [0.72,0.83] 0.78 [0.69,0.82] 0.77 [0.12,0.29] 0.22 [0.21,0.31] 0.26
GRU [0.67,0.79] 0.74 [0.71,0.79] 0.75 [0.69,0.77] 0.74 [0.21,0.33] 0.25 [0.22,0.34] 0.27
BiGRU [0.69,0.82] 0.76 [0.75,0.89] 0.80 [0.73,0.82] 0.78 [0.15,0.26] 0.20 [0.21,0.41] 0.27
TreeLSTM [0.66,0.84] 0.78 [0.76,0.89] 0.81 [0.77,0.87] 0.80 [0.11,0.25] 0.18 [0.15,0.29] 0.25
Developer [0.77,0.92] 0.84 [0.75,0.91] 0.86 [0.78,0.91] 0.85 [0.11,0.23] 0.14 [0.05,0.21] 0.18
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