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Method

CEN-tools: an integrative platform to identify the

contexts of essential genes

Sumana Sharma1,2,*,†,‡ , Cansu Dincer1,‡ , Paula Weidemüller1 , Gavin J Wright2 &

Evangelia Petsalaki1,**

Abstract

An emerging theme from large-scale genetic screens that identify

genes essential for cell fitness is that essentiality of a given gene is

highly context-specific. Identification of such contexts could be the

key to defining gene function and also to develop novel therapeu-

tic interventions. Here, we present Context-specific Essentiality

Network-tools (CEN-tools), a website and python package, in

which users can interrogate the essentiality of a gene from large-

scale genome-scale CRISPR screens in a number of biological

contexts including tissue of origin, mutation profiles, expression

levels and drug responses. We show that CEN-tools is suitable for

the systematic identification of genetic dependencies and for more

targeted queries. The associations between genes and a given

context are represented as dependency networks (CENs), and we

demonstrate the utility of these networks in elucidating novel

gene functions. In addition, we integrate the dependency networks

with existing protein–protein interaction networks to reveal

context-dependent essential cellular pathways in cancer cells.

Together, we demonstrate the applicability of CEN-tools in aiding

the current efforts to define the human cellular dependency map.
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Introduction

A common approach to elucidate the function of a gene is to investi-

gate the effect of its perturbation on a given biological process.

Genetic perturbation experiments enable identification of genes that

are essential for the survival and fitness of the cell. It is now widely

accepted that the binary nature of gene essentiality as defined in

classical genetics is too simplistic and gene essentiality is highly

context-specific. There are genes, often termed as core fitness genes,

which are required for core functioning and housekeeping of the

cells and their knockout causes loss of fitness, in principle, in all cell

types in all conditions. However, a large number of genes, termed

context-specific essential genes, play important roles for cell fitness

only in a particular genetic or environmental context (Rancati et al,

2017). An important field in cancer research is the identification of

genes whose loss is lethal to cells only in a specific context, as the

genotype-specific vulnerabilities are excellent therapeutic targets for

cancer cells carrying the specific genotype without affecting normal

cells.

The recent advances in gene editing technology using the

CRISPR/Cas9 knockout system have enabled large-scale genome-

wide screens to systematically perturb genes and rapidly identify

those that are essential for proliferation and survival of cells

(Shalem et al, 2014; Hart et al, 2015; Wang et al, 2015; Tzelepis

et al, 2016). Initial studies on pooled essentiality CRISPR screens

mainly focused on identification of therapeutically important

context-specific vulnerabilities in different cancer types and muta-

tional backgrounds (Hart et al, 2015; Steinhart et al, 2016; Tzelepis

et al, 2016; Barbieri et al, 2017; Wang et al, 2017). In recent years,

a number of studies have used the concept of co-essentiality-driven

co-functionality—if essentiality profiles of two genes are correlated,

the genes are likely to be involved in similar functions—to delineate

novel gene functions using pooled CRISPR screens (Pan et al, 2018;

Rauscher et al, 2018; Kim et al, 2019). Studies of this nature are

possible because the number of cell lines that are being screened

has increased to hundreds, and thus, it is viable to use the assump-

tion that investigating the knockout fitness of genes across many dif-

ferent cell lines with different genetic backgrounds is comparable to

studying different isogenic backgrounds of the same cell line.

Together, the power of essentiality screens in systematic

characterisation of cancer-specific genetic interaction maps of

cellular processes and in the identification of therapeutically

important genotype-specific vulnerabilities in cancer cells is now

widely appreciated.

As the number of cell lines assayed for vulnerabilities has

increased rapidly in the past few years, there has also been an
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increase in efforts to consolidate and standardise the essentiality

screens performed in different laboratories. Recently, two major

initiatives, DepMap (Meyers et al, 2017; Tsherniak et al, 2017)

and Project Score (Behan et al, 2019), have performed essential-

ity screens in over 500 cell line models representing a wide range

of tissue types using standard reagents and analysis pipelines.

The PICKLES web server also provides a repository of all major

essentiality screen initiatives, in which raw screening data are

processed through a standard analysis pipeline (Lenoir et al,

2018). The availability of standardised essentiality screens

combined with the efforts to characterise cell lines comprehen-

sively in regard to the gene expression profiles, mutation pro-

files, drug responses and copy number variations from initiatives

such as Cell Model Passports (van der Meer et al, 2019) and

Cancer Cell Line Encyclopedia (CCLE) (Meyers et al, 2017;

Ghandi et al, 2019) now provide a premise for data integration

for systematic studies that explores the genetic vulnerabilities in

a wide range of contexts.

To aid the current efforts to democratise the large-scale screens

and make them accessible to a broader scientific community, we

here present Context-specific Essentiality Network (CEN)-tools

(http://cen-tools.com). CEN-tools is an integrated database and set

of computational tools to explore context-dependent gene essential-

ity from pooled CRISPR data sets, obtained from the two largest

publicly available essentiality screening projects: the DepMap

project (Meyers et al, 2017; Tsherniak et al, 2017) and Project Score

(Behan et al, 2019). CEN-tools offers an easily accessible web inter-

face with built-in statistical tools, to explore statistically significant

associations between the essentiality of a given gene in a user-

chosen set of cell lines and a pre-defined context (e.g. mutational

background, expression levels and tissues of origin). For advanced

users, the python package implementation of CEN-tools also offers

functions to interrogate bespoke contexts of choice to identify novel

associations. We demonstrate that CEN-tools enables systematic

studies to not only identify functional genetic interactions, but also

to define the underlying context associated with the essentiality of a

given gene. In addition, we showcase the use of CEN-tools as a new

type of omics-database for integration with current omics platforms

to identify biologically relevant, cancer-specific dependency

networks.

Results

CEN-tools identifies a robust set of core essential genes

Core essential genes should, in principle, be essential in all cell

types regardless of the mutational, tissue or environmental back-

ground. To avoid setting arbitrary cut-offs as to the number of cell

lines that define these genes, we developed a logistic regression-

based approach combined with clustering to categorise genes

according to their essentiality probability profiles (Materials and

Methods). The cluster of genes that exhibited high probability for

being essential across all the cell lines was designated as the core

essential gene cluster. We separately analysed the Project Score

(SANGER) and the DepMap project (BROAD) data sets and identi-

fied 650 genes from the SANGER data set and 942 genes from the

BROAD data set, assigned into the core essential gene cluster, with

519 overlapping genes between the two projects. Among these, 146

genes were previously annotated as core essential genes by the

Adaptive Daisy Model (ADaM) analysis tool, which is a semi-super-

vised algorithm recently used to identify novel core fitness genes

from essentiality screens in Project Score (Behan et al, 2019). We

noticed that the core analysis pipeline of CEN-tools was able to

capture all but 20 genes previously identified by the ADaM pipeline

suggesting that CEN-tools provides a robust platform to perform

core gene analysis (Fig 1A). The 20 genes from the ADaM pipeline

that were not captured among the high-confidence core essential

genes of CEN-tools were still identified in the SANGER data set anal-

ysis of CEN-tools. Upon closer inspection, we observed a major

discrepancy in the essentiality probabilities of these 20 genes

between the two projects. Genes such as LCE1E, MED31, PISD, UBB,

ALG1L, and HIST1H2BB showed completely opposite essentiality

profiles in the different projects (Appendix Fig S1) suggesting dif-

ferences in the gRNA efficiencies for those particular genes.

To investigate how well the genes from each project were clus-

tered, we next used the silhouette method, which compares the

distance of each point to points in the same cluster with the distance

to points in the neighbouring clusters. We observed that the genes

that were designated into the core essential cluster in both data sets

and/or also by the ADaM pipeline had higher Si-scores compared

with the genes that were designated in only one of the two projects

▸
Figure 1. CEN-tools identifies core essential genes involved in regular housekeeping functions of a cell.

A Venn diagram for prediction of core essential genes by CEN-tools using both the BROAD and SANGER projects, and ADaM novel core fitness genes (Behan et al,

2019).

B Box plot for Silhouette Scores (si-scores) of core essential genes predicted by CEN-tools and ADaM for the two projects BROAD and SANGER. For each project, the core

essential genes were predicted separately. The centre of each box plot represents the sample median; and the ends of the box are the upper and lower quartiles; the

whiskers extend to the smallest and largest observations within 1.5 times the interquartile range of the quartiles. Observations lying outside the whiskers are shown

as individual data points. Box plots were drawn based on si-scores from the following numbers of genes for each project: BROAD (ADaM, SANGER, BROAD: 146,

SANGER, BROAD: 373, only BROAD: 423); SANGER (ADaM, SANGER, BROAD: 146, SANGER, BROAD: 373, only SANGER: 111).

C Pie chart for percentages of core essential genes predicted by both ADaM and CEN-tools and only CEN-tools by using both projects. The pie chart on the right panel

represents the percentages of novel core genes from CEN-Tools, known core genes in pluripotent stem cells and core biological processes, and also therapeutically

tractable genes annotated by the Project Score. (Behan et al, 2019).

D Bar Plot of protein-complex enrichment of core genes. Y axis represents the significance of the enrichment; colours of the bars represent the percentages of the novel

core genes in the complexes. The red line represents the adjusted P-value of 0.01.

E Box plot for the log value of the basal expression levels of core genes in BAGEL (Hart & Moffat, 2016), ADaM, CEN-tools predictions, and non-essential BAGEL and “Not

core” CEN-tools genes. The centre of each box plot represents the sample median; the ends of the box are the upper and lower quartiles; the whiskers extend to the

smallest and largest observations within 1.5 times the interquartile range of the quartiles. Observations lying outside the whiskers are shown as individual data

points. Box plots were drawn based on expression from the following numbers of genes for each group: Not-core : 15,330, BAGEL essential : 606, ADaM, SANGER &

BROAD : 145, ADaM : 346, SANGER & BROAD : 367.
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(Fig 1B). As a higher Si-score indicates that the object is well

matched to its own cluster, we defined the overlapping 519 genes

from both projects to be the high-confidence set of core essential

genes from CEN-tools. Of the 373 newly identified core essential

genes, 80 could be assigned to known essential housekeeping

complexes and processes, namely ribosomes, spliceosomes, protea-

somes, DNA replication, and RNA polymerase, using the KEGG

(Kanehisa et al, 2017) database. Another 20 genes were annotated

to be essential for the fitness of human pluripotent stem cells (Ihry

et al, 2019). To further filter genes that could be involved in funda-

mental cellular functions of a cancer but not a normal cell, we anno-

tated 83 genes considered to be therapeutically tractable for multiple

cancer types (Behan et al, 2019). This filtration step yielded a list of

190 “novel core” genes presumably important for basic housekeep-

ing of a cell (Fig 1C).

To identify the gene families enriched in the core gene lists of

CEN-tools, we first explored the previously annotated essential

processes from the ADaM pipeline and were able to add new

members to the pre-annotated enriched groups, such as additional

members of the mediator complex MED7, MED17 and MED22

(complete annotation of all predicted genes in Table EV1). We

also independently performed protein-complex enrichment using

the CORUM database (Giurgiu et al, 2019), which revealed enrich-

ment in similar complexes relating to housekeeping functions of

the cells such as the DNA synthesome complex, mediator

complex, integrator complex, LSm1–7 complex, and the TFIIE

complex. As a new core essential complex, we also identified

enrichment in the COP9 signalosome complex (Fig 1D). Since

genes involved in core functioning of cells are also expressed in

cells of normal tissues, we next explored the expression of the

newly annotated core genes in normal human tissues from GTEx

(Aguet et al, 2017) and observed that the basal expression of the

newly annotated core genes was significantly higher than the

genes that were not annotated as core essential genes (Fig 1E,

Appendix Fig S2). The complete set of high-confidence core essen-

tial genes is available to download from Table EV2. The “Essen-

tiality profile” tab of the CEN-tools web-application provides

essentiality profiles for individual genes for further browsing.

CEN-tools enables rapid interrogation of contexts to identify

gene–gene relationships

The “Context Analysis” framework of CEN-tools calculates group-

wise associations and correlations on a chosen set of cell lines to

identify relationships between a given context and gene essentiality.

To enable easy statistical comparisons, we preloaded a number of

contexts on the CEN-tools website that are most likely to be used by

the majority of researchers. These include tissue/cancer type-wide

comparisons, essentiality correlations, correlation between essen-

tiality and expression, essentiality driven by mutations in cancer

driver genes, and correlation between drug responses and essentiali-

ties for pre-defined cell lines or user-chosen sets of cell lines (see

examples in Appendix Fig S3).

Genes that are essential for a given tissue/cancer type were iden-

tified by testing if they had significantly higher essentiality

compared to pancancer. Tissue-specific dependencies, however, can

be driven by a number of factors such as the underlying mutation

that is enriched in the given tissue type or the level of expression of

the gene in the particular tissue. Therefore, to get a better overview

of different types of dependencies, we pre-calculated all possible asso-

ciations for three main preloaded contexts (tissue/cancer, mutation

and expression), both in pancancer and within tissue/cancer type,

and represent them in Context-specific Essentiality Networks or

CENs. Each edge in this network represents the type of association

used to annotate the underlying contexts. To demonstrate the value

of CENs, we collected the co-essentiality networks from the PICKLES

database (Lenoir et al, 2018) and extracted the corresponding genes

from our CENs for direct comparison. On the BRAF CEN, for example,

we could identify components of the co-essentiality networks with

the mutational links of BRAF to MAPK1, MAP2K1, PEA15, and

DUSP4, LIF (Fig 2A, Appendix Fig S4). However, SOX10, MITF and

ZEB2 were not linked to BRAF itself but were instead associated with

BRAF via their expression in the skin. SOX10 additionally contained

high-confidence self-loop edges of expression-essentiality correlation

suggesting that this dependency is not directly related to BRAF muta-

tional status but rather to its expression status in skin. This is consis-

tent with the lineage specification roles it plays in skin tissue

regardless of the mutational background (Harris et al, 2013).

In addition, the CENs are particularly useful in navigating

through specific types of dependencies. For example, genes required

for tissue differentiation into a particular lineage often have

restricted expression, and given their cellular function, they should

have high essentiality in the given tissue. Using CEN-tools, we

isolated such genes (Fig 2B) and revealed a subnetwork consisting

of a number of transcription factors (TFs) that are known to control

tissue differentiation into a specific lineage such as SOX10 in skin

(Harris et al, 2013), PAX8 in ovary, kidney and endometrium

((Grote et al, 2006; Cheung et al, 2011; Tong et al, 2011), and

MYCN in neuroblastoma (Huang & Weiss, 2013). The TF TP63 was

highly expressed and essential in cell lines derived from head and

neck and bladder cancers, consistent with it being a known regula-

tor of squamous epithelium lineage (Network & The Cancer Genome

Atlas Research Network, 2012). Cell lines derived from cancers of

blood cells are known to have distinct lineage specification genes,

and we also observed multiple specific lineage markers such as

IRF4, SPI1, GFI1, BCL2 and MYB (Behan et al, 2019) Fig 2B). ZEB2

was associated with skin, haematopoietic and lymphoid, and soft

tissue with a high statistical confidence, which is consistent with the

mesenchymal origin of the cell lines from these tissue origins (De

Craene & Berx, 2013). This subnetwork also revealed genes that are

not necessarily lineage restricted but have an expression to essen-

tiality relationship because of an underlying enriched mutational

background. For example, the essentiality of MDM2 in multiple

tissue types was higher in cells with wild-type (WT) TP53. This is

an observation often made in pooled CRISPR screens as cells

harboring the WT tumor suppressor genes are often dependent on

their repressors for proliferation (Hart et al, 2015). Together, these

examples illustrate how networks from CEN-tools can be utilised to

systematically characterise specific types of expression-related

dependencies from large-scale CRISPR screens.

CEN-tools reveals a skin-specific link between the SOX10

transcription factor and SRF activity

We next examined whether tissue/cancer type-specific networks

could be explored in a similar manner to identify context-specific
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Figure 2. Interrogation of contexts from CEN-tools identifies novel gene–gene relationships.

A An example of a CEN from CEN-tools. In this example, components of the BRAF co-essential genes from PICKLES were extracted from the CEN-tools BRAF-centric CEN

network in Skin. Edges with confidence level of 2 (P-value < 0.01, correlation score 0.6 are depicted).

B CENs for genes that have restricted expression and essentiality in different tissue types. The majority of the genes in this network are TFs important for lineage

specification of a cell line to a particular tissue type. The width of the line in (A) and (B) denotes the confidence of association.

C The CEN of transcription factors in skin tissue. This CEN was generated from the BROAD data set.

D Schematic of the Cignal® lentiviral reporter construct for assessing the activity of the serum response factor (SRF) transcription factor. The construct expresses GFP

under a control of a basal promoter element (TATA box) together with multiple tandem repeats of serum response element (SRE). This construct was used to generate

a reporter Cas9 expressing A375 cell line for SRF activity.

E Representative histograms depicting the GFP expression from the parental and the reporter line under different perturbations. For gRNA transductions, polyclonal

lines were used to assess the GFP expression 6 days post-transduction. GFP expressions of trametinib-treated cells were measured 2 days post-treatment.

F Bar graph depicting the GFP fold change distribution compared with that from parental line GFP distribution from three independent gRNA transductions targeting

the indicated genes. Polyclonal knockout lines were used for quantification. The height of the bar graph represents the mean of fold change obtained from three

replicates and the error bars depict the standard deviation. P-values were obtained from unpaired t-test; **P < 0.01; ns: not significant. Representative raw-FACS

plots from one of the three replicates are also shown in Appendix Fig S5B.
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gene function. The BRAFV600E mutation is a common driver muta-

tion in melanoma cell lines and results in their addiction to the

MAPK pathway. As a case study, we hypothesised that SRF, which

is known to be activated through the MAPK pathway, would be

essential in skin in the context of the BRAFV600E activating muta-

tion. To test our hypothesis, we restricted our background to the

skin tissue and compared the essentiality of SRF in the context of

BRAFV600E. Surprisingly, we found no significant association

between the two (Appendix Fig S5A).

To further investigate the context for SRF essentiality in mela-

noma, we extracted all TFs that were directly linked to the skin

tissue, because TFs are most likely to play a central role in control-

ling tissue-specific gene expression. The skin TF CEN revealed a

number of lineage-specific markers such as SOX10, MITF and ZEB2

but also a number of other TFs whose expression is not restricted to

the skin cell type (Fig 2C). We found that the essentiality of SRF

was not associated with any enriched mutations and wondered if it

is related to the expression of any skin-specific TFs.

To test our hypothesis, we focused on MITF and SOX10 as the

two most essential TFs in skin and used the A375 melanoma cell

line harbouring the BRAF activating mutation. We generated a

clonal Cas9 expressing reporter version of the A375 cell line that

contained an expression cassette for GFP driven by a serum

response element (SRE) promoter containing multiple binding sites

for SRF (Fig 2D). We noticed that the reporter cell line constitutively

expressed GFP when grown in media containing serum, which

suggested that SRF was constitutively active in these cell lines. To

ensure that the expression of GFP was as specific to the activity of

SRF, we transduced the reporter cells with a single gRNA targeting

SRF, which abolished the expression of GFP (Fig 2E). To test

whether the activating mutation in BRAF and the consequent

upstream hyperactive MAPK pathway acted on downstream SRF on

these cell lines, we targeted components upstream of SRF with tram-

etinib, which is an inhibitor of MAP2K1/2 kinase and also trans-

duced cells with single gRNA targeting MAPK1. Both of these

treatments led to a decrease in the GFP signal indicating that the

activity of SRF in these cell lines was specific to the MAPK pathway

(Fig 2E). While the dysregulated MAPK appeared to act directly on

the activity of SRF, the essentiality of SRF in skin tissue was not

related to the BRAF mutational status of the cells (Appendix Fig

S5A). We thus tested the effect of perturbing TFs with skin restricted

expression on the activity of SRF. While targeting MITF with a single

gRNA did not have an effect on SRF activity, we noticed a significant

decrease in GFP expression when SOX10 was targeted, indicating

that the activity of SRF was related to the expression of SOX10

(Fig 2F, Appendix Fig S5B).

CEN-tools uncovers essential cellular processes in cancer

Identification of mutation-dependent vulnerabilities is crucial for

designing drugs that target cancer cells bearing such vulnerabilities

without affecting the normal cells. To explore these vulnerabilities,

we focused on the mutational associations identified in our CENs.

As gain-in-function mutations in oncogenes are often associated

with an increase in dependence of the cell lines harbouring the

mutation, we first extracted self-loop edges connected by mutation

driven essentialities in a pancancer comparison. The occurrences of

oncogenic mutations, however, can be tissue-specific, so we

additionally extracted edges corresponding to mutational association

between oncogenes and tissue/cancer types, which was generated

by comparing the essentiality of the given cancer driver in the

context of its mutation within a given tissue/cancer type. Among

the most significant associations were the pancancer mutational

association in genes such as BRAF, KRAS, NRAS, HRAS, CTNNB1,

PIK3CA and EZH2 in at least one of the two projects (Appendix Fig

S6). Within Group A associations (statistical tests with six or more

cell lines/group), a number of these genes were associated with

tissues such as BRAF with Skin, PIK3CA-Breast and ovary, KRAS

with pancreas, oesophagus, colon/rectum, and lung and NRAS with

skin and hematopoietic and lymphoid, indicating the tissues in

which these mutations are most relevant.

CRISPR screens performed on cancer cells with a particular

genetic background are also perfectly suited to identify synthetic

lethal interactions. We examined whether mutational networks of

CEN-tools could be used as a guide to identify synthetic lethal inter-

actions in tissues with a specific mutational background. As a case

study, we investigated the edges corresponding to increased essen-

tialities in NRAS mutational skin tissue background. NRAS muta-

tions constitute 15–20% of all melanomas and are the most

important sub-group of BRAF WT melanomas, yet therapeutic

options for NRAS-mutant melanoma are still limited (Muñoz-

Couselo et al, 2017). It is known that NRAS-mutant cancer cell lines

rely on signalling through CRAF (RAF1) and SHOC2 (Dumaz et al,

2006; Kaplan et al, 2012; Jones et al, 2019) and we could identify

this association as a highly significant association in CEN-tools

(Fig 3A). To identify the cellular context of these dependencies, and

to highlight potential candidate target genes and pathways (Lord

et al, 2020), we opted to integrate the dependencies from the rele-

vant CEN with a protein–protein interaction network to identify

affected cellular mechanisms. The integrated dependency-interac-

tion network (Fig 3B) revealed a cluster of highly connected compo-

nents with significant enrichment in a number of pathways

including the Ras-signalling pathway, the focal adhesion pathway

and the PI3K-AKT signalling pathway (Fig 3C). These represent

potential target pathways for NRAS-mutant melanoma. An impor-

tant protein of the Ras-signalling pathway identified within these

clusters was the receptor tyrosine kinase IGF1R, for which several

drugs already exist, but are not used in the context of NRAS-mutant

melanoma to the best of our knowledge. A closer look revealed that

the essentiality of IGF1R was significantly higher in NRAS-mutant

cell lines compared with NRAS-WT background and also generally

in BRAF WT melanoma cell lines, which is mainly composed of

NRAS and HRAS mutants, compared with the BRAF V600E mutants

(Fig 3D). In addition to IGF1R itself, gene encoding the FURIN

protease, which is required for surface presentation of IGF1R

(Kavran et al, 2014), also had a higher essentiality in NRAS-mutant

melanoma cell lines compared cells with WT NRAS (Appendix Fig

S7). The role of IGF1R in mediating acquired resistance of BRAF

mutant melanoma cells to BRAF inhibitors is well-studied (Vil-

lanueva et al, 2010; Corcoran et al, 2011); however, the role of

IGF1R in NRAS-mutant melanoma is not completely understood and

further work will be required to establish the precise manner in

which NRAS-mutant melanoma cell lines are dependent on IGF1R.

Additionally, the identification of genes encoding proteins such as

ITGAV, RHOA and RAC1 suggest a potential role of cellular compo-

nents controlling cell adhesion and cytoskeletal organisation in
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NRAS-mutant melanoma. Together, this case study demonstrates

that integrating the protein–protein networks with CENs provides a

powerful means to identify potential synthetic lethal interactions

and at the same time place the genes from dependency networks

into interaction modules with enriched cellular functions for better

elucidation of cell essential biological processes.

A B

C D

Figure 3.
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Discussion

Loss-of-function genetic screens are a powerful means to identify

cellular vulnerabilities and such screens are now available for a

large number of genomically and transcriptomically characterised

cancer cell lines. Despite their obvious value to understanding gene

functions, these screens are under-represented in omics-integrative

systems biology approaches. This is largely due to the fact that the

“essentiality” of a given gene is highly context-dependent, making

the interpretation of essentiality from a genetic screen non-trivial

and largely inaccessible to non-experts.

To address this, here we present CEN-tools, a website and

accompanying python package that integrates these data. CEN-tools

allows the easy navigation of the major publicly available large-

scale genetic screens to identify associations between a given

context and the essentiality of a gene. For this purpose, it provides a

suite of statistical tools as well as integration with a number of

contexts from publicly available data sets, such as gene expression,

mutation background and drug sensitivity profiles of cell lines.

Additionally, the “Cell Line Selection” tool within CEN-tools further

enables users to restrict their analysis to their context of choice,

regardless of the preloaded contexts, and make comparisons for

interesting contexts such as paralog dependencies within a cell,

essentialities driven by gene amplifications and essentialities associ-

ated with defects in DNA-repair mechanisms (examples in

Appendix Fig S8). Further flexibility to investigate contexts of choice

is also available through allowing the upload of a custom list of

interesting cell line IDs. The python pipeline accompanying CEN-

tools, pyCEN, also enables systematic studies using multiple genes

as queries, a feature we plan to include in the future version of the

website. An application for this, for example, could be to query

dependencies in the context of a specific cancer subtype signature.

As a basis for CEN-tools, we identified high-confidence core

essential genes, through an analysis that combined the essentiality

profiles of genes from the two projects. Our core gene analysis

captured almost all genes identified by ADaM (Behan et al, 2019),

and identified 195 new core essential genes involved mainly in

previously known-to-be-essential cellular processes, but also added

an additional process of COP9 signalosome complex to these. The

core analysis from CEN-tools could also capture all but 11 genes

from the very recent core gene analysis from Dede et al (preprint:

Dede et al, 2020), which used the same data sets as in this study

(Appendix Fig S9). As the essentiality measured from genetic

screens not only captures genes whose loss causes cell death, but

also genes whose loss results in slower proliferation of the cells,

the day the experiments were performed will affect the identifi-

cation of the genes essential for proliferation. This perhaps

explains the higher number of core genes identified in the BROAD

data sets compared with the SANGER study (21 days instead of

14 days). By directly comparing the two studies, we also identified

cases in which the gRNAs’ efficacy in the two projects varied

considerably. Genes like UBB, HIST1H2BB, which encode for Ubiq-

uitin B and a histone protein are very likely to be core essential but

were not identified as such in the BROAD study. In some cases, it

is known that “late-essential” genes are not identified as essential

genes if the screen endpoint is at an earlier time-point than the

time it takes for the cells with the mutation in these genes to

completely drop-out of the population. However, the fact that

BROAD screens had a later endpoint than SANGER screens and

that these genes are known to be “early-essential” genes suggests

that it is more likely that the gRNAs used for these particular genes

in the BROAD study were of lower efficacy. Our high-confidence

core genes were defined as those that overlapped in both projects,

and hence, this core essential gene list from CEN-tools is represen-

tative of genes in which gRNA efficacy for a given gene in both

studies was comparable. Users of CEN-tools can easily navigate

the essentiality distributions for both projects to identify both the

best timeframe and library for their specific genes of interest, when

designing knockout experiments.

Using CEN-tools for group-wise testing for significant association

we identified many previously described molecular markers that are

associated with essentiality, including, but not limited to mutational

dependence on major cancer drivers and tissue-specific lineage

dependency markers (Tsherniak et al, 2017; Behan et al, 2019). We

further used CEN-tools to discover and experimentally validate an

association between the skin-specific gene SOX10 and the SRF TF

downstream of MAPK signalling in malignant melanoma. Addition-

ally, we showed that integration of CENs with existing protein–

protein interaction networks provides a powerful way to map depen-

dencies in the context of cellular function. In the example of NRAS

melanoma, in addition to identifying the expected Ras-signalling

pathway, we also identified a potential role of cellular cytoskeletal

processes, a pathway that is not entirely evident by only exploring

individual dependencies. While these results require validations

through further experiments, they demonstrate that our approach of

CEN-PPI integration is both viable and novel, not yet commonly

◀
Figure 3. CENs can identify cell essential processes for NRAS-mutant melanoma cell lines.

A The essentialities of RAF1 (upper panel) and SHOC2 (lower panel) are higher in NRAS-mutant melanoma cell lines (six samples) compared with NRAS-WT melanoma

cell lines (27 samples). The centre of each box plot represents the sample median; ends of the box are the upper and lower quartiles; the whiskers extend to the

smallest and largest observations within 1.5 times the interquartile range of the quartiles. Individual data points are overlayed onto the box plots. The dotted line

shows the median essentiality across all cell lines displayed (regardless of group). P-value is obtained from a Wilcoxon test; ***P ≤ 0.001, ****P ≤ 0.0001.

B Protein-protein interaction network of essential components of NRAS-mutant melanoma cell lines. All nodes in the network are genes whose essentiality is

significantly higher in NRAS-mutant melanoma compared with NRAS-WT melanoma cell lines. The colour intensity represents the median-change in essential scores

of NRAS in melanoma cell lines compared with that of NRAS-WT cell lines.

C Enriched pathways in the network in (B).

D Box plots depicting the higher essentiality of IGF1R in NRAS-mutant melanoma cell lines (6 samples) compared with non-NRAS-mutant melanoma (27 samples, upper

panel) and lower essentiality of IGF1R in BRAF mutant melanoma cell lines (20 samples) compared with BRAF WT melanoma lines (13 samples, lower panel). The

centre of each box plot represents the sample median; ends of the box are the upper and lower quartiles; the whiskers extend to the smallest and largest

observations within 1.5 times the interquartile range of the quartiles. Individual data points are overlayed onto the box plots. The dotted line shows the median

essentiality across all cell lines displayed (regardless of group). P-value is obtained from a Wilcoxon test; **P < 0.01, ****P ≤ 0.0001.

8 of 19 Molecular Systems Biology 16: e9698 | 2020 ª 2020 The Authors

Molecular Systems Biology Sumana Sharma et al



applied in the field of systems biology, to identify cellular pathway

dependencies. Approaches of this nature could be refined in the

future as more context-specific PPIs (e.g. patient-specific PPI inter-

actions) become available to ultimately aid designing better

therapeutics.

It should be noted that as the current version of CEN-tools tests

group-wise associations for only the given context, without taking

into consideration other co-occurring contexts, there is a risk of

observing confounding results if one were to only perform a single

test in isolation. We thus recommend considering associations in

the context of their CENs, through the network view of CEN-tools,

as these will be able to point to some of the confounders, at least for

the contexts whose associations have been pre-calculated. The cell

line selector tool could be used for further exploration of possible

confounders when interpreting associations, as it is equipped with

additional information about the genetic and transcriptomic makeup

of each cell line. Future versions of CEN-tools, and as more data

becomes available, will integrate an analysis for confounding factors

more directly. An option for this could be identifying associations

between gene essentialities and a given context using a mixed effect

linear model while considering defined set of contexts as covariates,

an approach that has been used very recently for the identification

of drug-gene associations from essentiality screens (Gonçalves et al,

2020). Currently, to aid the users in interpreting the statistical asso-

ciations we have included a number of confidence annotations. For

example, all analyses are provided at two levels of confidence:

Group A analyses include more than five cell lines/group whereas

Group B associations are based on the minimum three/group.

Group B associations therefore should be used with caution as it is

restricted by a low number of available cell lines in the data sets. All

statistical associations of CENs are also annotated with low to high

confidence levels depending on the P-value or correlation scores,

enabling the users themselves to filter the associations depending

on their requirements.

All systematic analysis within CEN-tools has been performed

separately for the two projects. However, a recent preprint from

Pacini et al (preprint: Pacini et al, 2020) has integrated the essen-

tiality scores from SANGER and BROAD and we have included the

integrated data sets in the CEN-tools website as a beta-version. We

repeated our core gene analysis in this “INTEGRATED” data set

(Appendix Fig S10A–D) and from a preliminary analysis, we

observe that core genes identified from the core gene analysis using

the integrated data set is highly concordant with the overlapping set

of core genes identified from each project analysed separately. More

importantly, the associations explored in detail in this study such as

the essentiality of SRF in skin (Appendix Fig S10E) and dependence

of NRAS-mutant melanoma on IGF1R and FURIN (Appendix Fig

S10F and G) hold true in the integrated data set and with even

higher confidence suggesting that these are indeed robust associa-

tions. Importantly, this analysis shows that increasing the number

of cell lines provides increased power for detecting context-specific

essential genes. As such data become available in the future and

integrated in our framework, we expect CEN-tools to enable analysis

in an increasing number of contexts.

In summary, we have developed a platform that can be used to

explore the dependency of a given gene in a given context, which is

key for elucidating the molecular function of a gene. The flexible

and modular nature of CEN-tools allows for future integration with

several other interesting data types, as they become available in suf-

ficient numbers, such as drug synergy data and other context-

specific information, such as protein expression, post-translational

modifications and signalling signatures in specific contexts. Thus,

we expect that CEN-tools will make essentiality screening data

widely accessible to researchers and will facilitate its integration

with orthogonal data sets, to perform systematic studies to identify

cancer dependencies.

Materials and Methods

Reagents and Tools table

Resource Resource Information Used for Reference

Data sets

Project

ScoreDependency

Map (DepMap)

Genome-wide CRISPR screens (Essentiality

scores- Gene depletion fold change (logFC)

matrix)For BROAD, DepMap Achilles 19Q2

was used*For INTEGRATED, DepMap

Achilles 19Q3 was used

Identification of Core essential

geneEssentiality scores for

statistical tests

Meyers et al (2017), Behan

et al (2019), preprint:

Dempster et al (2019), Broad

DepMap (2019a), Broad

DepMap (2019b)

Cancer Cell Line

Encyclopedia (CCLE)

Annotations of cell lines and Mutation, CNV,

expression information for BROAD and

INTEGRATED projectsFor BROAD, DepMap

Achilles 19Q2 was used*For INTEGRATED,

DepMap Achilles 19Q3 was used

Identification of contexts Meyers et al (2017), Ghandi

et al (2019)

The Genotype-Tissue

Expression (GTEx)

Median gene-level TPM by tissue (Analysis

v8—RNASeq v.1.1.9, 2017-06-05)

Basal Level Expressions of the

genes in cell lines

Aguet et al (2017)

Genomics of Drug

Sensitivity in Cancer

(CancerRx)

Database for drug response and therapeutic

biomarkers of cancer cell lines:GDSC1:

15Oct19 version and GDSC2: 15Oct19

version

Identification of contexts Yang et al (2013), Iorio et al

(2016)
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Reagents and Tools table (continued)

Resource Resource Information Used for Reference

Cell line passports Annotations of cell lines from SANGER

project (v.20020610) Mutation information

of cell lines, MSS/MSI status annotation,

gene expression and CNV data sets

(v.20191101)

Identification of contextsCell line

ID mapping

van der Meer et al (2019)

BAGEL (Bayesian

Analysis of Gene

Essentiality)

Gold-standard essential and non-essential

gene sets from the BAGELR implementation

TrainingBenchmarking Hart and Moffat (2016)

ADaM (Adaptive

daisy model)

An algorithm for identification of core

fitness and context-specific essential genes

in large-scale CRISPR-Cas9 screens

Comparison Behan et al (2019)

HPSCs (Human

Pluripotent Stem

Cells)

Stem cell core gene set ComparisonCore Annotation Hart and Moffat (2016), Ihry

et al (2019)

TRRUST Human TF database Network Annotation Han et al (2018)

Surfaceome Human Surface protein database Network Annotation Bausch-Fluck et al (2018)

SLCs (solute carrier

proteins)

A group of membrane transport proteins Network Annotation César-Razquin et al (2015)

Kinases Enzymes responsible for phosphorylation

(important for signalling)

Network Annotation Invergo et al (2020)

BioMart A data mining tool for Ensembl genes,

transcripts, proteins and also external

information

Conversion of Ensembl IDs to

official gene names

Kinsella et al (2011)

Cancer Genome

Interpreter

Annotation of the genes having validated

oncogenic mutations

Gene Annotation Tamborero et al (2018)

Software

dplyr (version 0.8.5) R package for data processing CEN-tools web server

implementation

Wickham et al (2020)

ggplot2 (version 3.3.0) R package for plotting CEN-tools web server

implementation

Wickham (2016)

ggpubr (version 0.2.5) R package for plotting CEN-tools web server

implementation

Kassambara (2020)

gridExtra (version 2.3) R package for plotting CEN-tools web server

implementation

Auguie (2017)

httr (version 1.4.1) R package for API access CEN-tools web server

implementation

Wickham (2019a)

jsonlite (version 1.6.1) R package for handling JSON data CEN-tools web server

implementation

preprint: Ooms (2014)

magrittr (version 1.5) R package for data processing CEN-tools web server

implementation

Bache and Wickham (2014)

plotly (version 4.9.2.1) R package for interactive plotting CEN-tools web server

implementation

Sievert (2020)

plyr (version 1.8.6) R package for data processing CEN-tools web server

implementation

Wickham (2011)

R (version 3.6.2) R language CEN-tools web server

implementation

R Core Team (2019)

rprojroot (version 1.3-

2)

R package for data loading CEN-tools web server

implementation

Müller (2018)

shiny (version 1.4.0.2) R package to develop shiny apps CEN-tools web server

implementation

Chang et al (2020)

shinyalert (version

1.0)

R package to develop shiny apps CEN-tools web server

implementation

Attali and Edwards (2018)

shinycssloaders

(version 0.3)

R package to develop shiny apps CEN-tools web server

implementation

Sali and Attali (2020)
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Reagents and Tools table (continued)

Resource Resource Information Used for Reference

shinydashboard

(version 0.7.1)

R package to develop shiny apps CEN-tools web server

implementation

Chang and Ribeiro (2018)

shinyhelper (version

0.3.2)

R package to develop shiny apps CEN-tools web server

implementation

Mason-Thom (2019)

shinythemes (version

1.1.2)

R package to develop shiny apps CEN-tools web server

implementation

Chang (2018)

shinyWidgets

(version 0.5.1)

R package to develop shiny apps CEN-tools web server

implementation

Perrier et al (2020)

stringr (version 1.4.0) R package for text operations CEN-tools web server

implementation

Wickham (2019b)

V8 (version 3.2.1) R package for handling javascript CEN-tools web server

implementation

Ooms (2020)

visNetwork (version

2.0.9)

R package for visualising networks CEN-tools web server

implementation

Almende et al (2019)

tidyr (version 0.8.3) R package for data processing Construction of t-sne plot for

interactive cell line selector

Wickham and Henry (2019)

Rtsne (version 0.15) R package for t-sne calculation Construction of t-sne plot for

interactive cell line selector

Krijthe (2015)

Python (version 3.6.9) Python language CEN-tools data curation and

analysis

van Rossum and de Boer

(1991)

NumPy Python package for scientific computing CEN-tools data curation and

analysis

Oliphant (2015)

pandas Python package for data analysis and

manipulation

CEN-tools data curation and

analysis

The Pandas Development

Team (2020)

SciPy Python package for mathematics, science,

and engineering

CEN-tools data curation and

analysis

Virtanen et al (2020b)

scikit-learn Python package for predictive data analysis CEN-tools data curation and

analysis

Pedregosa et al (2011)

argparse Python package for writing command-line

interfaces

Proving user input for pyCEN Pedregosa et al (2011), Davis

(2019)

pickle Python package for serialising and de-

serialising of python objects

CEN-tools data curation and

analysis

van Rossum and Team (2018)

matplotlib Python package for visualisations Data visualisation Hunter (2007)

seaborn Python package for visualisations Data visualisation Hunter (2007), Waskom et al

(2017)

os Python package for enabling operating

system dependent functionality

CEN-tools data curation and

analysis

van Rossum and Team (2018)

Methods and Protocols

Data collection and curation

Essentiality screens for cell lines and the associated information on

expression, CNV, drug response and mutation were obtained from

publicly available databases (Reagents and Tools Table). In addition,

a number of other data sets were used for annotation of genes and

their functions (Reagents and Tools Table, direct links also available

on the documentation page of CEN-tools website). Further modifi-

cations to some of the data sets were done in the following manner:

1 Gene expression values obtained from Cell Model Passports for

the SANGER project were log transformed (log(FPKM + 1)).

2 Tissue annotations were obtained from both CCLE website and

Cell Model Passports. In case of four cell lines (SK-PN-DW, SK-

NEP-1, COG-E-352, A673), discrepancies between the two

websites were found in terms of their annotations, hence their

expression profiles were examined on a t-sne plot and based

on these cells were manually annotated as “Bone” tissue. In

case of discrepancies in cancer type annotations, the Cello-

saurus (Bairoch, 2018) under the Swiss Institute of Bioinfor-

matics was further consulted and the manual annotations were

provided. The complete tissue/cancer type annotations are

provided in Table EV3.

3 Corrected log fold changes from Project Score and DepMap

projects were retrieved from Project Score, in which the same

preprocessing pipeline was applied. “Essentiality scores” were

calculated by computing the scaled log2 fold change. For this,

gene-level fold changes were first quantile normalised per

sample and then median scaled according to BAGEL essential

and non-essential genes (Hart & Moffat, 2016) as applied in

(Gonçalves et al, 2020). The scaled values were then multi-

plied by �1 such that essential genes have a median log2 fold
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change of 1 and non-essential genes a median log2 fold change

of 0.

4 To make the comparison between the two projects feasible, all

systematic analysis on the SANGER and BROAD individual data

sets was restricted to the 16,819 genes targeted in both projects.

Identification of core essential genes

To identify core genes that are essential for all cell types, we used

the corrected log-fold-change (logFC) matrix calculated using the

MAGeCK (Li et al, 2014) pipeline post CRISPRcleanR (Iorio et al,

2018) correction from the Project Score analysis pipeline. Rather

than using strict cut-offs to identify essential genes from each data

set, we opted to convert the logFC values into essentiality probabili-

ties and compare the probability of each gene being essential from

the two independent data sets to identify core essential genes. To

this end, we applied the following three steps (Appendix Fig S11A):

1 Training a logistic regression function that can separate genes

as essential and non-essential inside each cell line.

We separately trained logistic regression models with gold-

standard reference BAGEL essential and non-essential gene

lists from BAGEL (Hart & Moffat, 2016, also see Table EV1 for

the genes used for training in each study). For each project, we

separately applied these models on the remaining genes and

assigned probabilities of each gene being essential in each cell

line (ROC and PR Curves in Appendix Fig S11B).

2 Extracting probability distributions of the predictions for being

essential of each gene across cell lines and finding the patterns

of the distributions.

To calculate the patterns of probabilities for a gene being

essential across cell lines, we first sorted the essentiality proba-

bilities in an increasing order and converted the continuous

probability distribution into 20 bins of discrete frequency of

probabilities. This generated a numeric matrix of probability

frequencies for each gene being essential.

3 Clustering the essentiality patterns using k-means and defining

core essential and non-essential gene clusters as described in

Appendix Fig S11A and shown in Appendix Fig S11C.

We used these matrices as input for unsupervised k-means clus-

tering. Using the silhouette method, we identified the optimum

number of clusters to be 4. The silhouette method compares the

distance of each point to points in the same cluster with the

distance to points in the neighbouring clusters. A high silhouette

score means that the points are well placed within a cluster and

the clusters are well separated, allowing a robust definition of

the number of clusters and the assignment of samples.

The four major clusters of probabilities represented the different

profiles of gene essentialities as shown in Appendix Fig S11C. We

identified Cluster 1 as the cluster that best represented core essential

genes as the genes in this cluster had probability distribution

skewed to 1. Cluster 4 genes conversely showed the probability

distributions skewed to 0 and were therefore labelled as non-essen-

tial. The remaining two clusters indicated context-specific (Cluster

2) and rare-context-specific (Cluster 3) essential genes as their prob-

ability distribution revealed essentiality fluctuations across the cell

types (Table EV1).

Contexts interrogated in CEN-tools and representation of the

dependency networks (CEN)

The pre-defined contexts in CEN-tools were split into either

“discrete” or “continuous context” and were broadly classified into

four major groups:

1 Tissue/cancer (discrete context): Tissue refers to the tissue of

origin of the cell lines. Cancer refers to the further classifi-

cation of the cell lines into the cancer type within each tissue.

Table EV3 shows the different tissues and cancer types avail-

able in the two different databases and the relationship

between the cancer types with the tissue of origin. For statisti-

cal testing, the chosen tissue was used as the “test” group.

2 Mutation (discrete context): For mutation analysis, two dif-

ferent mutational annotations obtained from CCLE database

(Meyers et al, 2017; Ghandi et al, 2019) and Cancer Genome

Interpreter (Tamborero et al, 2018) were used. In all two-

group statistical tests, for a given gene, the cell lines with the

mutated gene were used as the “test” group and those with

non-mutated genes were used as the “control” group.

a CCLE—Hotspot mutation: Pre-annotated commonly occurring

hotspot mutations in 75 genes were used in the analysis Speci-

fic protein changes for the hotspot mutations used in this

study are detailed in Table EV4.

b Cancer Genome Interpreter Oncogenic mutation: A less strin-

gent mutational analysis was performed by using any muta-

tion in an oncogene A total of 76 oncogenes were annotated

(Table EV4).

3 Expression (continuous context): For expression analysis, cell

line expression values were obtained from the Cell Line Pass-

port and CCLE database as normalised FPKM values (Meyers

et al, 2017; Ghandi et al, 2019; van der Meer et al, 2019) for

SANGER and BROAD, respectively.

4 Drug response (continuous context): Drug responses for the

cell lines were obtained as normalised Z-scores from the

CancerRxGene database (Yang et al, 2013; Iorio et al, 2016).

These are only available for a subset of cell lines and are not

included in the pre-calculated CEN contexts but can be navi-

gated through the Context Analysis tab.

Contexts were first separated into continuous or discrete type

contexts. For discrete contexts, cell lines were separated into test

and control groups depending on whether they fulfilled the criteria

of the context or not. The groups were separated either from

pancancer or within a specific tissue/cancer type. We opted for non-

parametric tests for group-wise testing mainly because the scaled

essentiality scores were not normally distributed and also in some

cases the number of samples in each group was fewer than 20. For

the statistical tests, Kruskal–Wallis and Mann–Whitney U (two-

samples Wilcoxon) tests were used with default parameters (SciPy

v.1.4.1 package (Virtanen et al, 2020a) in Python v. 3.7.4 and stats

and ggpubr package (Kassambara) in R (R Core Team, 2019)). For

all statistical tests, the number of samples in each group was at least

3. For further confidence annotation, associations were divided into

Group A type associations, in which there were at least six samples

per group, and Group B associations, in which there were only 3–5

samples per comparison group.

For continuous contexts, Pearson correlation was used (SciPy

v.1.4.1 package (Virtanen et al, 2020a) in Python v. 3.7.4 and stats
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package in R (R Core Team, 2019)). Correlation calculations are

provided between the selected group and pancancer as well as

within the relevant tissue/cancer type. For the generation of CENs,

we required at least five samples to perform correlation tests.

The statistical tests yielded a large number of associations

between genes with the pre-defined contexts. To extract meaningful

relationships, we iteratively searched pre-defined contexts in all

genes in a given project and used a network visualisation approach

to represent all statistical relationships in CENs.

Extraction of BRAF co-essential CEN (Fig 2A)

The BRAF co-essential CEN was extracted by subsetting the Network

file (downloadable from downloads page of CEN-tools) to only

include the genes represented in the PICKLES database as BRAF co-

essential genes (‘BRAF’, ‘MAPK1’, ‘MAP2K1’, ‘PEA15’, ‘SOX10’,

‘SOX9’, ‘MITF’, ‘DUSP4’, ‘ELOA’, ‘ZEB2’, ‘NFATC2’, ‘LIF’). Further

subsetting was then performed on the network file as follows:

• Project = ‘BROAD’

• comparision_in = ‘Skin’

• effector = ‘expression’ or effector = ‘tissue’ or

effector = ‘hotspot_mutation’ or effector = ‘hotspot_co_muta-

tion’.

• higher = ‘high_in_group’ or is.na(higher)

• median_group > 0 | is.na(median_group)

• width ≥ 2

• dashes = FALSE

The resulting subnetwork was imported in Cytoscape (Shannon

et al, 2003) to visualise the network. Note that the PICKLES co-

essential genes are slightly different than the CEN-tools top10 co-

essential genes, due to the use of different data sets in the two

projects.

Extraction of lineage CENs (Fig 2B)

Lineage-specific CENs were extracted by subsetting the BROAD

project using “Expression” as the effector. The entire network was

then subsetted to contain only the interactions of this gene set. To

download this network and the node attributes from the CEN-tools

website, the following steps were taken:

1 Navigate to the “Network analysis” tab.

2 Choose the following parameters:

a Basic parameters:

i Project: BROAD

ii Generate CEN centred around: Cancer type

iii Tissue of Origin: All

iv Toggle “Expression-specific”

v Display effector edges corresponding to: Select all (Muta-

tion, Expression, Tissue/Cancer)

b Advanced edge filter options

i For Expression context correlations show edges corre-

sponding to: Positive correlations

ii For Tissue/Cancer context comparisons show edges corre-

sponding to: Increase in essentiality/expression

iii For Mutation context comparisons show edges correspond-

ing to: Both Increase and decrease in essentiality/expres-

sion

iv Select mutation annotations: CCLE: hotspot mutations

v Only show tissue/cancer edges in which the median essen-

tiality score of the essential context is higher than: 0.3

vi Only show mutation edges in which the median essential-

ity score of the essential context is higher than: 0.4

vii Perform context comparisons: Within a tissue of origi-

n/cancer type.

viii Confidence level of association (Tissue/Cancer type): 1:

Low

ix Confidence level of association (Mutation): 2:Medium

x Select: Group A

3 Press “Initialise network”

4 Download the network and the node attributes by clicking the

download buttons in the left sidebar. Open the network file in

Cytoscape (Shannon et al, 2003).

Extraction of skin-specific CENs (Fig 2C)

Skin-specific CENs were extracted from the “BROAD” project. To

download this network and the node attributes from the CEN-tools

website the following steps were taken:

5 Navigate to the “Network analysis” tab.

6 Choose the following parameters:

a Basic parameters:

i Project: BROAD

ii Generate CEN centred around: Tissue

iii Tissue of Origin: Skin

iv Display effector edges corresponding to: Select all (Muta-

tion, Expression, Tissue/Cancer)

b Advanced edge filter options

i For Expression context correlations show edges corre-

sponding to: Positive correlations

ii For Tissue/Cancer context comparisons show edges corre-

sponding to: Increase in essentiality/expression

iii For Mutation context comparisons show edges correspond-

ing to: Increase in essentiality/expression

iv Select mutation annotations: CCLE: hotspot mutations

v Only show tissue/cancer edges in which the median

essentiality score of the essential context is higher than:

0.2

vi Only show mutation edges in which the median essential-

ity score of the essential context is higher than: 0.4

vii Perform context comparisons: Within a tissue of origi-

n/cancer type.

viii Confidence level of association (Tissue/Cancer type): 1:

Low

ix Confidence level of association (Mutation): 2: Medium

x Select: Group A

7 Press “Initialise network”. The network will have too many

nodes to be displayed but will still be generated (you will see a

warning).

8 Download the network and the node attributes by clicking the

download buttons in the left sidebar. Open the network file in

Cytoscape.

9 For visualisation, only display nodes with “TF” attribute and

any other nodes directly associated with these “TF” nodes.

Integration of CEN with human interactome (Fig 3B)

To elucidate the cellular essential processes of the NRAS-mutant

skin cancer cells, we integrated the NRAS-mutant skin CEN,
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comprising the statistical associations between the gene dependen-

cies, with the STRING protein interaction network, comprising

biological associations in the human cells (Szklarczyk et al, 2019).

This analysis was performed using the BROAD data set on the CEN-

tools website using the following steps.

1 Navigate to the “Network analysis” tab.

2 Choose the following parameters:

a Basic parameters:

i Project: BROAD

ii Generate CEN centred around: Gene

iii Selected query gene: NRAS

iv Tissue of Origin: Skin

v Display effector edges corresponding to: Select all (Muta-

tion, Expression, Tissue/Cancer)

vi Toggle below to display edges corresponding to either

Tissue or Cancer subtype: Tissue

b Advanced edge filter options

i For Expression context correlations show edges corre-

sponding to: Positive correlations

ii For Tissue/Cancer context comparisons show edges corre-

sponding to: Increase in essentiality/expression

iii For Mutation context comparisons show edges corre-

sponding to: Increase in essentiality/expression

iv Select mutation annotations: CCLE: hotspot mutations

v Only show tissue/cancer edges in which the median

essentiality score of the essential context is higher than:

0.2

vi Only show mutation edges in which the median essential-

ity score of the essential context is higher than: 0.4

vii Perform context comparisons: Within a tissue of origi-

n/cancer type.

viii Confidence level of association (Tissue/Cancer type): 1:

Low

ix Confidence level of association (Mutation): 1: Low

x Select: Group A

3 Press “Initialise network”. A network will appear.

4 On the main panel, press the toggle button “Filter 1: Hide

edges corresponding to change only in expression”. This will

update the network

5 On the side panel, press the “Load tissues represented in the

current network”.

6 Upon clicking the button in step 5 a dropdown menu with “Filter

to only show edges corresponding to following tissues (press

‘refresh’ to update the list if filtering parameters are changed)”

will appear. Select “Skin” on from this dropdown menu.

7 Download the networks and the node attribute files for the

shown networks. These files will be used later for network

annotation.

8 Press “Map the current nodes to a PPI network” button. This

will automatically trigger switching to a new tab “Integration

with PPI network”.

9 On the Integration with PPI network tab, select the following

options:

a Display Network from STRING: Map CEN onto STRING

network.

b Select both output options:

i Show CEN-mapped STRING network: Upon clicking this

button a purple button “Retrieve PPI network of CEN from

STRING” will appear. Press this button to visualise the

network on the main panel. Use, adjust STRING interaction

score: 400.

ii Perform enrichment analysis and further choose the

following options.

1 Choose the enrichment category to display: KEGG

2 Choose enrichments FDR cut-off: 0.05

10 Download the network and the node attributes by clicking the

download buttons in the left sidebar. Open the network file in

Cytoscape (Shannon et al, 2003).

Cell line selection tool

To allow users to choose specific cell lines to explore using CEN-

tools, our Shiny app implementation offers the option to upload of a

list of cell lines. For a more explorative and interactive approach,

the user has also the option to custom select cell lines using our

“Interactive Cell Line Selector”. Using simple dropdown menus, the

user can restrict the choice of cell lines based on mutations, copy

number variations (CNV), growth property, microsatellite stability,

tissue and cancer subtype. Only cell lines for which we had essen-

tiality data, mutation information and expression data are available

for selection.

Selected cell lines are presented in a table and highlighted in a T-

distributed Stochastic Neighbour Embedding (t-SNE) plot for further

interactive selection. In the t-SNE plot, each cell line is represented

by a dot. Cell lines with similar gene expression profiles will be

closer together. The t-SNE plot was generated with the following

steps:

1 The gene expression matrix of each project (BROAD, SANGER

and INTEGRATED) containing FPKM values with genes as

columns and cell lines as rows was reduced to two dimensions

using the Rtsne package (version: 0.15; jkrijthe) in R (version:

3.6.1). Default parameters were used except for perplexity,

which was set to 70 and the number of maximal iterations,

which was changed to 500.

2 The t-SNE plot was generated with the R ggplot2 package using

the scatterplot function geom_point (version: 3.3.0) (Wickham,

2019a,b) with the two t-SNE dimensions as x and y axes,

respectively. Cell lines with similar expression profiles are

close together in the two t-SNE dimensions.

3 The user can select cell lines interactively by either clicking on

the dots of interest or by drawing a window over a number of

cell lines and hitting the “Select points” (only select the chosen

points) or “Add points to selection” (add the choice to previ-

ously selected cell lines) button. More information on the

selected cell lines is shown in the corresponding table.

4 To support the decision, the dots can be highlighted by tissue

of origin or subtype.

5 The choice of selectable dots can be restricted by using the

above-described dropdown menus for mutations, CNV’s etc.

on the left panel of the app. Cell lines that do not adhere to the

chosen criteria will appear as faint grey dots in the t-SNE plot

and cannot be clicked. Cell lines that adhere to the chosen

criteria but are not part of the selection appear as grey dots

and can be clicked to add them to the selection.

6 As soon as the user is satisfied, the selected cell lines can be

submitted for further Context analysis to CEN-tools by hitting

the “Click here to confirm your selection” button. The user

14 of 19 Molecular Systems Biology 16: e9698 | 2020 ª 2020 The Authors

Molecular Systems Biology Sumana Sharma et al



should also give their selection a name that will be later on

used as a label in plots of subsequent analysis.

Advanced python tool users of CEN-tools are also able to restrict

the analysis to their choice of cell lines. For detailed guidance on the

python tool refer to the CEN-tool python documentation.

Investigating paralog dependency (Appendix Fig S8A)

The association of RPL22 mutation and the essentiality of its paralog

RPL22L1 was investigated in the “BROAD” project. The following

steps were taken:

1 Navigate to the “Context analysis” tab and “Tissue/Coessen-

tiality” subtab.

2 On the left menubar select “Advanced selection” and then

“Interactive Cell Line Selector”

3 Hit the “Launch the interactive Cell Line Selector” button. You

will be redirected to a new tab. Wait a little while until the

interface is fully loaded.

4 On the left menubar choose:

a Show cell lines with mutations from: Input genes

i Type “RPL22” in the appearing text box

ii Hit the “Submit” button

iii Should cell lines contain a mutation in all (‘AND’) or at

least one (‘OR’) of the above chosen genes?: OR

b Selection based on Copy Number Variation (CNV)?: No selec-

tion based on CNV

c Cell culture growth properties: All

d Genome stability: All

e Tissue of origin (multiple selection allowed): All

f Cancer type (multiple selection allowed): All

g Colour cell lines by: Tissue

h Choose a name for your selection: e.g. “RPL22 non-silent

mutation”

5 Hit the “Click here to confirm your selection” button. You will

be redirected to the “Context analysis” tab

6 On the left menubar select:

a Start typing to select gene: RPL22L1

b Cells not chosen will be labelled as “Pancancer”, do you wish

to subset Pancancer list by tissue type?: No

Investigating essentiality based on CNV status (Appendix Fig S8B)

The association of ERBB2 amplification with its essentiality in breast

and oesophagus cell lines was investigated in the “BROAD” project.

The following steps were taken:

1 Navigate to the “Context analysis” tab and “Tissue/Coessen-

tiality” subtab.

2 On the left menubar select “Advanced selection” and then

“Interactive Cell Line Selector”

3 Hit the “Launch the interactive Cell Line Selector” button. You

will be redirected to a new tab. Wait a little while until the

interface is fully loaded.

4 On the left menubar choose:

a Show cell lines with mutations from: No selection based on

mutation

b Selection based on Copy Number Variation (CNV)?: Yes

i Wait until you see a black box below the slider. This might

take a while.

ii Choose a range of relative copy numbers to restrict the

choice of genes with CNV: 1.1-7.22

iii Pick 1 or more genes, whose relative CN lies within the

selected range: ERBB2

iv Should cell lines contain a CNV in all (‘AND’) or at least

one (‘OR’) of the above chosen genes?: OR

c Cell culture growth properties: All

d Genome stability: All

e Tissue of origin (multiple selection allowed): Breast, Oesopha-

gus

f Cancer type (multiple selection allowed): All

g Colour cell lines by: Tissue

h Choose a name for your selection: e.g. “ERBB2 amplification”

5 Hit the “Click here to confirm your selection” button. You will

be redirected to the “Context analysis” tab.

6 On the left menubar select:

a Start typing to select gene: ERBB2

b Cells not chosen will be labelled as “Pancancer”, do you wish

to subset Pancancer list by tissue type?: Yes

c Subset Pancancer to a specific tissue of origin: Breast,

Oesophagus

Investigating essentiality based on microsatellite instability

status (MSI) (Appendix Fig S8C)

The association of microsatellite instability (MSI) with the essential-

ity of the WRN helicase in colorectal cell lines was investigated in

the “SANGER” project. The following steps were taken:

1 Navigate to the “Context analysis” tab and “Tissue/Coessen-

tiality” subtab.

2 On the left menubar select “Advanced selection” and then

“Interactive Cell Line Selector”.

3 Hit the “Launch the interactive Cell Line Selector” button. You

will be redirected to a new tab. Wait a little while until the

interface is fully loaded.

4 On the left menubar choose:

a Show cell lines with mutations from: No selection based on

mutation

b Selection based on Copy Number Variation (CNV)?: No selec-

tion based on CNV

c Cell culture growth properties: All

d Genome stability: MSI

e Tissue of origin (multiple selection allowed): Colon/Rectum

f Cancer type (multiple selection allowed): All

g Colour cell lines by: Tissue

h Choose a name for your selection: e.g. “MSI in colorectal”

5 Hit the “Click here to confirm your selection” button. You will

be redirected to the “Context analysis” tab.

6 On the left menubar select:

a Start typing to select gene: WRN

b Cells not chosen will be labelled as “Pancancer”, do you wish

to subset Pancancer list by tissue type?: Yes

c Subset Pancancer to a specific tissue of origin: Colon/Rectum

Applying advanced thresholds for network generation in CEN-tools

The network tab of CEN-tools offers advanced options to users,

which can be used to apply a range of thresholds to identify the

most CENs for their study. In this study, we have used a multiple

thresholding system depending on how many confounding factors

one would expect within the group being tested and the purpose of

the study as detailed below:
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1 Lenient threshold (median essentiality score of the essential

context is higher than: 0–0.2, confidence level of association:

low) is generally applied for “Tissue” context in which there is

likelihood of a large number of confounding factors (e.g. different

mutational backgrounds and cancer subtypes), therefore a higher

dynamic range of essentiality score distributions. In some cases,

tissue contexts will have a very high dynamic range and median

essentiality score can be less than 0.2 even though the association

is of high statistical confidence (P < 0.01). It is possible to add

these edges; however, users should avoid adding confidence 1

edges (P-values 0.01–0.05) for tissues that also have low median

score to avoid including high number of false-positive edges.

2 Medium threshold (median essentiality score of the essential

context is higher than: 0.3, confidence level of association: low)

is generally applied for “Cancer type” contexts (which would still

have stratifications according to mutational backgrounds, but a

smaller dynamic range of essentiality score distributions).

3 Stringent threshold (median essentiality score of the essential

context is higher than: 0.4, confidence level of association:

medium) is applied when the tested context is a single muta-

tion in a single gene in a single tissue/cancer type.

4 CENs that are used in consort with PPI integration are gener-

ated with a medium threshold to identify all possible enriched

complexes.

Users should note that these thresholds are recommendations

and they may choose to use a different thresholding method

depending on the requirement.

Experimental methods

A375 cell culture

The Cas9-expressing A375 cell line was obtained from the Sanger Insti-

tute Cancer Cell Line Panel (https://cancer.sanger.ac.uk/cell_lines).

The cell line was cultured in DMEM/F12 media (Life Technologies)

supplemented with 10% heat-inactivated (50°C for 20 min) FBS,

20 lg/ml blasticidin and penicillin–streptomycin at 37°C with 5%

CO2. Logarithmic growth phase of the cells was maintained by passing

the cells every 2–3 days. Cells were tested and found to be myco-

plasma free.

Lentiviral production and transductions

All lentiviruses were produced, and all transductions were

performed as described before (Sharma & Wright, 2020). All gene-

specific gRNAs were obtained from Sanger Whole Genome CRISPR

Arrayed Libraries (Metzakopian et al, 2017), and lentiviruses were

produced in HEK293-FT cells using the Addgene lentiviral packaging

mix. Polybrene (8 lg/ml) was added to the cells prior to the trans-

duction of A375 cells using the “spinoculation” procedure.

Generation of the reporter A375 cell line

The reporter line of A375 was generated by transducing Cas9 express-

ing A375 cell line with a commercial reporter construct for SRE activ-

ity (Cignal Lenti SRE Reporter (GFP) Kit: CLS-010G). To establish a

clonal reporter line, 8 days post-transduction, cells were individually

sorted into 96-well plates using FACS (MoFlo XDP). The clonal cells

were further cultured for 3 weeks, and 48 individual clones were

tested for their expression of GFP. Five clones exhibiting different

levels of GFP were selected for expansion. The selected clone exhib-

ited the highest constitutive expression of GFP when grown in culture

supplemented with 10% serum and the highest loss of GFP signal

when transduced with a single gRNA targeting SRF.

Flow cytometry

Drug treatments and gRNA transductions were performed on six-well

culture plates with 1 × 106 cells/well. Treated cells were detached

from culture plates using EDTA, washed twice with PBS supplemented

with divalent ions and analysed using flow cytometry. All flow cytom-

etry was performed on a Cytoflex flow cytometer. 10,000 events per

sample was acquired for each sample. Live cells were gated using

forward and side scatter. GFP was excited at a wavelength of 488 nm

and emission detected using a 530/30 band pass filter; BFP was

excited at 405 nm and the emission detected using a 450/50 band pass

filter. Analysis was performed using FlowJo software (Treestar).

Expanded View for this article is available online.
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