
This is a repository copy of Creating a network of structures based on physical similarity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/189359/

Version: Accepted Version

Proceedings Paper:
Gosliga, J. orcid.org/0000-0003-3997-3224, Bunce, A., Hester, D. et al. (1 more author) 
(2021) Creating a network of structures based on physical similarity. In: Cunha, A. and 
Caetano, E., (eds.) Proceedings of the International Conference on Structural Health 
Monitoring of Intelligent Infrastructure. SHMII-10 : 10th International Conference on 
Structural Health Monitoring of Intelligent Infrastructure, 30 Jun - 02 Jul 2021, Porto, 
Portugal (online). International Society for Structural Health Monitoring of Intelligent 
Infrastructure (ISHMII) , pp. 1803-1808. 

© 2021 The Authors. This is an author-produced version of a paper accepted for inclusion 
in SHMII-10. For the final published version of record please see: 
https://web.fe.up.pt/~shmii10//ficheiros/eBook_SHMII_2021.pdf

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Creating a network of structures based on physical similarity

Dr Julian Gosliga1, Andrew Bunce2, Dr David Hester2, Prof. Keith Worden1

Dynamics Research Group, Dept of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK1

1Civil Engineering, School of Natural and Built Environment, Queens University Belfast, Stranmillis Road, Belfast, BT9
5AG, Northern Ireland2

email: j.gosliga@sheffield.ac.uk, abunce01@qub.ac.uk, d.hester@qub.ac.uk, k.worden@sheffield.ac.uk

ABSTRACT:
Effective structural health monitoring (SHM) requires large amounts of data representing the normal condition of a structure
as well as any damage conditions. However, it is not always feasible to obtain these data; for example, it is not economical to
obtain damage-state data for a new bridge. To address this problem, a new framework is being explored called population-
based structural health monitoring (PBSHM), which proposes that if two structures are sufficiently similar, then data can
be shared between them.
Tools which enable the sharing of data, such as the transfer of models and damage classifiers, have been explored in previous
work; as have methods for assessing the similarity of structures.
This paper will describe how it may be possible to link structures based on their physical similarity in such a way that creates
a network, with communitities of similar structures. Within these communities, data can be shared between structures.
Forming these communities in a way that is computationally efficient while still avoiding missing possible links is not
straightforward. This paper outlines some of the considerations that must be taken into account for solving this problem.
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1 INTRODUCTION

Previous foundational work [1–3] on population-based
structural health monitoring (PBSHM) has described the
benefits of taking such an approach to SHM, namely the
ability to share data and models between structures that
can be considered sufficiently similar, as well as providing a
robust normal condition and improved damage detection in
homogeneous populations [4, 5]. For strongly-homogeneous

populations, a single model can be used to describe the
generic structure behaviour and the characteristic variations
within the population [1]. For heterogeneous populations,
transfer learning methods can be employed to improve the
performance of classifiers by leveraging information gained
from examining similar structures [3]. Determining whether
or not two structures are similar enough for any of these data
transfer methods to be applicable is achieved through the
use of irreducible element (IE) models [2].

The IE model for a structure will eventually live within
a database, where similarity comparisons are performed au-
tomatically, based on the SHM problem specified. The IE
model encodes information that is important for determining
the physical similarity of two structures: geometry, material
properties, and boundary conditions.

Similarity comparisons between IE models are actually per-
formed on the attributed graph of the structure. Attributed-
graphs have been used before in mechanical engineering to
represent purely geometrical data, with the view to estimate
the machining costs for various components [6, 7]. In the
current case, the attributed graph contains the same infor-
mation as the IE model, but arranged into a different form
which makes it less human-readable, but which makes the
data more accessible to comparison algorithms.

These comparison algorithms take the attributed graphs
and seek to return some measure of their similarity. There are
numerous methods for comparing graphs, such as methods
based on spectral graph theory [8], which compare the spectra
of the Laplacian matrix for two different graphs. Other
methods find the size of the maximum common subgraph
(MCS) between two graphs [9,10] and others use graph neural
networks to generate vector embeddings of a graph and then
return the distance between the resulting vectors [11]. In
some cases the comparison is based purely on the topology of
the graph (spectral graph comparison [8] and MCS without
attributes [9]), and in others both the topology and attributes
are taken into account (graph neural networks [11] and MCS
with attributes [10]).



In most cases where network theory is applied, for exam-
ple examining the internet or social networks, the network
is already defined by pre-existing connections between the
objects in question. Forming a network of structures, on
the other hand, is a different problem as there needs to be
some criteria for when connections are formed and when they
are not. It is this question for which this paper provides a
brief exploration. Not only is there the question of which
comparisons to perform when adding a new structure to the
network, but also which comparison method is most suitable?
There is a constant balance to be struck between making
meaningful connections between structures which provide
useful information and computational cost. Sparse networks
may miss important connections between structures, while
a network in which every comparison possible is performed
may be needlessly expensive to run.

2 COMPUTATIONAL COMPLEXITY OF DIFFERENT
APPROACHES FOR GENERATING NETWORKS

In this section, two approaches which represent the ex-
tremes of how to determine which comparisons to perform
will be described and their relative merits discussed.

The first approach is to compare any new structure that is
added to the network to every other existing structure in the
network. The communities are then formed using a clustering
algorithm such as k-NN, which will group structures that are
closest (most similar).

The second approach compares the new structure to one
other existing structure chosen at random. If the distance
is below a certain threshold, the new structure is added
to the community that the existing structure belongs to, if
not another existing structure is chosen, and so on until
eventually a sufficiently close structure is found. If no such
structure exists, then the structure forms a new community.

The third approach compares any new structure with a
randomly-selected structure from each of the existing com-
munities within a network. The structure is then added to a
community if the distance is below a certain threshold. In
the case that the new structure is sufficiently close to more
than one community, the structure is added to the closest
community. The structure is then compared to every other
structure within that community.

The first approach performs the maximum number of
comparisons possible, but is guaranteed to always produce
the same communities, whereas the second is unpredictable
in the number of comparisons possible, although it would
be expected to be less than the full number of comparisons
possible. The third approach strikes a middle ground between
the two.

2.1 Fully-connected approach

One possible approach for creating the network involves
calculating the pair-wise distance between any new struc-
ture Snew and all the existing structures within the network

Figure 1: The image represents the entries in the distance
matrix for the network as new structures are added. An arrow
represents a new structure (and hence new row and column)
being added to the network. A black square indicates that
the distance is between the structure and itself, which should
always be 0. A grey square indicates that the distance has
been calculated in a previous step. The lower triangle does
not need to be calculated if using a metric since the distance
matrix will be symmetric.

S1, ..., Sn. This approach will be referred to as the ‘fully-
connected approach’.
Using the fully-connected approach, finding communities

within the network becomes a clustering problem.
Figure 1 shows the distance calculations necessary for

generating the fully-connected network. Examining this
figure, it becomes clear that the complexity of adding a new
structure to the network using this approach is O(n− 1).
The complexity of matching graphs G1 and G2 using

the Bron-Kerbosch algorithm [12] is O(3
|V |
3 ), where |V | =

|V1| · |V2|. Exact graph comparison has a high computational
cost associated with it and should be avoided where pos-
sible. The computational cost for performing comparison
operations remains the same whichever approach is chosen;
however, certain approaches may require less comparisons to
be performed.

The number of edges in a fully-connected network is |E| =
n(n−1)

2 . The number of edges can be reduced by clustering
using a k-NN algorithm and removing any edges between
structures that fall outside of that cluster. Using a k-NN
clustering algorithm would lead to the following number of
edges, |E| = kn

2 .

2.2 Demonstration of the fully-connected approach

Figure 2 shows a fully-connected network generated by per-
forming pairwise comparisons between eight different bridges,
where some are the same type; for example, two beam and
slab bridges, two truss bridges, etc. In Figure 2, bridges with
similar abbreviations are the same type, B&S1 and B&S2
are both beam and slab bridges. The thicker lines represent
structures that appear closer together.
To form communities, it is necessary to use a clustering

algorithm such as k-NN. Here the number of nearest neigh-
bours dramatically affects the communities that are formed.
The same structures as in Figure 2 are now clustered using a
k-NN algorithm where k = 3 (Figure 3) and k = 2 (Figure 4).



Figure 2: The fully-connected network formed between eight
different bridges of various types. B&S stands for beam and
slab, T stands for truss, A stands for arch, CS for cable-
stayed, and S is for suspension bridge. The thicker the line,
the closer the two structures.

Figure 3: Clustering performed by applying k-NN to the
network shown in Figure 2, where k = 3. B&S stands for
beam and slab, T stands for truss, A stands for arch, CS for
cable-stayed, and S is for suspension bridge.

With k = 3, it is not clear where the communities lie exactly,
while k = 2 gives distinct communities which contain bridges
of the same type. It is likely that a more intelligent clustering
algorithm is required, as the size of communities will not
be constant. Some communities may have many members
and others very few. Also, the size of the communities will
change over time.

2.3 Community comparison approach

Another possible approach, which would lead to a reduced
number of comparisons, would be to compare any new struc-
ture to one structure chosen at random from each community
that exists in the network. This ensures that only one struc-
ture from each community is compared to the new structure.
If the new structure is sufficiently close (distance below a
certain threshold) to one of the structures in an existing
community, it then becomes a member of this community

Figure 4: Clustering performed by applying k-NN to the
network shown in Figure 2, where k = 2. B&S stands for
beam and slab, T stands for truss, A stands for arch, CS for
cable-stayed, and S is for suspension bridge.

and is compared to every member of that community. In
the case that the structure is sufficiently close to randomly
selected structures from multiple communities, it is added to
the closest community. If the new structure falls outside the
threshold to be added to any of the existing communities, it
forms a new community.

Snew is compared to a random structure from a community
S ∈ C1. If the distance d(Snew,S) < ǫ (where ǫ is some
threshold), and S is indeed the structure closest to Snew,
then Snew ∈ C1. This is done for all communities C1, ..., Cm,
where m is the number of communities. This step therefore
requires m comparisons.

The next step is to compare Snew to all structures
S2, ..., Si ∈ C, where C is the community to which Snew

was assigned in the previous step. (Assuming that Snew was
compared to S1 when assigning the community label.) Since
all the communities are likely to vary in size, it is more useful
to look at the average number of comparisons performed in
this step. On average, i = n

m
, which then means the number

of comparisons required is n

m
− 1.

The average complexity of this approach is then O(m +
( n

m
− 1)).

The number of edges in the resulting graph is determined
by the fact that the network is fully connected within the
community and every node has m− 1 connections to nodes
in other communities.

If on average, each community has n

m
nodes, the total

number of edges within each community will be
n( n

m
−1)

2m .

Across the whole network this becomes
n( n

m
−1)

2 . (As m → n,
the number of edges within communities goes to zero.)

Each node within the community also has m−1
2 edges

associated with it, so for each community, there are n

m

m−1
2

edges that span across communities, giving n(m−1)
2 for the

whole network.



Approach Complexity Edges

Fully-connected (FC) O(d(n− 1))
n(n− 1)

2

FC with k-NN O(d(n− 1) + kn)
kn

2

Community O(d(m+ ( n

m
− 1)))

n

2
(m+ n

m
− 2)

Table 1: Table comparing the computational complexity of
adding a new structure to the network, and number of edges
in the resulting network for each approach. Here, d is the
cost of calculating the distance between a pair of graphs, n is
the number of structures currently in the network, m is the
number of communities in the network, and k is the number
of neighbours selected for k-NN.

This gives the total number of edges in the entire network

as |E| =
n( n

m
−1)

2 + n(m−1)
2 = n

2 (m + n

m
− 2). If m = 1,

|E| = n(n−1)
2 , the number of edges in a fully-connected

network.
If there was only one community in the network, the

amount of comparisons required for the first step would
be 1, and the next step would require the new structure to
be compared to every other structure in this community and
hence the network. This is a case that may occur early on
when populating the network if only similar structures are
being added. In this case, the computational complexity is
the same as the fully-connected method.

2.4 Seeding communities

While it is possible to start with a blank network and
add structures one at a time, a better approach might be to
‘seed’ the network with IE models that represent each of the
classes of structures that are of interest (bridge, aeroplane,
wind turbine). The representative IE models for each class of
structure would capture what could be considered essential

features of that particular class; for example, a bridge requires
a deck at the very least, and an aeroplane should feature
wings and a fuselage. This way structures are less likely to
be added to the wrong community, since they should all be
close to the example for their particular class of structure.

2.5 Comparison of approaches

A summary of the computational complexity and the num-
ber of edges in the resulting network can be found in Table 1.
While these are two obvious ways of quantifying the difference
between various approaches, they do not capture the whole
picture and included below are further points to consider
when examining the three approaches.

Points to consider for the fully-connected approach:

• Guaranteed to produce identical results for same set of
structures.

• Fully-connected graphs have a high edge density and it
is likely to contain a lot of unnecessary edges.

• Deleting unnecessary edges has a computational cost
associated with it, but this is likely minimal compared
to the cost associated with exact graph comparison.

• If ever the network was to be re-structured, all of the
information is already present.

• If AGs remain small (less than 100 nodes), then the
computational time for graph comparison may not be
crippling, with sufficient resources.

Points to consider for the community comparison approach:

• Edges are again dependent on the structures chosen.
• A lot of the edges between communities will be redun-

dant, but again, the number of such edges will on average
be less than in the fully-connected network.

• This approach still does not guarantee that structures
end up in the correct community.

The community comparison approach seems like a promis-
ing step towards reducing the computational cost associated
with generating the network. However, there are clear ques-
tions about how likely it is to misclassify structures.
One improvement on this approach could be to include

some prior belief of which community a new structure is
likely to belong to before moving to a full comparison. The
prior belief could be formed by comparing the number of
nodes and attributes for graphs, since these take a relatively
short time to compare. Once these initial guesses have been
computed, an exact graph matching algorithm could then be
applied to give a definitive classification.

2.6 Database approaches

‘Neurons that fire together, wire together’ - Carla Shatz [13]
(paraphrasing Donald Hebb [14]—‘When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased (p. 62).)
Using this it is possible to develop an alternative idea of

how to determine the strength of connections in the network.
Since the network will one day underlie a database of struc-
tures, it will be subject to numerous queries. If structures
are often featured in queries together, surely they must share
some similarity? Using this approach, after some time, the
strength of connections will become something that users
can query to discover similar structures.
It would be entirely possible to leave the database un-

connected until the first user comes in with the first search;
however, a more efficient approach may be to query the
database when new structures are added (the queries could



be put on hold until a time when there is little traffic). When
a structure is added, it could query the database to find other
structures that share the same attributes in order to find the
structures it is similar too.

These attributes represent inherent properties of the struc-
tures, and have the potential to create a complex network.

One could implement some form of pruning and forgetting
mechanism to ensure that weights do not become excessive.
Additionally, structures may appear very similar when few
examples of their particular class exist within the database,
as there are no others which are a closer match. For example
a slab bridge and a suspension bridge, added to a database
with few other bridges, may appear close. However, when
another slab and beam bridge is added, the strength of the
connection between the slab bridge and the suspension bridge
should weaken as the two beam and slab bridges appear more
similar.

Aside from attributes, metadata describing the graph in-
variants for graphs could become a useful target for searches.
This is the basis for spectral graph theory and these invari-
ants are cheaper to compute than running an exact graph
matching algorithm.

Graph comparisons (e.g. which graphs contain a specific
subgraph) would still feature in this, although of course the
computational cost of such operations is to be avoided where
possible. The user could specify full graph comparisons on
structures they believe to be suitable candidates. The weight
of the connection between these structures could then be
adjusted according to the strength of the match. A weak
match would reduce the strength of the connection, while a
strong match would increase the strength of the connection.

3 COMPUTATIONAL COMPLEXITY FOR VARIOUS
GRAPH COMPARISON METHODS

Some of the methods of comparing attributed graphs are
more computationally expensive than others; however, often
a faster computational speed often comes at the cost of
reduced information. The fastest comparison one may run is
asking how similar are the two graphs in terms of size, i.e.
do they have a similar number of nodes and edges? This
is a trivial operation to run, and for identical graphs, the
number would naturally be the same. However, it is clear
that asking if two graphs are the same size cannot provide
any information about the topological similarity or whether
or not the graphs have similar attributes.

At the opposite end of the scale in terms of computational
cost would be an exact graph comparison, finding the max-
imum common subgraph. For a review on methods and
their relative computational costs, the reader is directed to-
wards [15]. All methods are limited by the fact that finding
the maximum common subgraph (also known as the sub-
graph isomorphism problem) is NP-complete. The benefit
of these approaches, however, is that they can provide a
list of all possible subcomponents shared by two structures.

Using these methods, it is also possible to match not just
the topology of the two graphs, but also the attributes.

The spectra of the Laplacian matrix for two different graphs
can be used as a measure of their topological similarity [8].
The measure of similarity is obtained by calculating distance
between the Laplacian spectra of two graphs. This method
is more sensitive to topological similarities, but still returns
a single number.
Neural network approaches provide vector embeddings of

the graph, allowing the distance to be calculated as the dif-
ference between two vectors. A neural network approach
has been used before for examining the similarity of differ-
ent functions by representing the functions as control flow
graphs [11]. One could say similar things about GNN-based
approaches, although some of the attention-based methods
do highlight where similarities lie.
Of course these different methods can be combined to

create a distance matrix that incorporates various measures
of similarity between the graphs. This raises the question
of how best to combine the various distance metrics. An-
other possible avenue to explore is if one can predict the
MCS between two graphs using the information from other
methods?
Using this approach would still require a pair-wise com-

parison using the simpler distance metrics, but could reduce
computational time by highlighting candidate pairs that were
likely to share a large MCS.

4 CONCLUSIONS

Hopefully this paper has provided an insight into the
challenge of initiating connections in a network where existing
connections do not in fact exist. Future work will focus on
developing the approaches described in Section 2 and, once
the IE models have been included in the database, testing
these approaches to find which ones work best.

The merits of various methods for graph comparison have
also been described, and again, it remains to be seen which
ones provide sufficient information for the comparison to be
useful in transfer learning. Future work will focus on testing
these methods, but also on developing new measures and
methods of comparison that are more suited to the problem
at hand.
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