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Abstract

Model checkers and interactive proof assistants are both used in the assurance of critical systems. Where theorem proving
involves the use of axioms and inference rules to mathematically prove defined properties, model checkers can be used to
provide concrete counterexamples to refute them. Thus, the two techniques can be thought of as complementary, and it is
helpful to use both in tandem to take advantage of their respective strengths. However, this requires us to translate our system
model and our desired properties between the two tools which is a time-consuming and error prone process if done manually.
The key contribution of this work is a set of automated tools to translate between the Isabelle/HOL proof assistant and
the Symbolic Analysis Laboratory (SAL) model checker. We focus on systems specified as extended finite state machines
(EFSMs) and on properties specified in linear temporal logic (LTL). We present our representations in the two tools and
demonstrate the applicability of our system with respect to an academic example and two realistic case studies. This is a
significant contribution to broadening the applicability of these formal approaches, since it allows two powerful verification
tools to be easily used in tandem without the risk of human error.

Keywords Software verification · Extended finite state machines · Model checking · Theorem proving

1 Introduction

For many types of critical system it is necessary to provide
assurance that the system exhibits certain properties. This can
be done by modelling the system in a formal setting (such
as a state machine model), expressing the desired properties
in a formal way (for example, as linear temporal logic [36]
statements), and then providing a formal proof that the model
possesses the properties. Model checkers [14] are a standard
tool for this.
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Many “theorems”, in their initially stated form, do not
actually hold [2]. This may be because the system violates
the desired property, but is often due to a small mistake in
the phrasing of the property, a missing assumption, or a flaw
in the model. In these cases, either the model or the prop-
erty must be changed and another verification attempt made.
This means that the verification process is iterative. Model
checkers are invaluable here because they provide clear infor-
mation to show how the system violates the specified property
in the form of a counterexample—a concrete execution of
the model which does not satisfy the property. These coun-
terexamples can often be found relatively quickly and with
minimal effort on the part of the end user.

However, the automation and speed of model checkers is
often based on optimisations. Most popular model checkers
only support finite datatypes, and finite subranges of infinite
types like the integers. Consequently, while a counterexam-
ple is inarguable proof of a violation, the fact that a model
checker does not find one is not necessarily proof that the
property holds universally. We may, for example, not be
examining a large enough subrange.
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Stronger verification can be provided by interactive theo-
rem provers such as Isabelle/HOL [35] (henceforth referred
to simply as Isabelle). The emphasis here is on deductive
reasoning through the use of logical inference rules. Proofs
judged to be correct by such tools are guaranteed to hold true
subject to our trust in the tool’s implementation, but the pro-
cess of constructing such proofs can be very labour intensive
and time-consuming. Some automation is provided through
tools such as Sledgehammer [6], but the process still requires
a great deal of time and skill on the part of the analyst, mean-
ing that theorem provers are less amenable to the iterative
nature of the verification process.

In contrast to model checkers, it is often unclear when a
given property does not hold. It may be possible to make
significant progress into a proof before the invalidity of the
property becomes apparent, usually through a contradictory
proof state. To minimise wasted proof effort, it is helpful
if properties that do not hold (in their stated form) can be
identified quickly. This is the motivation behind Isabelle’s
counterexample generators Nitpick [2] and QuickCheck [9],
but the scope and reliability of these generators is limited.

This work aims to combine the best of both worlds,
enabling users to leverage the counterexample-finding abil-
ities of a model checker to facilitate iterative model and
property development before moving to an automated the-
orem prover for stronger assurance. We focus specifically
on the verification of linear temporal logic (LTL) proper-
ties of state transitions systems specified as extended finite
state machines (EFSMs). This necessitates a compatible rep-
resentation of models and properties in both systems, and a
translation between the two. This is a time-consuming pro-
cess if conducted manually and leaves us vulnerable to the
introduction of inconsistencies through human error.

We present a framework of EFSM models and LTL prop-
erties that we have made available for both the SAL model
checker and the Isabelle theorem prover. We also present a set
of Java implemented tools to automatically translate between
the two systems and also translate into the GraphViz DOT
format to allow easy visualisation of the models during model
refinement. The specific contributions of this work are:

– Formal representations of EFSMs in Isabelle that can
be translated to the SAL input language while retaining
important semantics.

– A set of operators compatible with Isabelle’s LTL

framework that can be translated to the SAL LTL sys-
tem in such a way that they retain the semantics of the
Isabelle statements.

– A justification as to the equivalence of our Isabelle and

SAL semantics.

Fig. 1 The integrated analysis environment

– Tool support for automatically converting the Isabelle

representation into the SAL input language

– Tool support for automatically converting the Isabelle

and SAL representations into the GraphViz DOT dis-

play format

– Tool support for automatically converting GraphViz

DOT diagrams into the Isabelle EFSM formalism.

Figure 1 shows the workflow that is enabled by the
research described here. The solid arrows represent trans-
lations that are performed automatically by tools developed
in this work. An EFSM model presented in a standardised
GraphViz DOT file format can be converted both into a
human-readable visual representation and an Isabelle formal
representation that preserves the semantics of the system.
The required properties of the system can then be added
as LTL statements and the Isabelle system provides a semi-
automated proof if the properties hold. Both the EFSM and
the LTL statements can also be converted automatically to
the input format for the SAL model checker, which can be
used to automatically generate counterexamples if they exist.
Further properties may be added and checked here, and both
the model and the properties can be iterated before converting
back to Isabelle to attempt a proof.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces some necessary background in the context
of a simple toy example and highlights the limitations of
existing approaches. Section 3 describes how we represent
EFSM models in both Isabelle and SAL and argues seman-
tic equivalence such that model definitions are consistent
between the two systems. Section 4 discusses how we repre-
sent LTL properties in both systems. Section 5 gives details of
the implementation of our automated translation tool and the
system’s limitations. Section 6 shows the applicability of our
system in the context of two small case studies. Section 7
provides a discussion on the correctness of our translation
and of the scalability of our tools. Section 8 discusses related
works. Finally, Sect. 9 concludes the paper and discusses
possible future research directions.
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2 Background

This section gives an overview of the key definitions and
technologies relevant to this work in the context of a toy
example of a simple vending machine.

2.1 Definitions

Extended Finite State Machines Formal models for verifi-
cation are often expressed as some form of state machine.
Here, systems are represented as a set of states with transi-
tions between them representing the actions the system can
perform. Systems which make use of data can be represented
by extended finite state machines (EFSMs) [11]. While there
are numerous definitions in the literature [11,33], our tech-
nique uses the definition from [24,30], which is formalised
in Isabelle [24,27].

Definition 1 An EFSM is a tuple, (S, s0, T ) where S is a
finite non-empty set of states, s0 ∈ S is the initial state,
and T is the transition matrix T : (S × S) → P(L ×

N × G × F × U ) with rows representing origin states and
columns representing destination states. In T , L is a set of
transition labels. N gives the transition arity (the number of
input parameters), which may be zero. G is a set of Boolean
guard functions G : (I × R) → B. F is a set of output

functions F : (I × R) → O . U is a set of update functions

U : (I × R) → R.
In G, F , and U , I is a tuple [i1, i2, . . . , im] of values rep-

resenting the inputs of a transition, which is empty if the arity
is zero. Inputs do not persist across states or transitions. R

is a mapping from variables [r1, r2, . . .], representing each
register of the machine, to their values. Registers are glob-
ally accessible and persist throughout the operation of the
machine. All registers are initially undefined until explicitly
set by an update expression. O is a tuple [o1, o2, . . . , on] of
values, which may be empty, representing the outputs of a
transition.

This differs from the traditional EFSM definition [11] in
several ways. In [11], transitions take one literal input and
produce one literal output. Our definition assigns each tran-
sition an explicit label and allows multiple inputs and outputs
(or none at all). Transitions may also produce outputs as a
function of input and register values, which allows transition
behaviour to be generalised.

Definition 1 technically only affords each transition one
guard, output, and update, but syntactic sugar allows a tran-
sition from state qm to qn to take the form

qm

label:arity[g1,...,gg]/ f1,..., f f [u1,...,uu ]
−−−−−−−−−−−−−−−−−−−−−−→ qn

in which guards g1, . . . , gg are implicitly conjoined, out-
put functions f1, . . . , f f are evaluated to produce a list of

Fig. 2 An EFSM model of the drinks machine

outputs, and update functions u1, . . . , uu are executed simul-
taneously. We use this notation throughout this work.

Consider, for example, a simple vending machine which
dispenses drinks. Users first select a drink. They then insert
coins, with the total balance being stored in a register r2 and
displayed as output on a small screen. Once sufficient pay-
ment has been inserted, the machine vends the selected drink.
If the user attempts to dispense their drink before inserting
sufficient payment, no output is produced. The EFSM repre-
senting this system is shown in Fig. 2.
Executions and Traces EFSMs produce traces in response
to executions. An execution is a sequence of (label, inputs)

pairs called actions which correspond to method invoca-
tions and their arguments. A trace is an ordered sequence
of (label, inputs, outputs) triples called events, in which out-

puts are the outputs produced by the model in response to
invoking method label with the given inputs. Syntactic sugar
allows us to write events as label(inputs)/outputs such that the
event coin(50)/[50] represents the coin action being called
with the input 50 and producing the output 50.

Trace events may also include an extra element which
gives information as to the values of the system’s internal
variables. Such traces are usually called white box traces,
as they require us to look inside the system. Traces which
only contain information visible from outside the system are
called black box traces.
Trace Properties and Linear Temporal Logic Model checkers
allow us to verify systems by specifying properties over their
traces expressed in temporal logics such as LTL [36]. These
logics allow us to express sequential behaviours of our system
such as “event a is always followed by event b”. In addition to
the conventional logic operators of conjunction, disjunction,
and negation, LTL provides the following temporal operators.

G(P) for globally—the given property, P , is always true
F(P) for eventually—the given property, P , becomes true

at some point
X(P) for next—the given property P is true in the next state

P U Q for until—the given property, P , holds until the
release property Q becomes true. The until operator
has two flavours, strong and weak, both of which may
be expressed in terms of the other. Strong until (some-
times denoted by S) is the default and is only true if
the release condition eventually occurs. In contrast,
weak until (denoted W) does not require the release
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condition, Q, to ever become true if the property P

holds globally. Isabelle, SAL, and our toolchain all
support both flavours.

These temporal operators only look forward into the future—
they are not concerned with past states. Additionally, they
only really make sense when applied to infinite traces. While
there are adaptations of LTL which work with finite traces
[38], most model checkers (including SAL) work with the
more conventional operators.

Example 1 Say that we want to verify, for the drinks machine
in Fig. 2, that a customer will only receive a drink if they have
paid for it. We can phrase this property in LTL as G(label =

vend ∧ X(output = [d]) �⇒ r2 ≥ 100). This states that,
if the user performs a vend action and the subsequent output
is an arbitrary drink d, register r2 must hold a value greater
than or equal to 100 (the price of a drink).

2.2 Tools

Symbolic Analysis Laboratory The Symbolic Analysis Lab-
oratory (SAL) [17] combines tools for abstraction, model
checking, theorem proving, and program analysis. Alterna-
tive tools such as SPIN [31] and NuSMV [13] provide similar
functionality, but our choice of SAL allows us to reuse code
from previous work [18]. Additionally, SAL’s input language
is very conducive to EFSMs. The only real difference is that
there is no inherent notion of control flow state, as there is
in Definition 1. Instead, this can be modelled by a local vari-
able in the exact same way as the registers. EFSMs are then
expressed as a set of “if conditions then updates” rules.
This is explained in detail in Sect. 3.2.

SAL features three LTL model checkers for different
purposes. The symbolic model checker uses a binary deci-
sion diagram for finite state systems. The finite and infinite
bounded model checkers, for finite and infinite state systems,
respectively, are based on SAT and SMT solving and can
perform verification by k-induction.

As in Example 1, LTL properties in SAL are expressed
over models. When we say “property P holds for model m”,
what this really means is “property P holds for every fea-
sible trace of model m”, but traces are handled under the
hood. Counterexamples are then presented as valid traces of
the model which violate the specified property. For example,
if we were to encode Fig. 2 in SAL, but made our drinks

half price such that the transition q1
vend:0[r2≥100]/o0:=r1
−−−−−−−−−−−−−→ q2

instead had the guard r2 ≥ 50, then attempting to verify the
property from Example 1 leads SAL to produce the coun-
terexample shown in Fig. 3. Fig. 3 A counterexample produced by SAL
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Although Fig. 3 is a little verbose, it depicts the trace
〈select(‘d’ )〉, coin(90)/[90], vend()/[‘d’ ], coin()/[].1 Since
we have only inserted one coin with value 90 before receiving
our drink, this trace clearly violates the property that r2 must
be greater than or equal to 100 before a drink is dispensed.
Armed with this trace, we now know the transitions involved
in violating the property, so can inspect these to investigate
where the problem is. Since this example is very small, it is
easy to locate and fix the problem by changing the guards on
the vend transition back to 100.
Isabelle/HOL Isabelle/HOL [35] is a proof assistant based
on higher-order logic. Its features include complex pattern
matching and the ability to define datatypes and functions
as in a functional programming language. Proofs over these
functions are then expressed as lemmas to be proven via the
application of a series of inference rules. This process is semi-
automated through use of sledgehammer [4].

Alternative theorem provers such as Coq [12], Agda [8],
and Lean [16] offer similar functionality. We here use Isabelle
since for compatibility with previous work [30]. Our work
builds on this, and the formalisation has evolved signifi-
cantly during the work presented here, and in concurrent
work [24,25]. Most notably, the ability to define and prove
LTL properties over EFSMs is a key development of this
work over [30]. Our final definition is openly available in the
Archive of Formal Proofs [27].

Proofs of LTL properties generally involve beginning in
the initial state and recursively proving that the property holds
in each reachable state. To prove that the property in Exam-
ple 1 holds of the model in Fig. 2, we begin in the initial state
q0, move to q1 by selecting a drink, show that vend produces
no output unless r2 holds value 100 or above, at which point
we are done.
Graphviz DOT Graphviz [21] is a well established set of
open source graph visualisation tools. It allows graphs to be
specified in a simple text format in terms of nodes and edges
which can then automatically rendered to images like Fig. 2,
in which nodes represent states and edges represent transi-
tions. This provides a much more intuitive way to work with
EFSMs than the pure text representations of either Isabelle
or SAL, especially when done using a WYSIWYG editor.
From a practical point of view, it is therefore desirable to
be able to translate EFSMs specified using DOT to Isabelle
and SAL as well to facilitate more intuitive editing of EFSM
models.

1 Note that this trace is four elements long. The final coin()/[] event
allows us to observe the final output [‘d’ ]. Since output is set by tran-
sitions as they execute, its value can only be observed in the next state.

2.3 Limitations of current technologies

The goal here is to be able to take advantage of the strong
assurance we get from proving a property in Isabelle, but also
to use SAL to quickly and easily generate counterexamples
to untrue properties. The most notable existing approaches
here are Isabelle’s built-in counterexample generators, Nit-
pick [2] and QuickCheck [9]. While these can both be very
effective, they are simply not intended to work in what is
essentially a model checking context. When run on the prop-
erty in Example 1, Nitpick reports that “The conjecture either
trivially holds for the given scopes or lies outside Nitpick’s
supported fragment ”, and QuickCheck “No type arity value
: : full_exhaustive”.

Looking in the other direction, towards model checkers,
many of these tools are not entirely satisfactory either. While
a proof in Isabelle is, subject to our trust in the implementa-
tion, irrefutable, we cannot say the same of model checkers.
To mitigate the state space explosion problem, model check-
ers often take certain shortcuts, most notably working with
finite subsets of infinite datatypes like integers and strings.
This is a problem because properties may appear to hold,
even if they do not, if the model is checked using an unsuit-
able subset of data values. For example, SAL can be made to
think that the property in Example 1 holds of the half price
drinks machine if we limit integers to be between 0 and 49
since r2 can never hold a value greater than or equal to 50,
meaning that no drink is ever dispensed. Section 3.3 dis-
cusses the measures we take to assist the user in determining
the values to use, but, ultimately, this is a non-trivial prob-
lem which falls outside the intended scope of this work. By
contrast, Isabelle is not subject to this limitation as it uses the
full infinite datatypes from mathematical theory.

Another technique worth mentioning is SMT solving. By
encoding (finite) paths through the model as sets of con-
straints, solvers such as Z3 [15] can be used to determine
whether a trace exists which violates a given property, assum-
ing said property can also be expressed as a set of constraints.
This is analogous to the process of symbolic model check-
ing, and SAL does make use of a solver (Yices [19]) under
the hood. Unfortunately, the translation of models, proper-
ties, and traces to suitable constraints is non-trivial, meaning
that counterexamples would be rather unintuitive. Further,
without the optimisations performed by SAL such as placing
bounds on infinite datatypes, it is also likely to be extremely
slow to run, meaning that it is not a viable option.

3 Representingmodels

This paper aims to support the use of Isabelle to prove
LTL properties through the use of a model checker, SAL,
to generate counterexamples to untrue properties and facili-
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tate subsequent development of the model or property. The
key challenge here is formulating a bidirectional translation
between the two representations which is semantically con-
sistent. This means that counterexamples produced by SAL
must be valid and that SAL must find counterexamples to
untrue properties if it is run with a suitable subset of input
values (as discussed in Sect. 2).

Our approach works by parsing an input file (either an
Isabelle theory or a SAL context) and converting it, including
any LTL properties, to the other representation. This section
lays out the details of our representation of EFSM models as
per Definition 1 in both Isabelle and SAL. The details of how
we represent LTL properties are discussed in the following
section and a justification for equivalence between the two
representations is presented in Sect. 7.

3.1 EFSMs

Being a general purpose prover, Isabelle has no inherent
notion of or support for EFSMs out of the box, so we must
provide our own formalisation of them by defining datatypes
and functions. As described in Definition 1, an EFSM is char-
acterised by three things: a set of states S, an initial state
s0, and a set, T , of transitions between the states in S. Our
Isabelle formalisation indexes control flow states using nat-
ural numbers, i.e. S = N. We represent transitions between
them as a tuple ((s1, s2), t), where s1 is the origin state, s2 is
the destination state, and t is a transition as will be discussed
in Sect. 3.2. Introducing the convention that the initial state,
s0, is always indexed by zero allows us to represent an EFSM
entirely by its set of transitions.

Since the natural numbers is an infinite datatype, this tech-
nically violates Definition 1, which states that EFSMs have a
finite number of states. We could instead define a dedicated
finite datatype for each EFSM containing one element for
each state, and indeed this is what we do in SAL. However,
our Isabelle formalisation forms part of a wider framework
[24,25,28] for the inference of EFSMs from their execution
traces. This requires the arbitrary addition and subtraction of
states from EFSMs, for which an infinite indexing datatype
is useful.

In practice, the use of infinite natural numbers to index
states is easily resolved in Isabelle by enforcing that any
given EFSM only has finitely many transitions. This means
that there can only ever be a finite number of states with an
incoming or outgoing transition. The rest are “orphaned” and
can be ignored such that, rather than having S = N, we have
S = {s|∃s′.∃ t .((s, s′), t) ∈ T ∨ ((s′, s), t) ∈ T }.

In contrast to Isabelle, SAL is specifically designed to
work with EFSM-like models, although the representation is
more similar to abstract state machines [7]. These are simply
a collection of if condition then updates rules, which cor-
respond to EFSM transitions. The main challenge to tackle

Fig. 4 Isabelle type definitions for transitions

here is that a state in SAL refers to a program state, i.e. a
mapping from variables to their values at a particular point
in time. There is no inherent notion of a separate control flow
state here, but this is easily resolved by representing states as
an additional local variable cfstate to be checked along
with the rest of the transition guards and updated to the new
value along with the rest of the updates.

A theme which runs throughout the representation of
EFSMs in SAL is a necessity for finite datatypes. SAL can-
not check any model which makes use of a datatype that
cannot be exhaustively enumerated. Consequently, we can-
not use natural numbers to represent states in SAL. Instead,
we use the finite enumeration of all states with an incoming
or outgoing transition.

Example 2 The simple vending machine in Fig. 2 has three
states q0, q1, and q2. In SAL, this becomes the following
datatype.

STATE : TYPE = {State__0 , State__1 ,
State__2 , NULL_STATE };

Here, we also have an additional NULL_STATE. This will
be explained in Sect. 4.2.1.

3.2 Transitions

As described in Sect. 2, EFSM transitions have five compo-
nents: label, arity, guards, outputs, and updates. To implement
this in Isabelle, we make use of the built-in record type
such that each component can be easily accessed by its name.
The type definitions for these components are shown in Fig. 4.

Transition labels are strings, and the arities natural num-
bers. Guards have a defined expression type gexp (detailed
in Sect. 3.5) and the output and update functions are defined
using another datatype aexp (detailed in Sect. 3.4). Outputs
are simply a list of expressions to be evaluated. Updates are
a list of pairs, the first element being the index of the register
to be updated, and the second element being an arithmetic
expression to be evaluated.

Example 3 The definition below shows how the transition
coin : 1/o0 := r2+i1[r2 := r2+i0] from Fig. 2 is represented
in Isabelle.

definition coin :: transition where
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coin ≡ (|

Label = STR ′′coin ′′,

Arity = 1,

Guards = [],

Outputs = [Plus (V (R 2)) (V (I 0))],

Updates = [

(1, V (R 1)),

(2, Plus (V (R 2)) (V (I 0)))

]

|)

As mentioned above, SAL models are a collection of if
condition then updates rules, each of which represents a
“transition”. This maps well to Definition 1, in which transi-
tions also have guards and updates, and most transition fields
from Fig. 4 have an obvious mapping.

Example 4 Figure 5 shows how the same coin transition as
in Example 3 is represented in SAL. A variable followed
by a prime indicates its posterior state, and the unprimed
version is its anterior value. Note that this transition is tied to
a particular control flow state (cfstate) where the Isabelle
version is not. This is because in SAL we must encode the
control flow as a local variable which the transitions update.
This is discussed further in Sect. 5.

The output_sequence ! insert operation used
in the assignment of o’ is analogous to the Cons operation
on lists except that, as will be discussed in Sect. 3.3, lists
must have a fixed maximum length. In the case of our simple
drinks machine, a maximum length of one is sufficient to
represent every output produced by the model. The insert
construction is not as aesthetically pleasing as the standard
comma separated lists used by Isabelle, but SAL does not
appear to provide a way of defining such custom syntaxes.

To represent transition labels in SAL, we define a spe-
cial INPUT variable. Our Isabelle formalisation represents
transition labels as string literals. This is convenient for the
wider inference framework [24,28], but falls foul of SAL’s
requirement for enumerable datatypes. Indeed, SAL has no
native support for strings out of the box. To resolve this, we
make use of the fact that EFSMs have a finite number of

Fig. 5 A SAL representation of the coin transition

transitions, and thus a finite number of transition labels. This
enables us to use a similar trick as for control flow states and
simply form an enumeration of the transition labels which
occur in the model. For example, the transition labels of our
simple drinks machine in Fig. 2 are select, coin, and vend.

In Isabelle, transitions have an Arity field to record the
number of inputs the transition expects to receive. This is then
checked when the EFSM processes executions. In SAL, we
represent this as a guard on each transition with no difference
in behaviour between the two representations.

The other slight difference between Isabelle and SAL is
that the output o behaves just like any another variable. A
consequence of this is that the outputs of the current transition
are not observable until the next state because they are set
along with the register updates. This has no significant effect
on the functionality of the models, but it is important to bear
in mind when specifying LTL properties, as will be discussed
in Sect. 4.

3.3 Input and data values

Definition 1 deliberately does not restrict the types of inputs,
outputs, and register values; however, both Isabelle and SAL
require a concrete datatype to be specified. For the purposes
of this paper, we limit ourselves to integer and string inputs
as these are relatively straightforward to work with in both
Isabelle and SAL. To tie integers and strings into a single
datatype, we define a “sum type” value. This tags its mem-
bers as either a number (Num) or a string (Str) and is defined
as follows.

datatype value = Num int | Str String.literal

We use a similar representation in both Isabelle and SAL,
although, as will be discussed below, our SAL representation
must contain an extra “bottom element”.

Since register values are strictly undefined until they are
first assigned, the data state is formalised as a function from
the register index (a natural number) to a value option.
The Isabelle option type is used to make partial functions
total. It takes a type argument and is defined as being either
None (the bottom element used to represent an undefined
value) or Some x, where x is an element from the specified
type, in this case a value. Since the number of registers
used by any EFSM is known to be finite [24,27], we make
use of the theory of finite functions (FinFun [32]) from the
HOL library. Here, a FinFun is a function which is constant
except for finitely many points. This corresponds to a map

(or dictionary) in conventional programming languages.
In SAL, registers can be represented a similar way. While

SAL does not natively support the option datatype, it
is straightforward to define one. Each register can then be
defined as a local variable of type value option. Rep-
resenting inputs in SAL is more challenging due to the fact
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that all datatypes need to be enumerable and both integers and
strings have an infinite number of inputs. SAL has a native
integer type, but models involving this cannot be checked. To
tackle this, we define a type BOUNDED_INT in SAL which
takes two parameters, provided by the user at runtime, which
specify the minimum and maximum integer values to con-
sider. This means that when SAL declares a property to hold,
we can only be certain that it holds for integers within the
specified range.

As mentioned in Sect. 2, this is not just a limitation of
SAL, but applies to most established model checkers (e.g.
SPIN [31], NuSMV [13]) in one form or another, so is basi-
cally unavoidable. The way to mitigate this limitation is to
use a suitable subset of integers when checking properties.
To assist the user in determining this, our translation tool
outputs a comment at the top of the output SAL file inform-
ing the user of the largest literal integer that appears in the
EFSM. Depending on the structure of the EFSM, this may
not be sufficient, especially in situations where the EFSM is
entirely symbolic, i.e. where guards and updates are phrased
entirely in terms of inputs and registers rather than literal
constants. Ultimately, the set of integers needed to verify a
given property is highly dependent on both the property and
the model. Determining this requires some expertise on the
part of the modeller and falls outside the scope of this paper.

While working with a finite subset of integers is very much
a necessity, it does introduce a semantic difference from
the Isabelle formalisation: that of arithmetic overflow. when
the value of an expression exceeds the maximum integer, it
“loops around” to the beginning of the range. For example, if
BOUNDED_INT spans the range −10 . . . 10 and we have an
expression that should evaluate to 12, it actually evaluates to
−9. To stop SAL producing spurious counterexamples that
exploit this, we must explicitly guard against it. This is dis-
cussed further in Sect. 3.5.

Representing strings is even more challenging since SAL
has no native support for them whatsoever. To tackle this, we
define strings as an enumerated type, taking the values from
the model. We also include a dummy value in our enumera-
tion both to guarantee that our string datatype is never empty,
and to mitigate the risk of missing counterexamples due to
an insufficiency of data values. As with integers, choosing
an appropriate subset of values must ultimately be left up to
the user, and the string datatype would ideally be a runtime
parameter to SAL, like the integer range, but SAL does not
support this. The user is, however, free to modify the enu-
merated type representing strings as they wish. Because of
our efforts to maintain human readability between represen-
tations, this is fairly straightforward.

While our Isabelle formalisation defines action arguments
as lists of values, this again conflicts with SAL’s require-
ment for finite datatypes. Because lists can be of arbitrary
length, there are infinitely many possible lists, so the type

is not enumerable. To get around this, we make use of the
implementation of finite sequences presented in [18]. These
are of a fixed size specified in the type declaration and are
implemented as finite functions of fixed domain from natural
numbers to elements, like an array.

To represent inputs as fixed-length SAL sequences, we
must apply a lifting such that all inputs are the same length.
To do this, a bottom element ⊥ is required for any data type
we would like to form a sequence of. This is used to pad out
sequences with a length less than the maximum specified in
the type declaration, such that the function from indices to
elements is total (i.e. every element has a value). The “length”
of the sequence is then defined as the minimum index for
which the corresponding element is ⊥. When representing
EFSMs, the length of the input sequences used in the traces
is set to the maximum arity of any transition in the EFSM.
Similarly, the length for the output sequences is the maximum
number of outputs produced by any transition in the EFSM.

Example 5 Consider the execution 〈f(1, 2), g(1), h(4, 5, 6)〉.
To represent this in SAL, we need to use input sequences with
a maximum length of three or more, since action h has three
inputs. We then have the execution 〈 f (1, 2,⊥), g(1,⊥,⊥),
h(4, 5, 6)〉.

The necessity to represent lists as fixed-length sequences
in SAL leads to a slight difference in semantics between the
Isabelle and SAL representations. While EFSMs defined in
Isabelle can process inputs of arbitrary length, this is not
so in SAL since input sequences of length longer than the
specified maximum are not members of the datatype. Since
the main purpose of using a model checker is to generate
counterexamples, that is, traces of the model which violate a
given property, we do not need to consider actions which take
more inputs than the maximum arity of the model since any
trace involving such actions is not a valid trace of the model.
Invalid traces cannot serve as counterexamples, so the fact
that we cannot generate them does not affect our ability to
refute untrue properties.

Example 6 Consider again the simple drinks machine EFSM
from Fig. 2. Here, the maximum arity of any transition in
the model is one. Thus, any trace containing an event which
takes more than one input is not a valid trace of the model,
even if the action label is select, coin, or vend.

Because of the necessity for a bottom value, our definition
of the value type in SAL must have three cases where in
Isabelle it has only two.
B_value : TYPE = DATATYPE

ValueBB ,
Str(stringOf: STRING),
Num(intOf: BOUNDED_INT)

END;
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In B_value, the atomic element ValueBB represents
the bottom element used to pad out sequences. Clearly we
do not want this element to occur in the value type, but we
do want the other two. Consequently, we define the value
type as {g : B_value | g /= valueBB} meaning
that value is a subtype of B_valuewhich does not include
ValueBB.

3.4 Arithmetic and outputs

Definition 1 allows transitions to perform arithmetic as part
of transitions guards, outputs, or updates. While there is no
technical restriction on the supported operations, the wider
inference context of our Isabelle formalisation [24,25] means
that it is necessary to recognise and transform arithmetic
expressions. Consequently, we use a deep embedding to
represent arithmetic expressions. This means that a dedi-
cated expression data type is declared, and the semantics
of various cases is defined as a function on top of this. The
converse of this, a shallow embedding, uses existing syntax
to define purely semantic operations which cannot be explic-
itly checked for. The arithmetic expression (aexp) datatype
is defined as follows.

datatype ′a aexp = L value | V ′a | Plus ′a aexp ′a aexp | Minus ′a aexp
′a aexp | Times ′a aexp ′a aexp

There are five cases here. The two base cases are literal
constants (tagged L) and variable values (tagged V). Here,
the variable type is an argument a’ to aexp. This will be
explained in Sect. 4. There are then three recursive cases to
support the basic numeric operations of addition, subtrac-
tion, and multiplication. Division is not supported as this is
intuitively a floating point operation, and we only support
integer numeric values.

Further, the recursive cases Plus, Minus, and Times
are only supported over numeric values. Most notably, we
do not support the concatenation of strings with the Plus
operator. This is mostly because the Isabelle formalisation
was built to support the inference technique in [24,25], which
is numerically focussed, but also because the expression of
such an operation in SAL is impossible when representing
strings as a finite enumeration.

Because our arithmetic expressions in Isabelle are defined
as a separate datatype, we must manually specify how to eval-
uate them. By default, the expression Plus (V (R 1))
(V (I 0)) has no inherent meaning. We therefore define
an arithmetic evaluation function (aval) as follows. This
takes an arithmetic expression and a mapping from variables
to values and returns a value.

fun aval :: ′a aexp ⇒ ′a datastate ⇒ value option where

aval (L x) s = Some x |

aval (V x) s = s x |

aval (Plus a1 a2) s = value-plus (aval a1 s)(aval a2 s) |

aval (Minus a1 a2) s = value-minus (aval a1 s) (aval a2 s) |

aval (Times a1 a2) s = value-times (aval a1 s) (aval a2 s)

In the above definition aval actually returns a value
option rather than just a value. This is because Defini-
tion 1 is not strongly typed, so we must account for badly
typed expressions. Consider, for example, the output expres-
sion r2 + i0 from the coin transition in Fig. 2. As discussed
above, addition is only supported for numerical values, but
there is nothing to stop us from calling the coin transition
with input “hello”, in which case the result of evaluating
this expression is undefined. Since Isabelle functions must
be total, we define an arithmetic for the value datatype
in terms of options to allow the bottom element, None,
to represent undefined values. In general, a binary function
f : Z → Z → Z is lifted to the optional arithmetic to
become f ′ : Z option → Z option → Z option.
The full details of this are described in [24].

We could, in theory, define arithmetic in SAL in exactly the
same way as in Isabelle, with a correspondingaexp datatype
and aval function over it. Unfortunately, theaexp datatype
is defined recursively so, like with the lists used to represent
input sequences, SAL cannot handle models specified this
way. Instead, we must use a shallow embedding to define
arithmetic. What this means is that arithmetic expressions
are represented using SAL’s existing logical and arithmetic
operations rather than with a dedicated datatype and evalua-
tion function.

Because the output expressions of each transition are
fixed, we achieve this by essentially unfolding the defini-
tion of aval during translation instead of during model
execution. This means that SAL does not have to deal
with the possibility of infinite arithmetic expressions, even
though, for obvious reasons, only a finite number could
ever actually be used in a real EFSM. To handle arithmetic
addition, subtraction, and multiplication in terms of value
options, we define the auxiliary functions value_plus,
value_minus, and value_times, each of which lifts
its respective function as above. These are then used in
arithmetic expressions in place of their corresponding aexp
constructors in Isabelle.

3.5 Guards

Transition guards place restrictions on the input and current
data state such that the transition can only be taken under
certain circumstances. Definition 1 places no restriction on
the complexity of these expressions, but the wider inference
context of our Isabelle formalisation again requires a deep
embedding. Thus, guards are defined as a datatype gexp in
terms of arithmetic expressions, and a corresponding gval
function is defined similarly to (and on top of) aval.
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datatype ′a gexp = Bc bool | Eq ′a aexp ′a aexp | Gt ′a aexp ′a aexp |

In ′a value list | Nor ′a gexp ′a gexp

Here, the only terminal cases are Boolean constants (Bc)
true and false. We can compare the results of two arithmetic
expressions either for equality (Eq), inequality in the form
of the “greater than” operator (Gt), or set membership (In).
Finally, we have the logical connective Nor, which is equiva-
lent to “not or”. This is used instead of the more conventional
logical operations (conjunction, disjunction, and negation)
because it allows all three to be represented with a single
operator. This makes the datatype smaller and thus shrinks
proofs over it. For ease of expression, we also define func-
tions to express logical and, or, and not in terms of nor,
as well as functions for the <, ≤, ≥, and �= operators.

As with arithmetic expressions, we cannot rely on conven-
tional Boolean logic here, as the result of evaluating a register
or arithmetic expression may be undefined. For example,
consider the guard r1 < i0. If r1 is undefined here, or if
either value is non-numeric, the expression cannot evaluate
to true. It must therefore evaluate to false, but this then means
that ¬(r1 < i0) would evaluate to true, which is clearly unde-
sirable. Instead, we use a three-valued Bochvar logic [5], in
which true and false behave like their binary counterparts and
we can only take a transition if its guards evaluate to true.
A third value invalid is used to signify that something has
gone wrong. Any operation involving invalid also evaluates
to invalid such that we cannot take the transition.

As with arithmetic expressions, it is infeasible to use a
deep embedding representation for guards in SAL. Again,
we resolve this by essentially expanding the definition of
gval during translation and representing guards with a shal-
low embedding using functions like maybe_nor in guard
expressions instead of datatype constructs.

4 Representing properties

Our work is motivated by the fact that Isabelle’s built-in
counterexample generators do not work for non-trivial LTL
properties of realistic models. Indeed, the only way to dis-
cover the falsehood of such a property in Isabelle is to either
prove its negation or reach a contradictory proof state, both of
which may take a great deal of time and effort. By contrast,
model checkers like SAL are designed to find counterex-
amples quickly and automatically for arbitrarily complex
models and properties. Having laid out our respective for-
malisations of EFSMs in Isabelle and SAL in the previous
section we now do the same for LTL properties.

4.1 LTL in SAL

Model checkers are designed to investigate temporal proper-
ties of models. It therefore makes sense that SAL has good
support for LTL out of the box, supporting all of the temporal
operations defined in Sect. 2 as well as the standard logical
operators of conjunction, disjunction, negation, and implica-
tion. We can define properties over any variable defined in
our model, in our case control flow states, registers, inputs,
and outputs. SAL also supports global and existential quan-
tification of variables in expressions.

Example 7 Consider again the property G(label = vend ∧

X(output = [d] �⇒ r2 ≥ 100)) from Example 1. This is
defined in SAL as follows.

output_vend: THEOREM drinks |-

FORALL (d: VALUE ):

G((

label = vend AND

X(

o=output_sequence ! insert(

Some(d), output_sequence ! empty)

)

) => gval(value_ge(r__2 , Some(Num (100)))));

Here, we give our property a name, output_vend,
declare that it concerns the drinks machine, and state our
property in LTL. SAL does not support free variables, but
the arbitrary drink d can be universally quantified without
changing the semantics of the formula.

We can then call either the symbolic or bounded model
checker to prove or refute our claim. In the above expression,
o=output_sequence ! insert(Some(d),

output_sequence ! empty) corresponds to the out-
put [d]. Recall that we must use an optional semantics for
evaluating outputs. Thus, if we get a drink d, this will be
represented as Some(d).

4.2 LTL in Isabelle

Since Isabelle is a general purpose theorem prover, it is not
explicitly designed or optimised to work with LTL. Hav-
ing said that, several formalisations of LTL exist [37,40]
within the HOL library and AFP. For this work, we use
the Linear_Temporal_Logic_on_Streams formal-
isation [37] as this supports variables of arbitrary datatypes
and predicates over them (e.g. x > 0) in expressions where
[40] only supports Boolean valued variables.

Rather than defining properties directly over models, prop-
erties, temporal operators, and logical connectives are all
defined as functions which take a stream (i.e. an infinite trace)
and return Boolean true or false. This gives Isabelle a much
greater expressivity than SAL, most notably the ability to
express hyperproperties [23], which SAL cannot do. Thus,
the properties which are expressible in SAL form a subset of
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those which are expressible in Isabelle. It is upon this subset
that this work focusses.

In SAL, we express properties in terms of models. To
verify these properties, SAL explores every possible trace

of the model in search of one which violates the property.
If no such trace is found, the property is reported to hold of
the model. When we express an LTL property in Isabelle,
it is phrased as “property ϕ holds on stream π”, where π

represents a particular trace of the model. This is a problem
for us as we would like to express properties over particular
models like in SAL.

To achieve this, we must find a way to express our EFSM
models as streams. Thinking of each action as a step forward
in time, there are five components which characterise a given
point in the execution of an EFSM. At each point, the model
has a current control state and data state. Each action has a
label and possibly some input parameters, and its execution
may produce some observable output and update the data
state. It is therefore sufficient to provide a white box trace in
the form of a stream of 5-tuples containing these values at
each step of the execution.

Simply quantifying a property over all arbitrary traces is
likely to lead to a lot of spurious counterexamples as this
does not take individual models into account. Instead, we
must codify the fact that EFSMs generate traces in response
to executions. To do this, we define the coinductive function
watch which takes an EFSM and an infinite execution (a
stream of (label, inputs) pairs) and executes it, starting in
the initial state, resulting in a stream of 5-tuples as defined
above. Properties over a particular model m then take the
form ϕ(watch m t), where t represents an arbitrary (infi-
nite) execution. Full details of this can be found in [24].

4.2.1 Making EFSMs complete

As discussed in Sect. 2, LTL works in terms of infinite traces.
This means that, to define LTL properties over EFSMs, they
must be able to process every action from every state, regard-
less of validity. Models which do this are referred to as
complete, but this is not a requirement of Definition 1. As
with our simple drinks machine in Fig. 2, there may be cer-
tain states from which certain actions do not represent valid
behaviour so do not have corresponding transitions. To be
able to meaningfully express LTL properties over EFSM
models, we need a way of making them complete without
trivially making all behaviour valid.

To resolve this, we apply the standard procedure of adding
an additional “sink state” to models which is entered at the
point when the model has no corresponding transition for a
given input. This represents an error state from which it is
impossible to escape. Once entered, the model will trivially
process any action without updating any registers or produc-
ing any output. In Isabelle, this is handled implicitly by the

watch function. In SAL, we make use of the ELSE keyword
to define a transition which may be taken only when no others
can be. This takes the model into the explicit NULL_STATE
mentioned in Example 2.

4.3 Translating LTL

Since the semantics of LTL are well defined and consis-
tent between Isabelle and SAL, the process of translation is
largely a matter of transforming between the two syntaxes.
The two main challenges here are the potential for arith-
metic overflow, as discussed in the previous section, and fact
that Isabelle defines LTL properties over streams (i.e. traces)
where SAL defines them over models.

We tackle the problem of arithmetic overflow in the same
way as for transition guards and updates: by looking for the
arithmetic operations of addition, subtraction, and multipli-
cation and adding overflow checks to the property to account
for this. Any arithmetic expression, when translated into
SAL, is followed by the same expression surrounded by some
boilerplate text to perform the overflow check.

Tackling the problem of Isabelle’s representation is more
challenging since Isabelle has a much greater expressivity
than SAL. Since LTL properties are defined as functions
over streams, we can define any such function, and even
form anonymous lambda functions within expressions. This
means that we cannot translate arbitrary LTL properties from
Isabelle to SAL. We therefore restrict ourselves to a partic-
ular subset consisting of the temporal operators and logical
connectives defined in [37] and the following named pred-
icate functions. Translating this restricted set of predicates
between Isabelle and SAL is then a reasonably straightfor-
ward mapping between the two syntaxes.

state_eq takes a natural number representing a control flow
state index and returns true if this is the control
flow state at the head of the stream.

label_eq takes a string and returns true if this is equal to
the label at the head of the stream.

input_eq takes a value list and returns true if it equals the
input at the head of the stream.

output_eq takes a value option list and returns true if
this is equal to the output at the head of the stream.

check_exp takes a guard expression and returns true if it holds
at the head of the stream.

Of these, it is check_exp which is the most interest-
ing. Here, we can supply an arbitrary guard expression as
per Sect. 3.5 to be evaluated. Here, though, we may wish to
express properties over the outputs of the EFSM as well as
over its inputs and registers. We can do this easily by defining
a new vname datatype, ltl_vname, as follows.
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datatype ltl-vname = Ip nat | Op nat | Rg nat

Here, we have inputs represented as Ip, outputs as Op,
and registers as Rg. As mentioned in Sect. 3.3, the gexp
datatype takes a type parameter which is used to represent
variables, so we simply use ltl_vname gexps in place
of the vname gexps used for transition guards, and we
can then define expressions in terms of inputs, outputs, and
registers.

The above functions allow us to define the property from
Example 1 as the following.

lemma LTL-output-vend:

alw (((label-eq ′′vend ′′) aand (nxt (output-eq [Some d]))) impl

(check-exp (Ge (V (Rg 2)) (L (Num 100))))) (watch drinks t)

Here, the logical operations ∧ and −→ are respectively
represented by the aand and impl operators, which are
themselves syntactical constructs that allow us to integrate
logical operators into stream expressions. For example,
(p aand q) s is equivalent to (λs. ps ∧ qs).

5 Implementation

This section describes the implementation and use of our
translation tools, all of which are currently implemented in
Java and openly available at [29]. While our implementation
takes inspiration from z2sal [18], a significant amount of
implementation work was still required since Isabelle and
Z are very different in their nature, and our toolchain also
supports the translation of SAL models and properties back
to Isabelle as well as translation both ways between Isabelle
and DOT. In total, our implementation required over 6000
lines of new Java code to be written.

5.1 Translating Isabelle to SAL

The translation from Isabelle to SAL is done by first parsing
the whole Isabelle EFSM source file and then generating the
new SAL translation. It cannot be done line by line on the fly
because SAL needs various types to be declared before the
model can be defined. In particular, the translator must know
all the state and transition labels, the maximum input and
output sequence length, and the value of any strings before
the model can be written to file. Thus, the whole Isabelle
file must be parsed before translation can begin. The internal
representation created while parsing the Isabelle to find the
strings, states and labels consists of the transitions, a transi-
tion matrix and the LTL expressions.

For example, our simple vending machine from Fig. 2 has
three transition labels, select, coin, and vend. These are just
strings in Isabelle, but become a free type in SAL which must
be declared before the EFSM can be defined. We thus end up
with the following.

LABEL : TYPE = DATATYPE

coin , init , vend
END;

A similar datatype is created for the states of the model.
In this case, there are no literal strings, so the STRING type
contains only the dummy string discussed in Sect. 3.3. The
largest literal integer in the model is 100 and occurs in the
guards of the two vend transitions. A comment is output at
the top of the file to indicate this to the user.

The transitions are represented by a generic structure
because they occur in both languages. The internal represen-
tation starts out as an ordered list of these transitions derived
from Isabelle. A list allows us to improve human readability
by maintaining the order of transitions across representations
as far as possible.

The transition matrix is a transient structure; it is parsed
from the Isabelle representation but has no explicit equiv-
alent in SAL. Instead the individual transitions must test
the value of the cfstate variable as an extra guard con-
dition, and update it to its new value after firing. For
example, the coin transition from Fig. 2 is given the
precondition cfstate’ = State__1 and an extra post-
condition cfstate’ = State__1 which leaves cfstate

unchanged. By contrast, the q1
vend
−−→ q2 transition gets the

same precondition, but is given the postcondition
cfstate’ = State__2 to move the model on to the next
state.

Because transitions in SAL explicitly guard and update the
control flow state, where the same transition is used more than
once in an EFSM between different pairs of states, the tran-
sition must be cloned in SAL where, in Isabelle, the named
definition of the transition could simply be reused. As a result
there is not always a one to one mapping between individ-
ual transitions in Isabelle and SAL. Having said that we have
gone to some trouble to ensure that the correspondences are as
human readable as possible; the original names are retained
with just a suffix (__A, __B etc.) to distinguish them, and
they appear in the same order as far as possible.

Example 8 Consider the following EFSM, e.

q0 q1 q2
a : 1/o0 := i0 a : 1/o0 := i0

To represent this in Isabelle, we could simply define a tran-
sition a and have e = {((0, 1), a), ((1, 2), a)}. In SAL,
however, we would need two separate versions of transition
a. The first would be called a__A and have a precondition
to check that cfstate = State__0 and a postcondition to
update cfstate’ = State__1 The other would be called
a__B and have a precondition cfstate = State__1 and
postcondition cfstate’ = State__2.

When translating the LTL properties, we are only inter-
ested in translating top level LTL properties of our model.
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These can be identified in the Isabelle source because they
take the form LTLproperty (watch EFSMname t),
as discussed in Sect. 4, where LTLProperty is an LTL
property, EFSMname is an EFSM, and t is a free variable.
The Isabelle source files may contain other additional lemmas
which cannot be meaningfully translated to SAL. Lemmas
which are not of the above form are simply ignored. The LTLs
we retain are semantically equivalent in both languages, and
the internal structure can be exported with either SAL or
Isabelle syntax. As with EFSM transitions, the order of LTL
properties is maintained across both languages.

Maintaining human readability is useful for sanity check-
ing, but also facilitates hand editing the code generated after
SAL has thrown up a useful counterexample. This means that
models and properties can be developed using the rapid feed-
back provided by SAL and can be converted back to Isabelle
once there are no more counterexamples. This is explored in
Sect. 6.2.

5.2 Translating SAL to Isabelle

This project initially only aimed to translate from Isabelle to
SAL for counterexample generation. Having achieved this,
the potential advantages of being able to translate back auto-
matically emerged very quickly. This proved to be rather
more straightforward than from Isabelle to SAL because
of the less restrictive data types used by Isabelle. That is,
we are able to work with the full infinite integer and string
datatypes rather than just a finite subset of each. The only
micro-complication was the generation of a transition matrix
from state tests on each transition and reunifying cloned tran-
sitions.

One limitation of the Isabelle → SAL → Isabelle round
trip translation is that the lemmas that were ignored when
translating to SAL are lost forever. The user must manually
copy over any non-translatable lemmas between the origi-
nal Isabelle file and the return translation from SAL. It is
therefore advisable to place the lemmas in a separate file
which imports either the original Isabelle file defining the
EFSM or the return translation from SAL. Unfortunately,
there is no way round this as it is impossible to translate arbi-
trary Isabelle theorems to SAL as Isabelle has much greater
expressivity. They could be carried over to SAL as comments,
but there seems little value to this.

5.3 Translation to and fromDOT

The DOT representation of the model was initially generated
from the SAL version after translation as a human read-
able sanity check, but the human-readable nature of DOT,
especially the fact that it can be compiled down to a graph-
ical representation as per Fig. 2, can be helpful if more
major structural changes to an EFSM are needed in order

to make it satisfy a given property. This is illustrated in
Sect. 6.1. Because our translation tool supports the full DOT
→ Isabelle → SAL loop, if SAL throws up a counterexam-
ple, it is possible to edit the EFSM in either the Isabelle, the
SAL, or the DOT representation and generate the other two.

Since DOT is a tool for the layout and display of graphical
structures like EFSMs, it has no meaningful support for LTL
expressions. Thus, these are lost in translation to DOT. This is
somewhat of a limitation, but the LTL properties can easily be
copied in again from the original source once the return trip
has been made from the edited DOT back to either Isabelle
or SAL or, better yet, the LTL properties can be written in a
separate file which simply imports the EFSM.

5.4 Limitations

It is important to note that the work presented in this paper
does not claim to supersede Nitpick or QuickCheck as a gen-
eral purpose counterexample generator for Isabelle. Instead,
we focus specifically on LTL properties defined in terms of
streams over EFSM models as per [27]. Further, we here limit
ourselves to those properties which are also supported by and
expressible in SAL. That is, properties over traces generated
by applying the watch function as discussed in Sect. 4 over
a free execution. Hyperproperties, properties involving mul-
tiple models, and arbitrary Isabelle lemmas are not supported
by our toolset. This has the knock-on effect that, in translating
a theory file from Isabelle to SAL and then back to Isabelle,
unsupported lemmas are lost as there is no meaningful way
to carry them over to SAL.

Another limitation is quantification. While Isabelle and
SAL both support universal and existential quantification of
variables arbitrarily within properties, we do not yet support
this and leave it to future work. We do, however, support
the translation of free variables such as in Example 1 from
Isabelle to SAL. SAL does not support such variables, but
the “forall introduction” rule allows us to use universal quan-
tification as a workaround.

Another limitation is that our translation tools are not inte-
grated into Isabelle like Nitpick and QuickCheck. Instead,
users must manually specify those files they wish to translate.
This has the advantage that the user can access and modify
the translated files such that SAL can be easily used for rapid
development, but does mean that we do not have access to
Isabelle’s parser, so are limited by way of the representa-
tions of EFSMs and properties we currently support. We do
not, for example, support the translation of EFSMs, transi-
tions, or states represented by the application of functions
(e.g. f (x) = E F SM). We also cannot translate properties
which contain predicates other than those detailed in Sect. 4.
This is all left to future work.
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Fig. 6 An abstract EFSM model of the LinkedIn site protocol

6 Worked examples

This section seeks to illustrate the utility of our technique
through two realistic examples. The source files for both
examples are openly available at [26]. For our technique to
be successful, we should be able to translate EFSM mod-
els and LTL properties over them between Isabelle and SAL
such that SAL can be used to find counterexamples to facili-
tate rapid development of models and properties and Isabelle
can then be used to formally prove that these properties hold
when no counterexamples can be found.

6.1 LinkedIn

In 2014, the popular social networking site LinkedIn was
shown to have a flaw in its behaviour [20]. When a LinkedIn
user u1 views another user’s profile u2, they are presented
with a link to view the information as a PDF file. The amount
of information u1 can see both online and in the PDF varies
depending on whether u1 is a free or paid member and on
whether u2 is in their network (i.e. a “friend”). If u1 has
not paid and u2 is not in their network, they only get to see
summary information rather than the full details.

The attack relies upon the fact that the information which
tells the server whether to provide detailed or summary infor-
mation is contained within the GET parameters of the link, so
can be edited freely. If u1 knows or can obtain suitable param-
eter values, the server can be made to provide the full details
of u2’s profile both online and as a PDF. The researchers in
[20] discovered that modifying some of the parameter val-
ues in the URL caused the server to generate valid links to
download detailed PDFs of user profiles which were not in
their network even though they had not paid to access this
information.

Although [20] does not include an EFSM model of the
LinkedIn system, it does publish the sequence of steps nec-
essary to carry out the attack along with the appropriate data
values. These are effectively execution traces as discussed in
Sect. 2. From these, we used the EFSM inference tool from
[25] to produce our model, shown in Fig. 6. The output of
this is a DOT file which we converted to Isabelle and then to
SAL using our translation tools.

The page requests are represented as events in the traces,
with the various URL parameters presented as inputs. There

are three principal actions in the system: login, view, and
pdf. We abstract the parameter to login to represent either a
free or a paid user. The view and pdf actions both take
three parameters. The first of these is the ID of the target
profile. To improve readability, these have been replaced by
friendID (representing the ID of the friend’s profile), and
otherID (representing the ID of the non-friend’s profile).
The second parameter represents whether the target profile
is a friend or not. This appears as name if the target profile
is a friend and OUT_OF_NETWORK if they are not. The third
parameter is a pseudorandom authentication token.

In Fig. 6, it is the s6
pdf
−→ s7 transition which represents

the attack. The authors of [20] discovered that, when viewing
a the profile of a user outside their network (represented by
otherID in Fig. 6), they could replace the value of the
second parameter (OUT_OF_NETWORK) with name. This
caused the server to generate a link to the full detailed PDF
file and a valid authentication token (4zoF) which could then
be manually inserted as the third argument on a second run
to view the full profile online.

Only traces involving the free user were published in
[20], but the written description of the paid user function-
ality was sufficient to infer traces of what would happen if a
paid user had attempted the same process. Traces involving
the paid user were added as a means of inserting a dif-
ferential between free and paid users; however, due to the
vulnerability of the LinkedIn system, these traces did not
affect the inferred EFSM beyond an additional login transi-
tion.

The fact that free users can access detailed information
of users outside their network of friends is clearly not what
was intended. The required property of the system could be
expressed as: “after a user has logged in as a free user,

they should never be able to get the pdf action to output the

detailed report for users who are not their friend”.

Fig. 7 An LTL property that defines the expected behaviour
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Fig. 8 The counterexample generated by SAL

Fig. 9 A proof of the required property for the fixed system

Given the abstraction of the millions of potential user
IDs into just friendID and otherID, this becomes
the requirement that after logging in as free, the pdf

action called with the input otherID should not output
detailed_pdf_of_

otherID. Fig. 7 shows this as an Isabelle lemma using the
LTL definitions from Sect. 4.

Attempts can be made to prove the lemma in Fig. 7 but,
since the system as it stands does not exhibit this prop-
erty, it will be impossible to prove otherwise. As in Sect. 2,
Nitpick and QuickCheck are of no use here. With consid-
erable effort, we can reach a proof state which requires us

to prove that the output of transition s6
pd f
−−→ s7 in Fig. 6 is

not [“detailed_pdf_of_otherID”]. Unfolding the
definition of pdf2 reveals the contradiction since this is
exactly its output. This brings the proof state to False,
which reveals that the lemma in Fig. 7 is untrue and that
there is a flaw in the system, but is too far removed from the
original property to provide much insight into how this flaw
might either be fixed by the system administrator or exploited
by malicious individuals.

Fortunately, our translation tool can convert both the
model and the property over to SAL in a few millisec-
onds. When the Symbolic Model Checker is executed on
this property it takes less than a second to respond with the
counterexample shown in Fig. 8. Although this is quite ver-
bose, it shows a clear sequence of steps to demonstrate the
problem. First, the user logs in as user free. Next, they
call the view action with the parameters otherID, name,
and MNn5. This takes the model into state s6 in Fig. 6, from
which the pdf action can be called with the same parameters
to obtain the detailed PDF of the other user’s profile.

Armed with the counterexample in Fig. 8, we now propose
an improvement to the system that prevents this flaw being
exploited. This is shown in Fig. 10. In this case, the flaw
was assuming that session tokens in the URL were trust-
worthy. A better solution is to include session information
in the server itself. To represent this, we added a register
(r1 in Fig. 10) to the model that records whether the user
logged in as paid or free, and checked this in the guard
expressions of view and pdf transitions. The attempted attack
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Fig. 10 The EFSM model of the fixed system

now moves the system to the state from which only the
summary_pdf_of_otherID output can be produced by
the pdf action. As mentioned in Sect. 5.3, the use of DOT to
visualise this change was useful here.

Calling the Symbolic Model Checker on the same property
for the modified system results in the output proved. This
provides some level of assurance that our desired property
holds, but is not conclusive proof. As discussed in Sect. 2,
we can only use SAL to check a finite subset of transition
inputs. For the strongest possible assurance, we use our tool
to translate our modified SAL back to Isabelle and prove the
property there, as shown in Fig. 9.

6.2 Lift controller

Having demonstrated our techniques on a small security
example, we will now apply them to a more complex case
study. Work published in [41] details several EFSMs which
together model the full functionality of a realistic elevator
system with four floors. While the model is perhaps a little
simplistic, it demonstrates how EFSMs can be used to model
and verify safety critical systems.

In this work, we will examine the “Central Elevator Con-
trol” model [41, Figure 3.12], shown in Fig. 11.2 In the
interest of clarity, the up and down transitions have been
abbreviated in the figure and are shown in full in Table 1.

As always, state q0 is the initial state. The full initialisation
of the lift state is quite complex and is abstracted out into a
separate EFSM model which sits within state q0. This model
is not shown here but can be found in [41, Figure 3.13].
For this example, only the top-level behaviour illustrated in
Fig. 11 needs to be considered. The initialisation sub-model
serves to ensure that the doors are closed and the lift is on
the first floor. In Fig. 11, the current floor of the lift is held
by the register r4.

State q1 represents the lift in its “idle” state. It is stationary
with its doors closed. It does not contain any passengers and
awaits a call to a particular floor. Again, this state contains

2 We make a slight deviation here from [41] in that all of our up and
down transitions have the labels up and down, respectively. This is not
the case in [41]. Here, these transitions are uniquely labelled according
to their origin and destination floors and whether the lift is to stop at the
relevant floor. This deviation has little effect on the model itself but does
make Isabelle proofs shorter and simpler since there are fewer unique
labels.

a sub-model (which can be found in [41, Figure 3.14]) to
handle the control logic of summoning the lift. The lift does
not store floors to visit in a list, rather, it stores the current
direction of travel, the floor it is currently at, and whether it
should stop at the next floor it reaches.

States f1 to f4 in Fig. 11 represent the lift being in
motion. The lift can travel between floors arbitrarily, but can-
not ascend above floor 4, nor descend below floor 1. This is
because the only incoming transitions to the respective states
stop the lift. It is also impossible to select a floor which is
not in the range [1..4]. States s1 to s4 represent the lift being
stationary at a particular floor. Here, the doors may open to
allow passengers to enter or alight, after which the lift awaits
instruction to visit a particular floor.

A basic safety property of most lifts is that they must be
stationary before the doors can be opened. We would like to
verify that our lift controller conforms to this. To do this, we
must first formalise the intuition in LTL, especially what it
means to “stop the motor” and to “open the doors”.

In Fig. 11, the motor is stopped by the motorstop transi-
tions, and the opening of the door is done by the opendoor

transitions. The action of successfully opening the doors can
be characterised by calling the opendoor action and receiving
the output [n, ‘ true’ ], where n is the current floor number.
We can then phrase the property “we cannot open the door
until we have first stopped the lift” in LTL as the following
statement, in which n has been left as a free variable to make
the property independent of the current floor.

(¬(label = opendoor ∧ X(output = [n, ‘ true’ ])))W

(label = motorstop)
(1)

This phrasing of the property omits the outputs of
motorstop and the inputs to both actions. This is because
they do not affect the validity of the property. Calling either
action with invalid inputs will cause the model to enter an
implicit sink state, from which our property trivially holds
since we can never successfully open the doors. Similarly,
we do not care about the outputs of motorstop either since, if
it is called unsuccessfully, the model goes into the sink state,
from which we cannot open the doors.

Note also that in Eq. 1, we check the output of opendoor in
the next state rather than the current state. Recall from Sect. 4
that this is because the output of the current action can only
be observed once that action has been completed, i.e. in the
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Fig. 11 The EFSM for the lift controller
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Fig. 12 The Isabelle representation of the property in Eq. 3

next state. This is common both to the Isabelle framework
and to SAL.

Here, we need to use the weak variant of the until operator
since we do not need to enforce that the motor is eventually
stopped: if the lift doors never open, we do not need to ever
stop the lift. If we were to use the strong variant of until, we
would eventually have to stop the lift. This would make the
property trivially untrue, since we could simply never call
the motorstop action. At some point, this would result in us
ending up in the sink state from which we can neither stop
the motor nor open the doors, but this does not affect the
invalidity of the property. We could phrase our property to
explicitly exclude the sink state, but this is not as elegant or
intuitive as the phrasing in Eq. 1.

Looking at Fig. 11, it seems apparent that the property in
Eq. 1 holds. We can only open the doors in states s1-s4, which
can only be reached by calling the motorstop action. The
Isabelle proof of this is a relatively straightforward unrolling
proof showing that the model enters the sink state if the open-

door action is called before motorstop.
Unfortunately, Eq. 1 does not accurately capture the intu-

ition of what we want to verify as it does not operate over the
entire lifetime of the lift controller. More specifically, once
we have stopped the motor for the first time, the until oper-
ator is released, meaning that anything can happen after this
point. It may be the case that, once the motor starts up again,
we are then free to open the doors while the lift is in motion.
Equation 1 does not prevent this, so we need to phrase our
property in such a way that it operates globally. An intuitive
way to do this is to simply wrap a “globally” operator around
Eq. 1, as in Eq. 2.

G((¬(label = opendoor ∧ X(output = [n, ‘ true’ ])))W

(label = motorstop))
(2)

While Eq. 2 is intuitive, it is not actually true. As with the
LinkedIn example, Isabelle does not make this immediately
clear. While developing this example, we only reached a con-
tradictory proof state after several days of work. However,
our tool enables us to easily convert the model and property
to SAL and generate a counterexample.

To work with the lift controller in SAL, we first need to
account for the fact that we have simplified the initialisation
of the system state. Once converted to SAL, we initialise r4
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(the register which holds the current floor) to 1, as is done by
the initialisation sub-EFSM in [41].

With this workaround applied, SAL’s symbolic model
checker can then generate the counterexample shown in
Fig. 13. The demonstrated problem is that opendoors is a
reflexive transition, meaning that we can call it as many times
as we like. Since, in s1, the motor is already stopped, we
do not have to explicitly stop it again before opening the
doors. Counterexample generation is invaluable for identify-
ing issues with the phrasing of properties (rather than actual
faults in the system) as it allows us to quickly iterate our
property until it no longer demonstrates spurious errors that
are the result of the abstraction choices rather than the real
system properties. At each stage, we get a concrete coun-
terexample which allows us to improve the property.

We can see from the model in Fig. 11 that we can only suc-
cessfully perform an opendoor action from a state where the
motor is stopped, i.e. s1 to s4. We could, therefore, explicitly
check this as part of the statement. This property would not
be particularly robust, however, since it is not model indepen-

dent. If we renamed the states, the property may no longer
hold. It also requires us to have some knowledge of the model
such that we know that the motor is stopped in the relevant
states. Ideally, we would like to phrase things purely in terms
of the observable behaviour of the system, i.e. the inputs and
outputs.

When working with this example, it took several itera-
tions before we eventually settled on the property shown in
Eq. 3, for which SAL’s symbolic model checker produces
the output proved. The outer globally operator states that
the property must hold true throughout the entire execution
of the model. The inner predicate states that if eventually
there is a next state in which we successfully open the doors,
this does not occur until either the label is motorstop or
the output is [n, ‘ true’ ]. It is this second disjunct which
is the key, since this exploits the fact that, when we open
the doors, the outputs are the current floor n and the string
‘ true’ . We could make this more explicit by writing
label = opendoor ∧ X(output = [n, ‘ true’ ] instead, but
this does not affect the validity of the property since open-

doors is the only transition which could ever produce this
output.

G(

F(X(label = opendoor ∧ X(output = [n, ‘ true’ ]))) �⇒

(¬(X(label = opendoor ∧ X(output = [n, ‘ true’ ])))W

(label = motorstop ∨ X(output = [n, ‘ true’ ])))

)

(3)

The next operations somewhat obfuscate the meaning of
Eq. 3. These are necessary to account for the fact that LTL
only looks into the future. This property now states that, if
we successfully open the doors, the previous event was either

stopping the motor or opening the doors. We do not have a
“previously” operator in LTL though, so we must look one
step into the future to effectively treat the current action as
the “previous” event.

With SAL unable to find a counterexample for this prop-
erty, we can now embark on an Isabelle proof. The first step
is to translate the SAL property into Isabelle syntax. This can
be done automatically using our SAL to Isabelle translation
tool, which produced the lemma in Fig. 12.

To prove this lemma, it is helpful to strengthen the property
so it applies to all control flow and data states. The reason for
this is that the model contains many cycles, so we can easily
loop back around to states which we have already visited with
a different register state. If we do not generalise our property,
we end up with potentially infinite proof goals, which we
obviously cannot fulfil. To do this, we rephrase the lemma in
Fig. 12 to that in Fig. 14.

The precondition in Fig. 14 may seem (and in most cases
is) trivially true, so it may be tempting to substitute j for
make-full-observation lift-lit (Some s) r p t, in which s, r ,
p, and t are free variables. This leads to difficulties further
on in the proof, however, as we must then prove that any
updates made to these variables leave them unchanged, which
of course is untrue. We are then left with further subgoals in
terms of the updated variable values. What we actually want
is to prove the property for an arbitrary s, r , p, and t . Where
Isabelle’s induction package provides the arbitrary key-
word to achieve this, the coinduction package is still very
new and lacks this infrastructure. Phrasing our property as in
Fig. 12 is a workaround for this.

Applying coinduction to the lemma in Fig. 14 generates
two subgoals. We must show 1. that the property must hold
true in the current state and 2. that it holds globally hence-
forth. Phrasing proof goals as in Fig. 14 makes the second
step trivial, as we simply need to prove that we can take a
step from any state. Because our EFSM is implicitly com-
plete, we can easily prove this. This means that we only need
to prove that the inner predicate holds in every state for every
register configuration. Proving this requires that we consider
each control flow state in the model as a separate case. This
leaves us with ten subgoals: one for each state and an extra
one for an arbitrary invalid state. While none of these sub-
goals are particularly intellectually challenging to prove, the
sheer number of them makes the proof fairly long.

Having proved that the property in Eq. 3 holds for the
lift controller, we now know that it is impossible to open
the doors while the lift is in motion at any point during its
operation. Because we made the exact floor a free variable,
we only need to have proved this once rather than for each
floor. Additionally, because we have proven that the property
holds for all control flow states and register configurations,
we need not concern ourselves with how either of the sub-
models modifies the data state. If we were to work these
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Fig. 13 The SAL counterexample for the property in Eq. 2
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Fig. 14 A generalised version of the property in Fig. 12

models into our EFSM, the property would still hold since
neither of them involves opening the doors.

7 Discussion

Having presented the details of our translation framework and
demonstrated its utility, this section discusses the correctness
of our translations and the scalability of our tools.

7.1 Correctness of translations

Producing a complete and formal proof of equivalence of the
translations produced would require a deep representation of
both Isabelle and SAL’s individual representations in a single
system. This is well beyond the scope of the work presented
here, and it is arguably unnecessary for the intended use of
this system.

The correctness of the translations is primarily justified by
a structural equivalence argument: both Isabelle and SAL
have well defined and widely used LTL definitions based
on the conventional operators. The conversion of properties
between the systems is almost entirely a transliteration — i.e.
a simple swapping of the syntax for an operator in one system
for the syntax of the same operator in the other system.

The translation of the state and transition system is more
subtle. SAL has a built in state and transition semantics,
whereas the EFSM semantics in Isabelle was developed and
finessed as part of this work. That development included spe-
cific design decisions to enable the translation to SAL, most
notably thecheck_exp function, and these translatable fea-
tures are an important contribution of this work.

Further to this, our tool is capable of round trip translation,
i.e. Isabelle to SAL and back to Isabelle. This allows us to
easily prove the original Isabelle models and properties to be
equivalent to their round trip translations. These proofs go
through easily in Isabelle by application of the simplifier.

In addition to the structural similarity, there is a question
of objective: this work is intended to provide a helpful tool to
people attempting to prove properties of EFSMs. Counterex-
amples produced by SAL can be checked either manually, or
in Isabelle’s rigorous formal system. Should the counterex-
ample be found to be spurious due to a translation error, it

would simply fail to provide helpful information. While this
may delay the resolution of system issues, it is the Isabelle-
assisted proof that is the guarantee of correctness, so there
would be no harm done. Similar can be said for a lack of
counterexample due to a mistranslation. If the property did
not hold true, no proof to the contrary would be found.

While on the subject of checking counterexamples, it
is worth noting Isabelle’s built in counterexample genera-
tor, nitpick, produces counterexamples for conventional
Isabelle theorems that are then automatically checked by the
proof assistant. While this automatic checking of counter
examples is not currently implemented for our translation
system, it would be quite possible and is left for future work.

7.2 Scalability

The worked examples in Sect. 6 are insufficient to draw
general conclusions about the efficiency, scalability, and
usability of our tool. Instead they serve as “proof of concept”
and demonstrate our tool’s applicability. Notably, Sects. 6.1
and 6.2 demonstrate how the ability to quickly generate coun-
terexamples facilitates the iterative process of model and
property development. In both cases, the EFSM and LTL
properties were translated between Isabelle and SAL in a
few milliseconds. Without this ability, the user must stumble
upon a contradictory proof state to discover their property is
untrue, which can require considerable time and effort, and
is very much reliant on chance.

While the work in this paper provides a fast and auto-
mated bridge between Isabelle and SAL, it does not seek to
improve either tool directly. Nevertheless, it is worth com-
menting on their respective scalabilities insofar as Sect. 6
allows. First, the larger the model, the more states must be
checked, meaning that verification takes longer. This applies
to both Isabelle and SAL, with SAL taking noticeably longer
to check models using a larger range of possible integers.

Isabelle does not fall victim to this since it works with the
full infinite range of integers, but the construction of Isabelle
proofs is labour intensive and time-consuming, with proofs
usually growing with the size of the EFSM. This provides
motivation for our work, since time spent attempting to con-
struct proofs for untrue properties is time wasted, but is also a
limitation to the applicability of Isabelle for the verification of
models. As discussed in Sect. 6.2, the phrasing of properties
is critical, and the coinduction package is currently nowhere
near as developed as the induction package, lacking support
for helpful keywords such as arbitrary.

Having said that, the coinduction package is still relatively
young. Isabelle has seen considerable improvements in proof
automation over the years [3,4], so improvement in this area is
likely. In the meantime, the implementation of proof tactics
such as proving that the property holds in all control flow
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states with all register values would help to guide users in
the proof process. This is left to future work.

7.3 DOT translations

In addition to translation between Isabelle and SAL, our
tool also supports EFSMs represented in DOT. While this
does not necessarily have theoretical value, it can add to our
tool’s usability. While both Isabelle and SAL notations are
fairly readable to experienced users, it can be helpful to view
EFSMs graphically, for example as in Fig. 11. Numerous
WYSIWYG editors exist for DOT, which enables users to
edit their models using a familiar GUI rather than in Isabelle
or SAL directly. Moreover, several EFSM inference tools
[25,43] produce a DOT representation of their inferred model
as output, which can then be translated directly to Isabelle
and SAL for verification.

8 Related work

There is much work on the analysis of models and many tools
available to support this work, with model checkers being the
most common means of verifying LTL properties in practice,
for example SPIN [31], NuSMV [13] and, of course SAL
[17]. A common drawback of these is that models involv-
ing infinite datatypes, such as the integers, are not supported.
Instead, only a finite subset of values can be checked, which
means that the absence of a counterexample does not neces-
sarily guarantee correctness.

One model checker which appears to support some infinite
datatypes (reals and integers) is NuXMV [10], although this
is not particularly well-established. Another notable model
checker is CAVA [22], the implementation of which is fully
verified in Isabelle. Further, [39] presents an Isabelle imple-
mentation of a conversion of LTL expressions to Büchi
automata, with accompanying executable code. Unfortu-
nately, both of these tools only support Boolean-valued
variables, making them an unsuitable basis for this work.

Where model checkers are (for the most part) completely
automated and excel at generating counterexamples, they do
not provide a mathematical certificate of correctness. Auto-
mated theorem provers are the converse of this and can prove
systems to be correct through the application of sound mathe-
matical rules. Tools such as Isabelle [35], Coq [12], and Agda
[8] are all well established, trusted provers which support
both infinite datatypes and LTL. Lean [16] is also popular,
but is less well established and appears to lack an implemen-
tation of LTL.

While tools such as Isabelle’s Sledgehammer [4] can pro-
vide significant assistance in the construction of proofs, the
process is still very much interactive and relies heavily on
the user to provide direction. Further, as discussed in Sect. 2,

Isabelle’s existing counterexample generators, Nitpick [2]
and QuickCheck [9], are not applicable to the complex prop-
erties covered in this work, meaning that it is impossible
to tell whether or not a property is true unless either it or
its negation can be proved, or a contradictory proof state is
reached.

9 Conclusion

Analysing properties of EFSM models requires an ability to
prove properties with certainty and also to disprove them with
counterexamples. This work has demonstrated the value of
an Isabelle representation for the former, and a SAL model
checker for the latter. The ability to move seamlessly and
automatically between the two, as well as to work with
human-readable Graphviz DOT representations is of great
value to a formal analyst.

The consistency and integration with the semantics of
EFSM models produced by inference tools such as [25]
allows this work to answer the common, mirrored ques-
tions of “What can be done with an inferred model?” and
“Where will you source your system specification for analy-
sis?”. As well as providing proof and model checking support
for EFSMs, the formalism supported here is a superset of
many other state machine formalisms. Classical FSMs can
be modelled with empty guards and data states, allowing
these techniques to be applied to the results of various FSM
inference techniques [1,42]. Other FSM extensions, such as
Mealy machines [34], can have literal input guards and output
functions and still be analysed correctly by this infrastruc-
ture.

An obvious direction of future work would be to address
the limitations set out in Sect. 5.4. Most notably, integrating
the tool into the Isabelle framework in a similar manner to
QuickCheck [9] would allow us to both expand the range of
supported properties and provide a smoother user experience.
Further, similar to QuickCheck, it may then be possible for
Isabelle users to provide translations for additional datatypes
to further leverage the capabilities of model checking for
counterexample generation.
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