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Computational modelling of glycan processing in the Golgi for investigating 

changes in the arrangements of biosynthetic enzymes

Ben West1, A. Jamie Wood1,2, Daniel Ungar1

Departments of 1Biology and 2Mathematics, University of York, York, UK

Abstract

Modelling glycan biosynthesis is becoming increasingly important due to the far-reaching 

implications that glycosylation can exhibit, from pathologies to biopharmaceutical 

manufacturing. Here we describe a stochastic simulation approach, to overcome the 

deterministic nature of previous models, that aims to simulate the action of glycan modifying 

enzymes to produce a glycan profile. This is then coupled with an approximate Bayesian 

computation methodology to systematically fit to empirical data in order to determine which 

set of parameters adequately describes the organisation of enzymes within the Golgi. The 

model is described in detail along with a proof of concept and therapeutic applications. 

Key words: glycosylation, stochastic simulation, approximate Bayesian computation, 
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1.0 Introduction 

Protein glycosylation is a complex and flexible post-translational modification that has been 

associated with a diverse set of biological processes and pathologies (1–5). The high level of 

complexity arises from the vast variation in the structures of glycans that can be produced. 

Glycan structures are altered by two enzyme families: glycosidases and 

glycosyltransferases. Glycosidases hydrolyse glycosidic bonds, cleaving part of a glycan, 

whereas glycosyltransferases catalyse the formation of a glycosidic bond, thereby initiating, 

extending, and branching glycans. 

Glycans are polymers consisting of several different monosaccharide units that can be 

added to each other in different orders and into different positions. A large set of competing 

enzymes, of the aforementioned glycosidase and glycosyltransferase families, are used to 

generate the polymers in the absence of a template. In comparison to a polysaccharide 

polymer, such as cellulose, where a more limited number of enzymes act in a concerted 

manner, the competing reactions when making a glycan result in a highly heterogenous mix

of glycans. Yet this heterogeneity is never completely random. For example, different cell 

types in the human body show distinct and reproducible glycan profiles. The glycan profiles 

are, in part, influenced by cell-line specific expression of the biosynthetic enzymes, however, 

this is not sufficient to explain the differences arising in the profiles of different cell types (6). 

Hence, the importance of sub-compartmentalisation of enzymes across Golgi cisternae has 

been highlighted as a key feature in glycan synthesis (7). Understanding how non-uniform 

enzyme distributions across the Golgi (8) are maintained and in what way these control

reproducible but distinct glycan profiles across cell types has become a key area of 

investigation for glycan biosynthesis. 

Given the pervasiveness and far-reaching applications of glycosylation, a good

understanding of how glycan heterogeneity is controlled is very important. Due to the 

complexities of this biosynthetic process, which involves a large number of competing 

enzymes working in concert, systems biology approaches are needed. Several 
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computational models describing the synthesis of glycans have been produced in an effort to 

understand the biosynthetic requirements for generating different glycan patterns (9–12). Of 

particular interest for our method is the computational representation of the way different 

enzyme arrangements guide glycan processing.

To understand the implications of models assessing Golgi enzyme arrangements, it is first 

important to understand how this organelle works with regards to the glycosylation of 

proteins. The cisternae of the Golgi should be thought of as dynamic reaction chambers that 

contain the glycan modifying enzymes. The cisternae are arranged from the cis side of the 

Golgi to the trans side (8), and glycoprotein substrates remain in the same cisterna 

throughout their residence in the organelle (13). In order to maintain a sequence of glycan 

processing reactions, the enzymes must be retrogradely (i.e. in the opposite direction to 

secretion) trafficked in vesicles, so glycoproteins meet an ever changing subset of the 

enzymes (14, 15). This process of Golgi trafficking is called the cisternal maturation model 

(13, 16) (Figure 1). 

N-glycosylation is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) with 

the creation of a glycan precursor consisting of two N-acetylglucosamine (GlcNAc) residues 

and five mannose residues (Man5GlcNAc2), which is flipped to the ER lumen. There, four 

more mannose residues are added as well as three glucoses, resulting in Glc3Man9GlcNAc2

that is transferred en bloc to an asparagine residue of a newly synthesised protein. The 

three glucoses are used as part of a protein quality control step, and are removed 

sequentially, leaving Man9GlcNAc2 that can undergo further trimming prior to trafficking of 

the glycoprotein to the Golgi. However, some glycans with a single glucose can still enter the 

Golgi, meaning that a glycan enters the Golgi in one of three states: Man8GlcNAc2, 

Man9GlcNAc2 or Glc1Man9GlcNAc2. Within the Golgi, alterations to a glycan result from the 

action of glycosidases and glycosyltransferases (Figure 2), until the glycan leaves the Golgi. 

This processing generates N-glycans belonging to one of three classes: oligomannose, 

hybrid, or complex. All N-glycans share a common core sequence: two GlcNAc residues 
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extended by three mannose residues (Man3GlcNAc2) onto which other monomer units are 

attached. Oligomannose glycans are those in which only mannose residues are attached 

onto the core and these are subject to mannose trimming enzymes such as mannosidase I

and II. Complex glycans contain antennae initiated by GlcNAc residues added to the core. 

This occurs through the actions of N-acetylglucosamine transferases, such as MGAT1 –

MGAT5. Hybrid glycans are characterised as containing both mannose and GlcNAc initiated 

antennae (17). 

Modelling the action, abundance, and localisation of these glycan modifying enzymes will 

help us to understand how the synthesis of glycans is controlled. Despite lagging behind 

other biological systems, due to inherent structural complexity, the computational modelling 

of glycosylation has gained traction in recent years. The first model of glycosylation, 

developed by Umana and Bailey, was used to generate 33 N-glycan reactions in silico, up to 

the point of galactosylation in the N-glycosylation pathway. Each Golgi cisterna was 

modelled as a reaction chamber that follows Michaelis-Menten kinetics with literature-

derived parameters. By solving a set of ordinary differential equations (ODEs) the solution 

gave glycan structures that correctly simulated the experimental glycan profile typical for 

secreted recombinant proteins produced in Chinese hamster ovary (CHO) cells (9). With the 

development of better technology this work has been greatly expanded on, going from 33 

possible reactions to a possible 22,871 in a model by Krambeck and Betenbaugh, which not 

only includes galactosylation, but fucosylation and sialylation as well (10).  Another model 

utilising ODEs, which further extends on the previous modelling, utilised structure-specific 

turnover rates to provide a kinetic description of N-glycan processing along the entire 

secretory pathway (18). Additionally, a study utilised the above described models to identify 

that changes in GalT activity unexpectedly affect branching during N-glycan processing (19). 

A different aspect of modelling glycosylation is to model how altered culture conditions rather 

than altered enzyme arrangements/activities change glycan profiles. This has been 

extensively investigated for the influence of temperature (20), culture feed (21), and sugar 
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nucleotide donor abundance (22). This work, also based on ODE methods, demonstrates 

the complexity of trying to model glycosylation whilst encapsulating different parameters that 

may exhibit an effect on glycosylation. Whilst these ODE models have refined our 

knowledge of glycosylation, they assume that the dynamics of glycosylation are captured 

thoroughly through a deterministic approach. Furthermore, ODE models cannot readily be 

used for fitting to experimental data. This is because the data needed to fit such models is 

not present at the appropriate level of detail to be sure that the models are constrained to the 

desired subspace of state space. Due to the low concentrations of enzymes and the high 

level of competition in the Golgi apparatus, stochastic models that incorporate biological 

noise are more appropriate when modelling glycosylation (11, 12).

One such stochastic model by Spahn et al. does not rely on kinetic information, but rather 

uses methods from Monte-Carlo Markov chain (MCMC) theory. In this model each glycan is

regarded as a state within a network that transitions to other states with certain reaction 

probabilities, independent of the past. This coupled with flux based analysis and a genetic 

algorithm approach for optimisation, was used to model glycosylation. 

The stochastic model that is the focus of the remainder of this chapter utilises MCMC and 

the Gillespie algorithm to simulate biological noise in conjunction with an approximate 

Bayesian computation (ABC) fitting methodology (12). This method allows us to link the 

organisation of Golgi enzymes to generated glycan profiles and thereby provides a tool for

problems such as probing glycan engineering strategies, answering cell biological questions 

on intra-Golgi protein sorting, and pinpointing strategies for alleviating human diseases 

caused by defective glycan processing. A genetic algorithm is generally better at finding an 

accurate solution quickly, only if the solution is found, as the parameter perturbations used 

are random to counter the size of the biosynthetic flux system, which is too large for a 

systematic search. Each fit is independent of the last which leads to a loss of information 

regarding the trajectory of the fitting, making the found solutions less reliable, and preventing 

the direct assessment of relative shifts in the parameter space. In contrast, our use of
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Bayesian computation, enabled by the more streamlined flux map, is a statistical approach 

to fit the parameters of the biosynthetic machinery to a state that produces the expected 

glycan pattern. This allows a systematic approach for parameter fitting, delivering high 

quality relative information on parameter shifts, thereby providing important cell biological 

information on the changes to the glycosylation machinery between the assessed cellular 

states. 

The computational model of glycan biosynthesis was created using custom written Java 

code. The model aims to simulate the action of glycan modifying enzymes to produce a 

glycan profile that is then compared to an experimental glycan profile to determine which set 

of parameters adequately describes enzyme organisation in the Golgi. The modelling 

method is divided into two separate bodies of code: stochastic simulation and model fitting. 

Both will be explored in depth below. Broadly, the stochastic simulation is designed to create 

a glycan profile based largely on parameters termed the “effective” enzymatic rate (EFER). 

The EFER is an amalgamation of the enzyme’s amount, its turnover rate, and the sugar-

nucleotide substrate concentration where appropriate. By subsuming these parameters 

under one value we decrease the parameter space, making the modelling computationally 

efficient. The EFER is used to describe the rate constant of a particular reaction experienced 

by a focal glycan. Using an ABC fitting algorithm that relies on some (often limited) prior 

knowledge of the parameters, randomly selected parameter values from a prior distribution 

are accepted or rejected based on similarity between simulated and experimentally obtained 

data. We are using data obtained using MALDI mass spectrometry of permethylated 

glycans, as this has been shown to provide reliable quantitative glycan profiles (23). Results 

from the fitting process tell the researcher how a parameter set needs to change from a 

starting state to generate the altered glycan profile, providing insights into altered enzyme 

arrangements within the Golgi. Crucially this means that the key information is not the final 

parameter derived, but rather the changes needed to improve the fit.



7

2.0 Stochastic Simulation Algorithm (SSA)

Underpinning the stochasticity of the model is the Gillespie algorithm, which uses the EFER

as a reaction probability per unit time (24). By treating the actions of independent enzymes

in each of the cisternae as probabilities, we can generate heterogeneity similar to that seen 

in experimental glycan profiles. 

Man8GlcNAc2, Glc1Man9GlcNAc2 and Man9GlcNAc2 are the three possible input glycans 

used as the starting point of processing. Which of these three gets used is determined 

probabilistically weighted by using two input parameters (Table 1 ‘E’), the Man8GlcNAc2 and 

Glc1Man9GlcNAc2 fractions. Each enzymatic processing step that is chosen via the 

stochastic process then progressively alters the input glycan as it moves through the Golgi. 

The substrate and product of these enzymatic steps are both in a linear notation form, as are 

all glycans within this simulation. The linear notation form used here is just one possible 

example, but the type used was created to be tailored for the string substitutions used by the 

SSA while allowing all the necessary information from mass spectrometry to be 

encapsulated. Linear notation allows for the actions of the enzymes to be implemented using 

a string substitution method to build new glycans. In essence, the action of each enzyme is 

simulated by the code searching for the substrate sequence, and if the enzyme is chosen to

act this substrate sequence will be substituted with the enzyme’s product sequence. For 

example, MAN1 will look for the substrate sequence: ‘1Man2.1Man:’ (Table 1 ‘B’) and if the 

code finds it and the enzyme is chosen to act, it will replace ‘1Man2.1Man:’ with the product

sequence ‘1Man:’ (Table 1 ‘C’), simulating the cleavage of a mannose residue. It is important 

to note that a single enzyme can have different substrates, which is why some enzymes 

have multiple entries in the table (Table 1 ‘A’). In some cases, different substrates are 

processed with a different rate; this is implemented using scale factors that alter the rate of 

the enzyme for a given substrate. These scale-factors initially have a value of one, meaning 

the enzyme’s rate for both substrates is the same. If, however, after fitting the scale-factor

deviates from this initial value of one, then altered substrate specificity of the enzyme is 
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considered to be playing a role in glycan synthesis. This type of information is an additional 

output of the model beyond enzyme organisation in the Golgi.

2.1 Glycan processing

A typical simulation run will use 10,000 input glycans stochastically processed one-by-one to 

generate a computed glycan profile. The input glycans are divided into three types based on 

the allocated proportions as determined by the Man8GlcNAc2 fraction and Glc1Man9GlcNAc2

fraction. Then for each glycan the SSA will identify all possible substrate strings in the 

enzyme information (Table 1 ‘B’). The EFERs for each enzyme that can thus act on this 

glycan (Table 1 ‘D’) are added up and this value becomes the Total Propensity. The Total 

Propensity is required for implementation of the Gillespie algorithm. 

Using a pseudo-random number (we used a Mersenne Twister (25)) multiplied by the Total 

Propensity, an enzyme is chosen to act by randomly selecting from the EFERs of the 

reactions competing for the substrate in question. If there are multiple sites that the chosen 

enzyme can act upon, a similar process is iterated through to determine at which site the 

enzyme should act. A second pseudo random number is then used to randomly draw from 

an exponential distribution with a mean of (Total Propensity)-1, in order to simulate a time 

interval within which the reaction occurred. The randomness arising from the use of pseudo-

random numbers is an essential component of the stochasticity required to mimic the 

competitive and heterogeneous nature of glycan biosynthesis. 

2.2 String substitution to modify glycans in silico

The string substitution is performed in a two-part process, to ensure fidelity of the glycan 

string. First, the substrate sequence is replaced with a proxy string and subsequently that 

string is replaced with the intended product (Table 1 ‘C’). The enzyme “OM Quench” (Table 

1) is an artificial enzyme that is used to quench the processing of oligomannose glycans

(Figure 1). This is needed to mimic the action of glycans being transported retrogradely back 

to the endoplasmic reticulum or being phosphorylated for lysosomal targeting. Both of these 



9

actions stop further glycan processing, and to achieve this, the string substitution adds a “P”

tag to all monosaccharide residues in the chain, making this new string unrecognisable for 

all enzymes. A glycan is modified in an iterative process until the cumulative time interval

used by the enzymatic reactions exceeds the transit time (Table 1 ‘E’). At this point the 

glycan moves onto the next cisterna, or out of the Golgi if it was in the final cisterna. Once a

glycan has moved out of the Golgi all “P” tags present are removed. The simulation thus 

generates 10,000 stochastically modified glycans, which are then used to produce a 

simulated glycan profile by calculating the relative abundance of each of its glycan species.

2.3 Comparison with empirical data

The simulation uses an empirically determined glycan profile to fit the simulated profile. The 

empirical data contains a list of glycans in linear notation, and the relative abundance of 

each as determined by mass spectrometry, as well as the error associated with each

measurement.

To compare simulated and empirical data, the empirical results have to first be aligned with 

the profile generated from the 10,000 simulated glycans so that a comparison of glycan 

abundance can be drawn. For this, the molecular weight of each glycan is calculated using 

the molecular weights of its monosaccharide building blocks. By calculating their molecular 

weights, we can merge different glycans that were computationally generated and have

identical masses, to create a single virtual glycan species. This is necessary because such

glycans are indistinguishable using simple MALDI mass spectrometry. Now the empirical

and simulated relative abundances of each glycan of a given mass can be compared to 

calculate a penalty score based on the difference between empirical and simulated

abundance. The sum of the individual penalty scores is the overall Score generated by the 

SSA.

There are a multitude of scoring methods that can be employed, and each has its own 

merits. For example, the square difference between the error and the absolute value of the 
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difference between empirical and simulated abundancies (Formula 1) provides a penalty 

score that places a greater weight onto the most abundant glycans in the profile. This will 

allow computation of the best global fit, to obtain more generalised information from the 

model. 

Formula 1: 

In contrast, using the coefficient of variation (Formula 2) as the score method, puts much 

more focus on the less abundant glycan species. These can often be of great functional 

interest, such as some low abundance sialylated or fucosylated glycans, and therefore may 

require special attention.

Formula 2: 

These are just two possible scoring methods, and it will be up to the experimenter to 

consider which penalty score calculation best reflects the needs of the specific project. 

3.0 Approximate Bayesian Computation for fitting the model to experimental data

The second body of code is used to adjust the parameter set to ensure the modelled glycan 

profile fits the empirically determined one; this is accomplished through the application of 

Bayesian statistics. The aim of Bayesian methods is to compute a posterior probability

P(A|B), for a set of uncertain parameters A, given experimentally observed data B. Bayes 

formula, where P(A) is the prior probability of our beliefs about the system (e.g. abundance 

and activity of resident Golgi enzymes) before B is observed, is given below.

In our case, the beliefs about the system are the information gathered from literature, which 

are used to calculate the EFER. This information is highly uncertain in most cases. 

Therefore, rather than treating the EFERs as single values, they are defined as probability 

density functions (PDFs). Two types of PDFs are chosen to describe parameter distributions:
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log normal and exponential decay curves. These PDFs represent simple distributions with 

support on the positive half place only. The mean for each curve is set to our best estimate 

for the corresponding EFER. A log normal curve, when sampled from, will probabilistically

yield a value that tends away from zero and it is for this reason that a log normal distribution 

is used to describe enzymes that we believe are active within a cisterna. In contrast, an 

exponential decay curve will yield values much closer to zero compared to a log normal, as 

smaller values have a greater probability, this type of PDF is used for simulating enzymes 

that we do not believe are acting in a particular cisterna. Importantly though, an exponential 

decay PDF still allows the model to engage an enzyme in that cisterna, so if we are wrong 

about the absence of the enzyme, the model will correct our error of judgment. By working 

through Bayes formula, we generate a posterior probability distribution and by comparing our 

prior knowledge to the generated posterior knowledge we could infer changes within the 

Golgi. However, this method would rely on calculating a likelihood function P(B|A), which 

represents the probability of observing the data B, given the parameter values A. But as is 

often the case, for the system modelled here the likelihood function is intractable. Therefore, 

an ABC method has been adapted (26). Essentially, for each EFER values are sampled

from its PDF. These values are fed into the SSA, and depending on the calculated Score, 

the parameter value sets are accepted or rejected. 

3.1 ABC Prerequisites

The ABC code loads enzyme rules and the order of the enzymes into its register from the 

same .xls file that the SSA uses. In addition, files containing 1000 x and y coordinates, 

describing values of the PDF, are used for each parameter. These PDF containing files are

ordered in the same way as the enzymes in the register. When creating the PDFs it is 

important to choose an appropriate x value increment (step--size) in order for the tail of the 

distribution reach a y value below machine error (10-8
, as anything below this is effectively 

zero to a machine), to avoid boundary effects. Furthermore, when creating a PDF with a log 

normal distribution a variance must be specified, which in most cases can be defined as the 
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square of the mean. However, in some cases, our prior beliefs about the system are more

uncertain due to a lack of literature and in these cases the variance can be increased to 

sample from a wider distribution.

3.2 Fitting methodology

The PDF for each enzyme within each cisterna, as well as PDFs for the starting glycan 

fractions and transit time, are loaded in from the prior spreadsheet files and stored in an 

array. A pseudo-random number is generated and from this, the values from a PDF are 

sequentially subtracted until the random number becomes negative. The last value 

subtracted becomes the EFER for that specific parameter, and repeating this for all PDFs, a 

parameter value set is passed onto the stochastic simulation. The SSA returns a Score, 

which is compared to a set threshold predetermined by the user. If the Score is below the 

threshold it is accepted, and the used parameter value set is stored. This process is 

repeated until there are n accepted sets of Scores. 

After n Scores are accepted, a file is generated containing the stored parameter value sets. 

This file can be used to produce the posterior PDFs for each parameter. By examining the 

shifts in distribution between prior and posterior PDFs we can begin to understand how the 

organisation of the Golgi had to change to generate the glycan profile differences between 

the cellular states used at the start and end of the fitting process. 

3.3 Threshold variability

Within our code is a sub-routine that can help set the Score-acceptance threshold. It has 

been demonstrated that MCMC algorithms are most efficient when the acceptance rate is 

set at 7.001% (27). This is achieved by the code through first randomly sampling prior values 

and accepting or rejecting based on an initial threshold. This initial threshold is determined 

as the lowest Score that could be achieved in a reasonable amount of computational time 

(typically 24 hours). If the acceptance rate is lower than 7%, the initial threshold is deemed

too low, and the code will increase the threshold by 10%. In contrast, if greater than 7% of 



13

the prior values are being accepted, the threshold is deemed too high, and is decreased by 

10%. In this way, the Score-acceptance threshold can be brought to a number close to that 

deemed optimally efficient. The Score-acceptance threshold is continually changed within a 

run until a second more stringent user-defined threshold is reached. The algorithm will then 

sample in that region of the parameter space until 10,000 parameter values for each variable 

have been accepted. During a chain of fitting runs the stringent threshold is generally 

lowered whilst some of the parameters are shifted from to the posterior PDF of the previous 

run. Decisions on which parameters to shift have to be taken by users experienced in the 

cell biology of glycan biosynthesis to ensure that parameter fitting yields plausible cellular 

states. This type of user guided fitting is a crucial aspect of the ABC approach (28).

4.0 Proof of concept

We are providing one example of validation here to help the reader understand how the 

modelling is used. For more examples the reader is referred to Fisher et al papers (12, 29).

To explore if the model has the ability to make rational predictions, initially the computed 

glycan profile was fitted to experimental profiles obtained from wild type HEK293T cell lines. 

Following this, HEK293T cells were treated with the MAN2 inhibitor swainsonine (30), and 

the altered glycan profile determined. As expected, the resulting glycan profile shows a 

significant increase in hybrid glycans. By starting with the parameter values obtained from 

the wild type fit, we reasoned that any changes in parameters required to fit to the 

swainsonine treated glycan profile, reflected changes in the glycosylation machinery due to

swainsonine treatment. After iterating through several rounds of simulation and fitting, the 

model predicted a large decrease in the EFER of MAN2 (Figure 3) (12). 

5.0 Further applications of the computational model

The implication of a model that can deduce the organisational changes of the glycosylation 

machinery using experimentally determined glycan profiles is far-reaching and important. 

The ability to determine the changes necessary to get from one cell-type to another, or more 
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importantly wild type to mutant cell is incredibly significant with regards to disease. For 

example, many congenital disorders of glycosylation (CDGs) show complex alterations in 

glycan biosynthesis (31, 32). The model could potentially help the diagnostics of orphan 

CDGs by comparing the glycan profiles obtained from patients and healthy controls, which 

would highlight critical changes in the biosynthetic machinery. In addition, computational 

modelling could pinpoint critical changes in the glycosylation machinery that may correct the 

glycan profile in patients, and even perform in silico drug tests on healthy and patient cells to 

suggest novel therapeutic directions. Similar approaches could be used for other diseases, 

such as some cancers where altered glycosylation is known to influence the pathology (5).

For example, using the model it was found that decreased fucosylation flux in a Cog4KO cell 

line compared to wild type was the result of reduced MGAT1 activity by restricting the 

amount of complex glycans which were the ideal substrates for fucosylation (12).

Another possible application of the model is within the biopharmaceutical industry. As 

previously mentioned, glycan heterogeneity can have a detrimental effect on drug efficacy. 

Therefore, being able to control glycosylation would be of enormous benefit both 

economically and from a health perspective. By understanding how the organisation of 

enzymes in the Golgi needs to change in order to get a specific glycan profile, it should be 

possible to plan glycoengineering strategies to control the glycosylation of 

biopharmaceuticals (29). 
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Figure Captions

Figure 1. An overview of the cisternal maturation model. Secreted cargo remains within the 

cisternae, while resident Golgi proteins are transported in a retrograde fashion to previous 

cisternae to induce their maturation.

Figure 2. The route a glycan can take on its biosynthetic journey from the ER to the trans-

Golgi. The blue box denotes glycans that are oligomannose, green box denotes hybrid 

glycans, and the red box denotes complex. The first four glycans in the blue box are those 

that can be subject to the oligomannose quench in the stochastic simulation of glycan 

processing, which targets them for removal from further processing in the Golgi. Enzyme 

abbreviations: mannosidase I (MAN1), mannosidase II (MAN2), fucosyltransferase 8 (FUT8), 

mammalian glucosamine transferase I-V (MGAT1-5), galactosyltransferases (GalT), 

sialyltransferases (SiaT).

Figure 3. Proof of concept using drug treatment of HEK293T cells. Total “effective” 

enzymatic rate changes for seven different enzymes, obtained when fitting a glycan profile of 

untreated cells to a profile obtained following swainsonine treatment. Error bars are SD for n 

= 16 individual fitting runs. Figure adapted from Fisher et al. (12).

Table Captions

Table 1. A table showing the.xls file used as an input for the stochastic simulation. The table 

contains information on the Golgi enzymes required for glycosylation. (A) The first column 

denotes the names of the different enzymes. It is worth noting that the same enzyme is 

present across multiple lines to account for instances where multiple different glycan 

structures serve as substrates for the same enzyme. In some cases these different entries 

have a different EFER. E.g. compare ST3Gal2.1 and ST3Gal2.2. (B) The enzyme substrate 

is a string sequence that the simulation will search for and this will be replaced with a 

different string, the product (C). The linkage between residues is denoted by the numbers in 

a conventional manner. Residues enclosed in brackets represent single branches. The 
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underscore and lowercase letters represent the continuation from the previous residue not 

enclosed within the brackets. The “:” represents the termination of the branch and the “@” 

denotes the end of the N-glycan string. (D) The EFER for a particular enzyme across the 

three different cisternae used in this example. More cisternae can be added, and we have 

successfully run the model with four. (E) Three extra parameters that are required for the 

model: Man8GlcNAc2 fraction, Glc1Man9GlcNAc2 fraction, and transit time, respectively.










