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A B S T R A C T   

Introduction: There is an increasing number of healthcare AI applications in development or already in use. 
However, the safety impact of using AI in healthcare is largely unknown. In this paper we explore how different 
stakeholders (patients, hospital staff, technology developers, regulators) think about safety and safety assurance 
of healthcare AI. 
Methods: 26 interviews were undertaken with patients, hospital staff, technology developers and regulators to 
explore their perceptions on the safety and the safety assurance of AI in healthcare using the example of an AI- 
based infusion pump in the intensive care unit. Data were analysed using thematic analysis. 
Results: Participant perceptions related to: the potential impact of healthcare AI, requirements for human-AI 
interaction, safety assurance practices and regulatory frameworks for AI and the gaps that exist, and how in-
cidents involving AI should be managed. 
Conclusion: The description of a diversity of views can support responsible innovation and adoption of such 
technologies in healthcare. Safety and assurance of healthcare AI need to be based on a systems approach that 
expands the current technology-centric focus. Lessons can be learned from the experiences with highly auto-
mated systems across safety-critical industries, but issues such as the impact of AI on the relationship between 
patients and their clinicians require greater consideration. Existing standards and best practices for the design 
and assurance of systems should be followed, but there is a need for greater awareness of these among technology 
developers. In addition, wider ethical, legal, and societal implications of the use of AI in healthcare need to be 
addressed.   

1. Introduction 

The use of artificial intelligence (AI) in healthcare is regarded a 
priority in national health policies to address challenges such as the 
COVID-19 pandemic as well as rising healthcare costs, staff shortages 
and burnout, and an increasingly elderly population with more complex 
health needs (Peek et al., 2020; Joshi and Morley, 2019). During 
2015–2020 over 200 medical devices using machine learning (a type of 
AI) received regulatory approval in Europe and the US (Muehlematter 
et al., 2021). While most healthcare AI applications have been devel-
oped in diagnostics (e.g., breast cancer screening (McKinney et al., 
2020), it is likely that all areas of healthcare will see the introduction of 

AI tools, e.g., in ambulance service triage (Blomberg et al., 2019), sepsis 
management (Komorowski et al., 2018), palliative care (Avati et al., 
2018) and mental health (Fitzpatrick et al., 2017). 

However, the impact of using AI in healthcare, and especially the 
safety impact, is largely unknown. Most healthcare AI applications have 
been evaluated retrospectively only, and the evidence base remains 
weak and at high risk of bias (Nagendran et al., 2020; Wu et al., 2021). 
Examples of prospective, real-world evaluations are few, and generally 
seem to conclude that the overall performance of the joint human – AI 
system does not improve to the extent suggested by retrospective studies 
(Beede et al., 2020; Blomberg et al., 2021). In addition, prospective 
evaluation can also help uncover unintended and unanticipated 
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consequences of using healthcare AI (Cabitza et al., 2017). 
Development and retrospective evaluation of healthcare AI are 

concerned predominantly with technical issues such as algorithm ac-
curacy, data quality and the potential for bias in the data (Challen et al., 
2019). While these issues are important, by themselves they are not 
sufficient to ensure that the use of AI in healthcare settings is safe, where 
socio-technical issues, such as trust, skill erosion, impact on workload 
and working practices, as well as ethical concerns around fairness, 
health equity and the wider societal impact are going to be critical as-
pects (Sujan et al., 2019; Sikstrom et al., 2022; Wawira Gichoya et al., 
2021; Smallman, 2019). 

The field of Science and Technology Studies (STS) suggests that the 
development, governance, and deployment of novel technologies should 
be studied as interacting socio-technical processes rather than as tech-
nical activities in isolation. Disruptive innovations, such as healthcare 
AI, inevitably create gaps, and they challenge established social and 
organisational structures and hierarchies, which must be bridged and 
repaired as part of the innovation process (Elish and Watkins, 2020). 
Assurance practices and regulatory frameworks for healthcare AI are 
still being developed, e.g., action plans and change programmes devel-
oped by the US Food and Drug Administration (FDA) and the UK Med-
icines and Healthcare Products Regulatory Agency (MHRA) around the 
use of AI in software as a medical device. The notion of responsible 
(research and) innovation recognises the difficulty and uncertainty of 
predicting the societal impact of such rapidly developing technological 
innovation and suggests embedding debate about societal concerns in 
the innovation process through anticipation, reflexivity, inclusion, and 
responsiveness (Stilgoe et al., 2013). Central to this is fostering a di-
versity of views and engaging in a broad dialogue with stakeholders 
about the risks, benefits and acceptability of healthcare AI (Macrae, 
2019). Such inclusive dialogue can support anticipation, e.g., through 
identification of patient concerns about the impact of healthcare AI 
beyond the consequences of technical failures, and it can provide an 
opportunity for stakeholders to reflect on their respective assumptions, 
motivations, and priorities. 

In line with this thinking, in this paper we explore how different 
stakeholders (patients, hospital staff, technology developers, regulators) 
think about safety and safety assurance of healthcare AI, using the 
example of AI-based intravenous infusion (IV) pumps within an inten-
sive care unit (ICU) setting. There are an estimated 237 million medi-
cation errors in the UK NHS every year (Elliott et al., 2018), and studies 
have found that medication administration errors are five times more 
likely in IV doses than in non-IV doses (McDowell et al., 2010; McLeod 
et al., 2013). The use of AI might lead to the development of highly 
automated and partially autonomous infusion pumps with the potential 
to reduce errors and improve patient outcomes (Sujan et al., 2019). 

The detailed objectives of this study were to describe stakeholder 
perceptions on: (1) the potential impact of using AI-based infusion 
pumps in intensive care with respect to perceived advantages and dis-
advantages, patient experience and working practices; and (2) the po-
tential safety assurance practices for AI-based infusion pumps, 
approaches to regulation and incident investigation, and the gaps that 
exist. This rich description of perceptions from a diverse range of 
stakeholders can complement the current technological focus on 
healthcare AI to inform a more socio-technical and systems-based 
approach to AI safety. 

2. Methods 

2.1. Setting and clinical reference scenario 

The organisation participating in this study was an English NHS 
hospital. The hospital serves a population of 600,000. It has a capacity of 
1131 beds, and it employs over 8800 staff. The ICU within the hospital 
has 16 beds, and is staffed by approximately 35 medical staff, 100 nurses 
and 80 support staff. The ICU cares for 1300 patients annually. 

The study focus was the use of AI to support intravenous medication 
management in ICU. The technology can carry out safety checks auto-
matically, and it could potentially administer certain types of IV drug 
infusions autonomously (i.e., make changes to the infusion within 
certain hard limits or stop the infusion). Patients in ICU typically are 
very ill, and they can receive 6–12 infusions concurrently. 

To focus data collection with study participants, a scenario was 
developed. Scenarios have been defined as “descriptions of possible 
futures that reflect different perspectives on the past, present and the 
future” (van Notten et al., 2003). Scenarios have been used in different 
fields, e.g., in Science and Technology Studies of emerging technologies 
(Selin, 2011), and in Computer Supported Collaborative Work (Bødker, 
2000). The use of scenarios is intended to encourage a diversity of views 
and to enable broader participation in design. The scenario developed as 
part of this study concerned the management of a patient’s blood sugar 
level via rapidly acting insulin administered intravenously through an 
infusion pump. The rationale for focusing on insulin administration was 
twofold: first, the management of blood sugar levels is a topic that is 
intuitive and widely understood even by non-clinical audiences; and 
second, the clinical protocol for the management of blood sugar levels is 
reasonably straightforward. The project team developed a clinical 

Table 1 
Clinical reference case.  

Diabetic patient on ICU with sepsis 
requiring insulin – current, manual 
base line scenario 

The patient is a 68-year old type-II 
diabetic with sepsis secondary to 
pneumonia. The patient’s blood sugars 
require insulin control via rapidly acting 
IV insulin infusion. 
Patient identity, nurse identity, 
prescription and syringe formulation 
checks are all done manually (approx. 70 
pieces of information). If the checks 
match, the nurse enters the pump 
programme and infusion limits, loads the 
syringe and starts the infusion pump by a 
manual button push. 
The nurse regularly reviews test results of 
blood sugar level, and adjusts the 
infusion rate as indicated by the clinical 
protocol when required. 

Automated infusion technology Patient identity, nurse identity, 
prescription and syringe formulation 
checks are all done by barcode. If checks 
match, the pump automatically 
programmes itself to start the infusion, 
displays medication identity and selects 
hard and soft programme infusion rate 
limits without further or final human 
confirmation. 
The nurse is only asked to intervene if 
factors known to the system (e.g., 
concurrent steroid prescribing, known 
previous insulin resistance from GP 
prescribing) may make the pre- 
programmed protocol likely to be 
ineffective based on this known 
information. 

Autonomous infusion technology The IV medication management system is 
further extended to allow it to select the 
best fit clinical protocol based on the 
known information about the patient in 
the information system. 
The pump controls the IV infusion rate of 
insulin in response to continuously 
measured blood sugar from a central 
venous sampling device. 
Within the pre-set limits it can adapt to 
the patient’s actual insulin requirements 
and formulate an individualised protocol 
for the infusion rate based on the sugar 
readings to optimise sugars control 
through pre-emptive changes in infusion 
rates.  
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reference case with different levels of AI support, see Table 1. 

2.2. Participants 

Participants were patients, hospital staff, technology developers and 
regulators (including individuals involved in standardisation activities). 
Hospital staff were employees at the study hospital. Patients had 
received treatment at the study hospital. Other participants (technology 
developers and regulators) were independent of the study hospital. The 
sampling strategy aimed to recruit a diverse set of participants and roles, 
while being mindful of the practical constraints of the study. Data 
saturation was not an objective, in line with recent suggestions for 
thematic analysis (Braun and Clarke, 2021). In total, 26 participants 
were recruited. Table 2 provides a breakdown of participants by stake-
holder group. 

Patients and hospital staff were approached by the hospital-based 
clinical Principal Investigator. Regulators and technology developers 
were approached by the study Chief Investigator. Prior to the interview, 
potential participants received a participant information leaflet. In-
terviews took place in a meeting room at the hospital (patients and 
hospital staff), over the telephone or at the business offices of the 
interview participant. Participation was voluntary, and all participants 
provided written consent. Treatment in intensive care can be a very 
traumatic experience, and patients might find it emotionally challenging 
to discuss this. Support mechanisms were put in place at the hospital in 
case a patient participant might become distressed during the in-
terviews. The support mechanism was used once by a patient participant 
and included use of the hospital counselling service and follow-up by a 
senior nurse known to the patient participant. 

2.3. Data collection and data analysis 

Data were collected through semi-structured interviews during May 
2019–November 2019. Patient and hospital staff interviews were un-
dertaken by two project team members, and technology developers and 
regulators interviews by one project team member. Interviews were 
semi-structured based on the topic guide shown in Table 3. Each inter-
view lasted between 20 and 45 min. Interviews were audio-recorded. 
The audio recordings were subsequently transcribed, and during the 

transcription process all identifiers were removed to ensure anonymity. 
Data collection and analysis followed a sequential approach. All data 

were collected first and were then analysed in a subsequent step. 
Following transcription of the interview data, thematic analysis was 
undertaken (Braun and Clarke, 2006). The approach to thematic anal-
ysis used was towards the experiential and semantic end of the analytic 
spectrum (as opposed to the critical and latent), i.e., the focus was more 
on explicitly expressed meaning rather than implicit and conceptual 
level of meaning (Braun and Clarke, 2022). In a first step all interviews 
were read to allow familiarisation with the data. Subsequently, each 
interview was coded using descriptive and open coding (Saldaña, 2009). 
An analytic memo was produced for each interview summarising the 
researcher’s thoughts and issues of particular interest. An analytic memo 
can be unstructured, and it is a tool to support reflection during the 
analysis. Using the initial set of codes and the analytic memos, themes 
were identified through clustering of codes in meetings of the project 
team. The high-level themes followed largely from the structure of the 
interview guide. Within each theme, sub-themes were developed by 
listing all codes within the theme, reviewing the actual data behind each 
code, and by using (and manipulating) visual representations (mind 
maps) to facilitate discussion within the project team to identify re-
lationships and determine importance. These are subjective and inter-
pretative analytic activities, i.e., they represent choices made by the 
project team. 

2.4. Ethics 

The study received institutional approval at the participating NHS 
hospital as a service evaluation study. 

3. Results 

Results are presented using descriptive themes following from the 
interview guide: (1) advantages, disadvantages, and impact on patient 
experience; (2) human – AI interaction; (3) safety assurance activities; 
(4) regulation; and (5) incident investigation. The description below 
presents rich detail, and a summary is provided in Table 4 for 
convenience. 

3.1. Advantages, disadvantages, and impact on patient experience 

3.1.1. Attitudes towards AI 
Some of the hospital staff and patient participants expressed positive 

generic attitudes towards AI and technology, sometimes likening the 
situation to the release of new technology such as an iPhone or the use of 
robotics in car manufacturing. There were no negative generic views, 
but participants acknowledged that there might be a generational 

Table 2 
Interview participants by stakeholder group.  

Stakeholder Group Description Participant ID 
Intensive Care Patient Sepsis Patient-01 

Pancreatitis Patient-02 
Diabetes Patient-03 
Emergency surgery Patient-04 

Hospital Staff ICU staff nurse Staff-01 
ICU senior nursing staff Staff-02 
Education Staff-03 
ICU staff nurse Staff-04 
Clinical pharmacist Staff-05 
Anaesthetic trainee Staff-06 
Education Staff-07 
Business manager Staff-08 
ICU senior nursing staff Staff-09 
IT management Staff-10 
Equipment management Staff-11 
Education Staff-12 
Clinical pharmacist Staff-13 

Technology Developers Medical devices Tech-01 
AI Tech-02 
Medical devices Tech-03 
Medical devices Tech-04 
AI Tech-05 

Regulators Health standards Regulator-01 
Products certification Regulator-02 
Health standards Regulator-03 
Medical devices regulation Regulator-04  

Table 3 
Topic guide for semi-structured interviews.  

Introduction Background to the study and the interview. 
Participant 

background 
Interviewee’s professional background and current role, 
or their experience as a patient. 

Impact on patient 
experience 

Interviewee’s perception of how the use of AI-based 
infusion pumps in intensive care might impact on patient 
experience. 

Impact on working 
practices 

Interviewee’s perceptions of how working practices 
might be affected / changed when using AI-based 
infusion pumps. 

Safety assurance Safety assurance needs of interviewee, and suggestions 
for safety assurance activities of AI-based infusion pumps 
to meet these needs; description of gaps of existing 
assurance practice. 

Regulation Suggestions for regulatory practice for AI-based infusion 
pumps; description of gaps in current regulatory practice. 

Incident investigation Perceptions of how incidents involving AI-based systems 
should be investigated. 

Ending Expression of thanks for contribution  
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divide, with younger people potentially being more open to new forms 
of technology compared with older people. Other studies also report 
positive attitudes towards healthcare AI, which tend to be more pro-
nounced where the use of AI is geared towards process automation 
rather than towards direct patient care (Scott et al., 2021). 

However, participants often qualified their generic positive attitude 
towards AI by expressing certain underlying beliefs, such as if a tech-
nology is being used, they assume it must be safe and help their treat-
ment. Trust is one such underlying belief, and one patient described the 
trust that people have in the NHS as an institution, and that as a result 
they tend to be more accepting of whatever form of technology is pro-
posed. In this instance, trust is based on professional and institutional 
authority, and it is viewed as independent of the process of technological 
innovation itself. Despite the often very public discussion of the scale of 
patient harm, trust in healthcare professionals remains high, even if 
distrust in health systems as a whole to deliver high-quality care in the 
future is rising (Calnan and Sanford, 2004). 

“I think some people will look at anything the NHS says as like okay, we 
can trust that, the NHS have said it. So, I think there is that unspoken kind of 
trust. A lot of people just think, oh well, if the doctors and the nurses and the 
NHS, the brand has said this is okay, it’s a change but it’s okay and these are 
the reasons why.” Patient-04. 

3.1.2. Efficiency and accuracy 
Within all participant groups there were views that acknowledged 

the potential of AI to reduce error and to make care safer. Intensive care 

can be a very demanding and stressful environment, and clinicians can 
become tired or get distracted, and as a consequence they might forget to 
do something or make mistakes, such as drug dose calculation errors 
(Lyons et al., 2018). A perceived benefit of AI is that it would not be 
subject to such performance influencing factors, and it could reduce the 
opportunities for human error. Examples provided included the check-
ing of drugs and drug doses, the reduction of data entry and data entry 
errors, and the provision of alerts of contraindications. The benefits 
might be particularly relevant in patients that require a lot of attention 
and receive several medications and interventions concurrently, as such 
situations are especially demanding. Similar expectations were held for 
previous generations of clinical decision support systems, as well as 
more broadly for highly automated systems across different industries, 
but numerous studies as well as accident investigations demonstrated 
that the assumption that automation reduces human error and thereby 
improves safety is overly simplistic (Cabitza et al., 2017; Bainbridge, 
1983; Alberdi et al., 2004). 

However, some participants also pointed out that AI has the potential 
to cause or contribute to patient harm. This might be because these 
technologies are still very novel and hence largely untested in clinical 
environments (Nagendran et al., 2020; Wu et al., 2021). In addition, 
some hospital staff pointed out that the existing infusion pumps some-
times failed, and they suggested that AI-based infusion pumps would not 
be perfect either. Furthermore, AI-based infusion pumps might have 
only a limited view onto the patient, their treatment and the wider 
clinical context. This limited contextual awareness might be inappro-
priate at times and could contribute to errors and sub-optimal treatment. 
Such unintended consequences of the introduction of technology is not 
limited to AI but has been documented previously, for example with the 
introduction of health information technology, such as electronic health 
records, computer-assisted physician order entry and smart infusion 
pumps (Ash et al., 2007; Black et al., 2011; Koppel et al., 2005; Sujan 
and Habli, 2021). 

A nurse from the ICU described how human decision-making about 
care and treatments is not just based on a limited set of numeric in-
dicators or variables. The nurse emphasised the importance of context, 
and the holistic aspect of clinical decision-making, which might not be 
available to an autonomous system. This could potentially affect patient 
care and patient outcomes. 

“With regards to things automatically going up and down, sometimes it 
isn’t just numbers. It’s what you’re looking at. Does that make sense? It’s not 
just about numbers. It’s what you’re looking at […] Sometimes looking at a 
patient you just know what they need. You don’t really need anything else to 
tell you. You can look at a patient and you can think, oh, God, this is not 
going to be a good day. This is going to end badly. You know just by looking at 
somebody, which obviously can’t be quantified.” Staff-01. 

A key anticipated benefit of the use of AI in intensive care is 
improved efficiency of care and of clinical processes. By taking over 
specific tasks from nurses and doctors, AI can free up clinicians’ time, 
and allow them to focus on other aspects of patient care. Several par-
ticipants commented on this, suggesting that the use of AI would 
streamline processes, reduce the need for manual interventions, and 
provide more timely care. 

However, some staff with direct patient contact questioned whether 
AI would improve efficiency and free up their time. For example, ex-
periences with current health IT systems were not universally positive 
because these systems were sometimes very slow to respond, and it 
might take several minutes to enter data. More generally, the intro-
duction of novel technology into a healthcare setting inevitably changes 
processes and can affect the existing professional and organisational 
structures. In order for novel technologies to work effectively in real- 
world clinical settings, such disruptions need to be accompanied by 
“repair” work to create a new set of practices and structures (Elish and 
Watkins, 2020). AI systems might have to communicate with other 
health IT systems, and such delays might need to be sorted out and dealt 
with by clinicians, thereby creating additional work. Also, clinicians 

Table 4 
Summary of stakeholder perceptions.  

Theme 1: Advantages, 
disadvantages, and impact on 
patient experience 

Attitudes towards AI are positive and are 
based on trust in the health system. AI can 
increase efficiency and reduce errors, but 
it can also contribute to delays and errors. 
There is still a need for human contact, and 
the use of AI systems should not disrupt 
the relationship between patients and 
clinicians. 

Theme 2: Human – AI interaction Training needs to enable clinicians 
maintain core clinical skills, and it needs to 
help clinicians build a baseline 
understanding of AI and its limitations. 
Clinicians in intensive care have a strong 
sense of autonomy. Clinicians need to 
build trust in AI. Feedback and alerts can 
provide clinicians with an awareness of 
what the AI is doing. 

Theme 3: Safety assurance practices Existing assurance practices are a good 
starting point for safety assurance of AI in 
clinical settings. AI evolution poses new 
challenges, but might be addressed 
through real-time monitoring and 
continuous feedback, or by locking 
algorithms. The use of synthetic data could 
complement real-world data to provide 
more comprehensive training data sets. 

Theme 4: Regulation Existing safety standards for medical 
devices are a good starting point for the 
regulation of AI in clinical settings. 
Regulation requires a culture change to 
deal with AI evolution. A more iterative 
approach to regulation will be required. 
Developers need to demonstrate they have 
competence and expertise in developing 
safe AI. Developers and regulators need to 
establish a dialogue. 

Theme 5: Incident investigation AI systems can enhance traceability and 
auditability. However, responsibility and 
accountability for incidents might be 
pushed onto clinicians. The incident 
investigation process needs to include 
additional actors such as AI experts and AI 
developers.  
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typically multi-task and make use of manual interventions to build up 
situation awareness and a holistic picture of the patient’s care and the 
wider clinical system. 

An ICU nurse challenged the view that the use of AI systems would 
free up significant amounts of nursing time, because changing settings 
manually on the existing pumps was not done in isolation. The nurse 
described how such interactions provided an opportunity to talk to the 
patient, look at the patient, and generally maintain an awareness of the 
overall situation. The nurse also alludes to wider implications such as 
the relationship and interaction with the patient’s relatives. 

“I don’t spend ten minutes just looking at my pumps. You do it as part of 
your assessment […] So while I’m doing something with the patient, I’ll just 
be checking the pumps and looking and make decisions, and then I don’t 
spend a specific amount of time. It would probably only free up seconds, to go 
to the pump to alter it. That’s all it would be. But then at least, when the 
family are looking at you, you are still doing something, whereas I feel like, if 
you weren’t doing that, they’d be like, well, what are you doing?” Staff-01. 

3.1.3. Relationship between patients and their clinicians 
Even though patients expressed generally positive attitudes towards 

the use of AI, they also pointed out the need for human contact. All four 
patients suggested that they appreciated the companionship of nurses 
and the support they provide with needs other than purely medical. 
While the use of AI could improve efficiency by taking over tasks from 
clinicians, there is also a danger that clinicians might get pulled into 
other activities instead. These activities could potentially be away from 
the patient’s bed side as less manual interaction is required. This has 
been demonstrated in studies of electronic health records, where it has 
been suggested that physicians now spend more time on data entry ac-
tivities than on direct patient care (Hill et al., 2013). In this case, the 
introduction of AI might not lead to more humanised care, but rather 
leave patients feeling more isolated. 

A patient described this trade-off of knowing, on the one hand, that 
the AI systems might be taking care of their medical needs, and, on the 
other hand, of having the comforting presence of a nurse. 

“People will still want a human contact. Machines might be able to do a 
damned good job, but I think people still need that little human contact. All 
right, while it’s absolutely computerised and what’s it and then people… I 
would feel lost a bit. I’d know they were doing all right, but I’d still need a 
little human… I don’t think I could live with the machines continuously, 
although I know they were doing a good job.” Patient-01 . 

3.2. Human – AI interaction 

3.2.1. Training 
Clinician participants emphasised the need to retain core clinical 

skills. With the introduction of AI systems, such as partially autonomous 
AI-based infusion pumps, a range of tasks currently undertaken by cli-
nicians would routinely be taken over by the AI. This includes, for 
example, dose calculations, taking and interpreting blood sugar level 
tests, and adjustments to IV infusions. Participants suggested that in the 
past when new systems were introduced, they observed a deterioration 
of skills among their colleagues. As a result, there is a danger of de- 
skilling clinical staff, and hence people might not be able to take over 
from the system in case of any failures or unavailability of the system. 
The potential negative impact on worker skills, skill retention, and the 
ability to take back control from an automated systems has not only been 
highlighted in healthcare (Cabitza et al., 2017) but is one of the classic 
“ironies of automation” (Bainbridge, 1983). Consideration of the po-
tential for skill degradation has been proposed as one of the primary 
evaluative criteria for the design of automated systems (Parasuraman 
et al., 2000). 

In addition to maintaining core clinical skills, participants widely 
agreed that staff require education about AI. Participants alluded to the 
potential transformation of staff roles from being users of an infusion 
pump to that of supervisor of an autonomous AI system. Monitoring and 

supervising an autonomous AI system requires a different skill set than 
simply using a passive system. When hospitals rely on staff to pick up 
problems with the AI, staff need to understand how to identify any is-
sues, and they need to demonstrate competence in this. Different forms 
of real-time assistance and explanation, e.g., showing AI predictions 
alongside explanations and indications of AI confidence (Lai and Tan, 
2019), as well as offline training using machine learning model driven 
tutorials and explanations can significantly improve users’ under-
standing of the behaviour of the AI and overall task performance (Lai 
et al., 2020). 

One of the technology developers likened this transformed role of 
clinical staff to control room operations in other sectors, such as the 
nuclear industry. The role of staff would be about monitoring and 
providing oversight rather than using the AI system. 

“It might be more about checking that the system is configured correctly, 
more about monitoring the system, rather than a user-directed activity. 
Normally users are driving the system, and the use is much more intuitive. If 
it’s autonomous, the mechanisms of training might be the same, but what 
you’re training them to do is quite different. It’s almost like training someone 
to monitor a nuclear power plant, in a control room.” Tech-03. 

Participants highlighted the dangers of becoming over-reliant on AI. 
Becoming too reliant on an AI system could lead to staff not being able to 
do tasks manually anymore in case of failure with the AI. Over-reliance 
on automation, or automation-induced complacency (Parasuraman and 
Riley, 1997), has been considered a contributory factor to accidents, 
such as the fatal collision between an Uber / Volvo self-driving test 
vehicle and a pedestrian in 2018. The notion of over-reliance as a 
contributory factor is contested because it narrowly focuses attention on 
the individual rather than the wider socio-technical, economic and po-
litical context (Stanton et al., 2019). 

A participant from the hospital raised the issue of over-reliance and 
complacency when infusion pumps become truly autonomous. The 
participant expressed concern about whether staff might just take what 
the infusion pump reports at face value, without attempting to critically 
question it. 

“My worry is, if you, as I’ve probably already alluded to… I think if you 
make something 100% automated, and there is a machine that’s attached to 
the patient that says it’s doing this, I worry that people will become 
complacent, trust it too much, whatever. But they’ll just look at other pumps 
and think it’s fine, and it’s doing its job, sorted.” Staff-03. 

3.2.2. Autonomy, control, and trust 
Clinician participants expressed a strong sentiment of being auton-

omous practitioners on intensive care. Nurses often spend their entire 
shift with a single patient, and they build up a strong relationship and 
bond with their patient. As a result, nurses feel a responsibility towards 
their patient, and they have a desire to be in control of the patient’s 
treatment. With the introduction of AI systems, this sense of autonomy 
and control could be challenged, and this might cause anxiety and mixed 
feelings towards the technology. Participants suggested that options for 
manual overrides could contribute to their feeling of being in control 
and avoid confusion and potential complications in the delivery of care. 

Participants also suggested that having alerts and feedback would 
help to maintain situation awareness and stay in control of the overall 
treatment and care for the patient. Situation awareness refers to the 
dynamic understanding of an ongoing situation, involving perception of 
relevant data and cues, integration of these features to comprehend their 
meaning, and projection into likely future states (Endsley, 1995). 
Distributed Situation Awareness represents a systems approach, which 
emphasises that situation awareness is distributed throughout a system 
and that it is built through interactions between actors (people as well as 
automation or AI) (Stanton et al., 2006). Alerts can help to raise 
awareness of a deteriorating situation so that clinicians can take over 
control to prevent patient harm. However, while an individual alert 
might appear a reasonable design feature, problems can occur when 
multiple alerts are raised concurrently or when there are frequent alerts 

M.A. Sujan et al.                                                                                                                                                                                                                                



Safety Science 155 (2022) 105870

6

throughout a shift. Alarm fatigue, i.e., the delayed response or reduced 
response frequency to alarms, has been identified in major industrial 
accidents, such as the 1994 explosion and fires at the Texaco Milford 
Haven refinery. In intensive care it has been suggested that a healthcare 
professional can be exposed to over 1,000 alarms per shift, contributing 
to alarm fatigue, disruption of care processes and noise pollution, with 
potentially adverse effects on patient safety (Ruskin and Hueske-Kraus, 
2015). 

One participant identified as problematic how the AI would deter-
mine that it was doing something wrong, and how it would identify 
when to trigger an alert. The answer to this is most likely not straight-
forward as illustrated by the example given by the participant. 

“Say you were planning on giving one to two ml of insulin an hour, and 
you have a regime that goes up to four, or something. And you’re up at four, 
and the sugar’s still 25 and it’s not coming down after 15 min. Does it [the AI- 
based infusion pump] then go up to six? Does it go up to eight? Does it go up to 
12? At what point does it say, there’s something really not happening right 
here?” Staff-03. 

Clinicians have their own mental model of the patient, their needs 
and the treatment. If the AI operates on a different model, or if it does 
not communicate what it is doing, then clinicians might feel out of the 
loop. Continuous feedback could help clinicians build situation aware-
ness and gain trust in the AI. Participants suggested that to them it was 
important to know what the AI was doing, and that it would be looking 
for or checking the same things as they themselves would do. How such 
feedback could be designed and provided is far from straightforward, 
especially for AI that uses machine learning algorithms, which produce 
complex models such as Deep Learning. Many approaches to explainable 
AI focus on providing detailed accounts of how an algorithm operates 
(Miller, 2019), but for explanations to be useful they need to be able to 
accommodate and be responsive to the needs of different users across a 
range of situations, e.g., a patient might benefit from a different type of 
explanation compared with a healthcare professional. In this sense, 
rather than providing a description of a specific decision, explanation 
might be better regarded as a social process and a dialogue that allows 
the user to explore AI decision-making by interacting with the AI and by 
interrogating AI decisions (Weld and Bansal, 2019). Real-time feedback 
could also be complemented by offline coaching (as discussed above) 
(Lai et al., 2020). 

Feedback and alerts are also important to build trust in the AI. Trust 
is important, because otherwise clinicians might not use AI, work 
against it or otherwise the intended benefits might not be realised. Some 
of the technology developers raised concerns that people might not trust 
AI, because they are unfamiliar with it and don’t understand how it 
works. The way AI is represented in popular culture, e.g., as machines 
taking over or as artificial humans (“The Terminator” is a classic 
example) or as super-intelligent but ultimately destructive Artificial 
General Intelligence (such as HAL 9000 in “2001: A Space Odyssey”), 
might contribute to fuelling fears (Russell, 2019). This points to other 
avenues besides real-time feedback and explanation for considering 
trust. Trust can be conceptualised as arising from the socio-technical 
engagements between different stakeholders (including patients, clini-
cians, and technology developers) in the development and validation 
process of the AI (Elish, 2018). In this view, trust is not a property of the 
AI as a product, but arises from “trust work”, i.e., how stakeholders 
interact, communicate, and make sense of the technology and their 
practice (Winter et al., 2022). 

3.3. Safety assurance activities 

3.3.1. Existing assurance practices 
Several participants suggested that existing safety assurance prac-

tices would remain relevant for AI systems in clinical environments, and 
that such safety assurance practices might provide an excellent starting 
point. Participants referred to existing assurance practices for medical 
devices such as having independent review, being clear about intended 

use and limitations of the system, ensuring traceability and audit, 
working with domain experts, and creating a safety argument. This 
should be underpinned by processes that demonstrate that the developer 
is a competent (with respect to systems development) organisation. 

Even though participants recognised limitations of existing ap-
proaches regarding AI systems, there was no disagreement about the 
value of retaining existing good practices. One of the technology de-
velopers suggested that in many respects AI systems should not be 
treated any differently from other medical devices, with the need for 
rigorous approaches, sound safety evidence and independent oversight. 

“You need a robust design process. Autonomous systems shouldn’t really 
be very different […] In reality AI is not much different, and it should be 
treated in the same way. There shouldn’t be a different approach. The pro-
cedures that apply to non-AI should apply here as well […] The evidence 
should be the same for AI systems as for standard system. […] An indepen-
dent level of assurance needs to be provided by regulators and notified bodies, 
but this could be the same as for current medical devices.” Technology-02. 

3.3.2. Managing AI evolution 
Existing safety assurance practices have been developed to deal with 

mostly static and stable systems. With the move towards learning and 
evolving systems, it becomes necessary to manage this evolution in a 
safe way. Participants suggested that there need to be continuous 
monitoring and appropriate feedback mechanisms in place that allow 
developers of AI systems to track and monitor that the AI system is not 
violating any assumptions or its safety envelope. In addition, providing 
developers with a wider range of contextual clinical data could help 
improve the performance of algorithms. 

However, all of this would fundamentally change the relationship 
between developers and users. Participants suggested that at present, 
developers and manufacturers of medical devices tend to have rather 
sporadic contact with their users, and often only in response to opera-
tional problems. Development, procurement and safety assurance pro-
cesses between manufacturers and users (e.g., hospitals) do not appear 
to be linked up well, in part because manufacturers often target multi-
national markets, which might operate to a diverse range of standards 
and processes. 

There are political, ethical and financial issues that require resolu-
tion if manufacturers and users are to share operational data more 
extensively. One of the technology developers raised the issue that, on 
the one hand, it would be useful to have access to data to improve the 
systems, but that, on the other hand, there need to be contractual 
mechanisms in place, and ownership and payment for data provision 
would need to be settled. Clinical data will increasingly become a 
valuable commodity, and it is very much an open question who owns it, 
who can access it (e.g., to improve systems), and who can distribute it. 

“There’s a heritage of building to contract and delivering it, but in the new 
world of AI there might be value of gathering data, [we] would need an 
arrangement with clients, to get better systems out of it. Things like, if the 
system has not behaved properly, we’d want to know about that. Arrange-
ments would need to be worked out and formalised contractually. Who is 
paying for the service [of collecting and sharing data to improve systems]? Do 
we pay for it?” Technology-03. 

One approach of managing AI evolution might be to lock down al-
gorithms, and simply not allow evolution. The operational data could be 
used to train an offline version of the algorithm, which could be released 
subsequently after extensive testing. However, this might not be a 
suitable solution for all cases, e.g., in situations where insufficiencies in 
the AI behaviour were detected or where fast learning and adaption is 
required to deal with novel situations. 

3.3.3. Data 
Participants identified many potential issues and problems with data 

that might not have been present to the same extent in traditional sys-
tems. For example, bias in the training data, which is unrepresentative of 
the real world or the specific clinical setting can cause patient harm. 
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Similarly, participants with a clinical background expressed concern 
about the breadth and complexity of scenarios that an autonomous 
infusion pump might have to consider. 

One of the participants from the hospital explained the potential 
complexity of the scenario of a diabetic patient with sepsis in intensive 
care. Every patient has a unique physiology and responds differently to 
interventions, and patients might have a multitude of underlying con-
ditions all potentially interacting and affecting both treatment choices 
and effectiveness of the treatment. An algorithm driving an autonomous 
infusion pump would need to be capable of dealing with the complexity 
of such scenarios, and relevant training data would need to be available. 

“That’s going to be difficult, because you’re going to have to work out the 
pharmacological interactions of every drug that you’re giving at the same 
time, also the time frames are all different […] So if you’ve got some patients 
with sepsis, as you said, they may well be on steroids, which some make your 
sugar go awry. They may, on occasion, be on adrenaline, which can make 
your glucose metabolism change. We may well then start feed at some point, 
which will then change, or we may well stop feed if they start vomiting. It will 
also depend on what the other drugs are actually made up in, some are made 
up of 5% dextrose, and some are made up in normal saline.” Staff-03. 

A participant from the regulatory space referred to ongoing research 
around the use of synthetic data, which might be able to address these 
issues with data quality. Real-world data can contain bias, it can be 
incomplete or duplicated. An alternative or complementary approach 
might be to generate synthetic data through simulation. In this way, the 
AI system might have access to an almost infinite amount of data 
covering also very infrequent scenarios. A second participant from the 
regulatory stakeholder group summarised these concerns in a useful list 
of questions that should be asked about AI data quality. 

“Personally, I would like to know about the quality of the training data, 
what was done to scrub the training data, remove duplicates, fix or exclude 
partial records etc., its performance data, e.g., what is the rate of false 
positives? The rate of false negatives? What is the consequence of a false 
positive or negative? I want to know what biases exist in the data; all data has 
bias.” Regulator-03. 

3.4. Regulation 

Participants touched upon aspects of regulation that were closely 
related to the issues discussed regarding safety assurance practices 
including the continued relevance of existing standards and the chal-
lenge of managing AI evolution. Participants felt that the existing 
standards described good safety engineering reflecting best practice in 
the sector, which should be applied to AI and autonomous systems. As an 
estimate, a participant suggested that around 80% of what is being done 
for medical devices would equally apply to AI, and that maybe 20% 
would need to be covered by new standards. Regulators would expect 
developers to demonstrate that they have identified relevant standards, 
and that they have understood the breadth of standards that might be 
applicable. 

One of the technology developers called for a culture change within 
the regulatory space in order to accommodate evolving AI systems. 
Regulatory approaches assume static systems, which do not change once 
assessed and certified. The interview participant alluded to the situation 
with safety and security, where potentially there might be pointers as to 
how to manage such situations. 

“How does it [AI evolution] fit with regulators? It will be, regulators like 
the idea of a static system, which is built and certified, if you change anything, 
that change needs to be carefully assessed. There needs to be a cultural change 
among regulators to accept a much more dynamic situation. There are par-
allels with systems that have security implications. Safety-Security trade-off, 
static versus dynamic system. Safety doesn’t want to change the baseline, but 
security wants to update frequently.” Technology-03. 

Participants from the regulatory stakeholder group acknowledged 
that AI evolution presented a challenge. Participants suggested that the 
regulatory framework had to move away from pre-market approval and 

post-market surveillance towards a much more iterative approach. They 
pointed to the standardisation work that has already been launched and 
referred to safety assurance practices such as learning in batches with 
strict version control of algorithms so that any potential issues can be 
tracked. Most importantly, however, regulators would expect de-
velopers to demonstrate competency. 

This focus on competence, expertise and processes was echoed by 
technology developers. Participants from this group suggested that it 
was important to have a dialogue with regulators around the impact of 
changes to the system as the underlying algorithms learn and evolve. If it 
was possible to agree a defined change envelope, where the impact of AI 
evolution on the system and on the intended use was reasonably minor, 
then additional regulatory approval might not be required for every 
iteration. What was important was to agree with the regulator a process 
for managing such changes, and then to provide evidence that this 
process was executed accordingly. 

3.5. Incident investigation 

3.5.1. Traceability and auditability 
Several participants felt that the ability of AI systems to log every 

piece of data and every action would facilitate the incident investigation 
process, because there would be an auditable and traceable history of 
what the AI did. The participants suggested that the incident investi-
gation process would, therefore, not be reliant as much on human 
memory, which tends to be less accurate. In addition, documentation 
done by people is frequently incomplete, whereas the electronic logs 
would be fully available. 

The ability of AI to produce such an audit trail was not contested by 
other participants. However, some of the participants raised concerns 
about how these data would be used during the incident investigation 
process and what it might mean for clinicians. 

One of the hospital staff felt that when it came to the investigation of 
an incident, it was unclear to whom an AI system would be answerable 
to. They felt that, in the end, responsibility for safe patient care would 
rest with the clinician. Another participant from the technology devel-
opment group expressed a similar feeling, suggesting that almost by 
default clinicians would bear responsibility for an incident unless they 
could prove otherwise. This might be a significant burden on clinicians, 
and it might reduce their willingness to trust and to accept AI systems. 

3.5.2. Additional actors in the incident investigation process 
Participants suggested that the incident investigation process would 

need to involve and have input from a wider range of stakeholders. With 
the introduction of AI systems, it would be necessary to involve AI ex-
perts to provide an informed opinion on the quality and safety aspects of 
AI systems. In addition, manufacturers would have to be brought in 
much more closely than is currently the case, because the clinical 
decision-making process is much more blurred with AI systems than it is 
with current systems. However, this could also create problems. On the 
one hand, developers of AI systems might be concerned about their 
reputation and the detrimental economic impact if their systems were 
found to be responsible for causing patient harm. As a result, there is a 
danger that even though manufacturers have an interest in improving 
and fixing their systems, they might drag out and delay the incident 
investigation process. 

One of the technology developers explained further that intellectual 
property rights might become problematic and prevent manufacturers 
from sharing their data freely during an incident investigation process. 
Data can carry a significant economic value. 

“If there’s a court litigation, then data would need to be made available 
anyway, e.g., test data. It wouldn’t be made public from the start, but would 
be shared if there’s a need. If there was any IP that would be shared, that 
could make it trickier, training sets might be very valuable.” Technology-03. 

A nursing participant questioned accountability for incidents. The 
participant expressed concerns about whether they would be held 
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responsible for incidents involving an autonomous system. 
“Who’s going to be accountable for that then because would it… if your 

patient dies and you end up in Coroners because the noradrenaline wasn’t 
being administered and they had no blood pressure and then they arrest. Is it 
good enough to say well the pump didn’t tell me? It’s my pin number, it’s still 
my patient. It’s accountability.” Staff-04. 

4. Discussion 

The analysis of the interviews with a diverse set of stakeholders 
provides a rich description of people’s perceptions of and attitudes to-
wards the potential impact of healthcare AI, requirements for human-AI 
interaction, safety assurance practices and regulatory frameworks for AI 
and the gaps that exist, and how incidents involving AI should be 
managed. Reflecting on this description, four important lessons for the 
safe design and adoption of healthcare AI stand out: (1) a socio-technical 
systems approach to understanding and designing healthcare AI; (2) the 
continued relevance of lessons learned from highly automated systems; 
(3) the critical role of the patient – clinician relationship; and (4) the 
need for a cultural change around the safety of healthcare AI and of 
digital health more generally. 

Health systems are socio-technical systems where people interact 
with one another to achieve shared goals, using tools and technologies to 
complete specific tasks, which are performed in physical spaces, and are 
situated within organisational contexts as well as wider professional, 
legal, and societal rules and expectations. The design and implementa-
tion of any technology, including healthcare AI, should be based on a 
thorough understanding of the operational realities of health systems 
and how the elements of a work system interact with one another (i.e., 
work-as-done (Hollnagel et al., 2015). An example of a widely used 
conceptual systems framework developed specifically for healthcare is 
the Systems Engineering for Patient Safety (SEIPS) model, which can be 
helpful in describing the interactions of work system elements, and how 
these interactions deliver healthcare processes, which in turn lead to 
system outcomes such as patient health and patient safety, and staff 
wellbeing (Carayon et al., 2020; Holden and Carayon, 2021). Accident 
models based on systems thinking include Systems-Theoretic Accident 
Model and Processes (STAMP) along with the corresponding analysis 
method Systems-Theoretic Process Analysis (STPA) (Leveson, 2011). 
The Functional Resonance Analysis Method (FRAM) is another systems- 
based analysis method that can be used to explore interactions in 
everyday work as a basis for design (Hollnagel, 2012). For example, 
FRAM has been used to study IV infusion practices in ICU to highlight 
performance variability, which can inform design requirements for AI 
technology that supports rather than erodes the adaptive capacity 
within this system (Furniss et al., 2020). Systems frameworks and sys-
tems analysis methods are essential for ensuring that AI is integrated 
meaningfully and safely into health systems (Sujan et al., 2022). 

Important lessons for the design and use of healthcare AI can be 
derived from the experiences with highly automated systems (Macrae, 
2019). For example, Bainbridge’s seminal short paper on the “ironies of 
automation” remains very relevant (Bainbridge, 1983): even though 
automation is introduced to reduce reliance on people, human operators 
are still part of the system and are expected to intervene in exceptional 
and critical situations. However, people then must respond under time 
pressure and will have less practical experience than previously, and 
they might not have had opportunities to build a full understanding of 
the situation they are expected to manage. Humans are not well suited to 
passive monitoring tasks over extended periods of time. A recent tragic 
illustration of these ironies of automation in a modern context is the 
Uber / Volvo self-driving test vehicle accident in March 2018 when a 
pedestrian pushing a bicycle across the road was killed. The AI in the 
Volvo test vehicle initially failed to correctly classify the pedestrian, and 
the safety driver failed to take over manual control as they were using 
their mobile phone (Stanton et al., 2019). However, the classic ironies of 
automation also present themselves in slightly different and even more 

complex form in modern AI technologies. An example of this is situation 
awareness (SA), which refers to the dynamic understanding of an 
ongoing situation (Endsley, 1995). From a systems perspective, 
distributed situation awareness (DSA) (Stanton et al., 2006) regards SA 
as being distributed around the socio-technical system, and SA is built 
through interactions between agents – both human (e.g., clinicians) and 
non-human (e.g., a healthcare AI system). The design and safety assur-
ance of healthcare AI need to consider how both people and AI can build 
and maintain appropriate SA by designing suitable interactions. In the 
case of AI-based partially autonomous infusions pumps, for example, the 
AI might need to know about other medications the patient is receiving 
as well as other relevant circumstances (e.g., recent food intake, which 
will affect blood sugar levels). Research around explainable AI might 
also provide insights into how people can build better awareness of the 
decisions and actions of the AI, but this is an area of current debate about 
the best ways to achieve this (Weld and Bansal, 2019; Shneiderman, 
2020), or whether it can be achieved meaningfully at all in specific 
situations (Ghassemi et al., 2021). 

The interviews also highlighted the importance of considering the 
impact on (human) relationships when AI is used. Patients on ICU are 
particularly vulnerable and distressed, and the human aspect of care is 
critically important to them. While patients generally had positive at-
titudes and trust in the technical aspects of AI, they expressed concern 
about the potential impact on the relationship with their clinicians. A 
literature review suggested that unfortunately patient attitudes towards 
AI are not usually included in clinical trials of healthcare AI applications 
(Scott et al., 2021), and some studies found that fear of dehumanisation 
of the relationship between patients and their clinicians was a significant 
concern (Esmaeilzadeh, 2020; Sisk et al., 2020). Such concerns echo 
findings from research about patient perceptions on their care, e.g., in 
the management of deterioration. In this domain, concerns have been 
raised that patients who experience a deterioration in their condition 
find it challenging to be heard by their clinicians, partly because clini-
cians give preference to “objective” parameters such as early warning 
scores (Subbe et al., 2021). The design and use of AI would normally be 
based precisely on such parameters, and, therefore, consideration needs 
to be given to patient experience and the impact of the introduction of AI 
to protect and strengthen the relationship between patients and their 
clinicians. 

There was broad agreement among interview participants from the 
technology and regulatory sectors that existing safety assurance prac-
tices and regulatory frameworks provided an excellent starting point for 
the development and regulation of AI in clinical settings. The consensus 
among participants was that no revolution in standards was required, 
rather refinements were necessary and additional work to address some 
of the gaps left in existing standards. These gaps relate to the manage-
ment of AI evolution and the assurance and regulation of data. In the UK, 
relevant standards include, for example, the clinical risk management 
standards (referred to as DCB 0129 and DCB 0160, respectively) 
managed by NHS Digital. Similar views are expressed in the literature, 
where calls for “digital exceptionalism” have been rejected (Greaves 
et al., 2018; The Lancet, 2018). However, questions remain as to how 
familiar technology developers are with these standards and the con-
cepts underpinning them, especially new developers coming from the AI 
domain who might have little previous experience with the design of 
health information technology (Habli et al., 2018). There is a need to 
build capacity and knowledge about safety assurance practices for AI 
and digital technologies within the health sector (Sujan and Habli, 
2021). In addition, the use of AI might have wider ethical, legal and 
societal implications, such as fairness and impact on different stake-
holder groups Wawira Gichoya et al, 2021; Burton et al., 2020. These go 
beyond the scope of standard failure analysis techniques. Traditional 
regulatory frameworks and the culture around digital safety need to be 
suitably extended to be sensitive to these broader issues. 
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4.1. Limitations 

The study set out to explore how different stakeholders think about 
safety and safety assurance of healthcare AI using a specific example. 
While the findings were rich, they are limited by the selection of par-
ticipants and the scenario considered. All participants came from a UK 
context, and there might be national and cultural differences in per-
ceptions internationally. The scenario was one of care delivery, but the 
potential for application of healthcare AI is much broader and different 
factors might be of greater relevance in other areas of healthcare, such as 
flow optimisation, logistics and drug development. Data were collected 
during 2019 and before the coronavirus pandemic, and attitudes and 
perceptions might have changed since then. 

5. Conclusion 

The paper provides a rich and contextualised description of how 
different stakeholders think about safety and assurance of healthcare AI. 
This description of a diversity of views can support responsible inno-
vation and adoption of such technologies in healthcare by encouraging 
anticipation through consideration of a broader range of concerns. 
Safety and assurance of healthcare AI need to be based on a systems 
approach that expands the current technology-centric focus. Lessons can 
be learned from the experiences with highly automated systems across 
safety-critical industries, but issues such as the impact of AI on the 
relationship between patients and their clinicians requires greater 
consideration. Existing standards and best practices for the design and 
assurance of systems should be followed, but there is a need for greater 
awareness of these among technology developers. In addition, wider 
ethical, legal, and societal implications of the use of AI in healthcare 
need to be addressed. 
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