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In brief

Zhang et al. apply a machine learning
method that integrates single-cell
multiomics with GWAS summary
statistics for gene discovery. Application
to severe COVID-19 identifies >1,000 risk
genes, which account for 77% of the
observed heritability. Genetic risk is
focused within NK cells, CD56°"" cyto-
kine-producing NK cells in particular,
highlighting the dysfunction of these cells
as a determinant of severe disease.
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SUMMARY

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportu-
nity for early intervention. We present a multiomic analysis using machine learning to characterize the
genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic
signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account
for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural
killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian
randomization and single-cell profiling of human NK cells support the role of NK cells and further localize
genetic risk to CD56°"9" NK cells, which are key cytokine producers during the innate immune response.
Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-
cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential ther-
apeutic targets.

INTRODUCTION

Infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-
19) has caused a global pandemic with almost unprecedented
morbidity and mortality (Dong et al., 2020). Severity of COVID-
19 is markedly variable ranging from an asymptomatic infection
to fatal multiorgan failure. Severity correlates with age and co-
morbidities (Shang et al., 2020) but not exclusively (Li et al.,
2020). Host genetics is thought to be an essential determinant

of severity (The COVID-19 Host Genetics Initiative, 2020), but
this is poorly understood. Improved tools to identify individuals
at risk of severe COVID-19 could facilitate life-saving precision
medicine.

Profiles of the immune response associated with severe
COVID-19 have been largely observational; they have produced
conflicting conclusions and struggled to assign causality.
Studies have variously linked severity to CD8 T cells (Mathew
et al., 2020), CD19 B cells (Sosa-Hernandez et al., 2020), eosin-
ophils (Lucas et al., 2020), and myeloid cells (Arunachalam et al.,

Cell Systems 13, 1-17, August 17, 2022 © 2022 The Authors. Published by Elsevier Inc. 1
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2020), and even specific subtypes ofimmune cells such as adap-
tive natural killer (NK) cells (Maucourant et al., 2020). Single-cell
omics profiling has demonstrated the differential function of
various immune cell types in severe disease (Delorey et al.,
2021a; Liao et al., 2020; Melms et al., 2021; Ren et al., 2021; Ste-
phenson et al., 2021; Zhang et al., 2020a), but this work has
focused on the transcriptome profiled during acute COVID-19,
which is likely to be modified by the ongoing infection and is
not necessarily an upstream determinant of outcome. We have
focused on host genetics so as to circumvent this problem
because genetic variation is largely fixed at conception.

There have been several efforts to address the genetic basis of
COVID-19 severity (Severe COVID-19 GWAS Group et al., 2020;
Shelton et al., 2021), including large-scale genome-wide associ-
ation studies (GWASSs) (COVID-19 Host Genetics Initiative, 2021;
Pairo-Castineira et al., 2021) and rare variant approaches (Ben-
etti et al., 2020; Kosmicki et al., 2021; Novelli et al., 2020; Wang
et al., 2020b). However, the discovery power of those studies is
limited, and the biological interpretation of those identified loci
has been difficult, partially because of the confounding effects
of patient age and comorbidities (Huang et al., 2020). To avoid
a similar problem, we have integrated genetic signals with sin-
gle-cell multiome profiling of human lungs so as to map cell-
type-specific functions.

A primary cause of morbidity and mortality in COVID-19 is res-
piratory disease and specifically, a hyperinflammatory response
within the lung that occurs in an age-independent manner (Bro-
din, 2021). This is the basis of a number of interventions based on
immunosuppression (Mehta et al., 2020), which have repur-
posed treatments used for other diseases, particularly autoim-
mune diseases. Efficacy and side-effect profiles are likely to be
improved by a COVID-19-specific immunomodulatory
approach.

To understand the genomic basis of COVID-19 severity and
gain insights into its molecular mechanisms, we sought to
combine the genetic variation associated with severe COVID-
19 together with single-cell-resolution functional profiling of hu-
man lungs. Using RefMap, a machine learning algorithm, we
recently developed for genetic and epigenetic integration (Zhang
et al., 2022), we identified over 1,000 genes associated with crit-
ical illness across 19 cell types, which account for 77% of SNP-
based heritability for severe COVID-19; this represents a 5-fold
increase over traditional approaches (COVID-19 Host Genetics
Initiative, 2021). Analysis of single-cell transcriptomic profiling
of respiratory tissues revealed downregulation of our risk genes
in corresponding cell types in severe COVID-19 patients.
Network analysis identified multiple protein-protein interaction
(PPIl) modules enriched with risk genes, unveiling additional
cell-type-specific mechanisms underlying severe COVID-19.
Heritability analysis and Mendalian randomization (MR)
confirmed an important role for NK cells, specifically CD56°9"
NK cells, in driving severe disease that extends previous litera-
ture (Maucourant et al., 2020) and adds causal inference. Rare
variant analysis provided orthogonal evidence to further support
the association of NK-cell risk genes with severe disease. Alto-
gether, our study unravels a genomic landscape of COVID-19
severity and provides a better understanding of the disease
pathogenesis, with potential for new prevention strategies and
therapeutic targets.
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RESULTS

Mapping cell-type-specific risk genes for severe
COVID-19

We used the RefMap machine learning model (Zhang et al.,
2022; STAR Methods) to identify the genomic regions and genes
associated with severe COVID-19. Briefly, RefMap is a Bayesian
network that combines genetic signals (e.g., SNP Z scores) with
functional genomic profiling (e.g., ATAC-seq and ChIP-seq)
to map risk regions associated with complex diseases. With
RefMap, we can search the genome for functional regions within
which disease-associated genetic variation is significantly
shifted from the null distribution. This reduces the size of the
search space and increases the statistical power. Rather than
testing SNPs one by one, RefMap models the genetic architec-
ture (i.e., all of the SNPs) of diseases using a unified probabilistic
model that captures more complex genetic structures and
avoids a multiple testing correction that would limit the statistical
power. The power of the RefMap model for gene discovery and
recovery of missing heritability has been demonstrated in our
recent work (Zhang et al., 2022).

Here, to achieve cell-type-specific resolution within multicel-
lular tissue, we modified RefMap and integrated single-cell multi-
ome profiling of human lungs with COVID-19 GWAS data (Fig-
ure 1). In particular, we obtained summary statistics (COVID-19
Host Genetics Initiative [COVID19-hg], European [EUR], Release
5, phenotype definition A2; 5,101 cases versus 1,383,241 popu-
lation controls) from the largest GWAS study of COVID-19
(COVID-19 Host Genetics Initiative, 2021), where age, sex, and
20 first principal components were included in the analysis as
covariates. Severe COVID-19 was defined by the requirement
for respiratory support or death attributed to COVID-19. Human
lung single-cell multiome profiling, including single nucleus RNA
sequencing (snRNA-seq) and single nucleus assay for transpo-
sase-accessible chromatin using sequencing (snATAC-seq),
was retrieved from a recent study of healthy individuals (Wang
et al., 2020a). Nineteen cell types were identified in both snA-
TAC-seq and snRNA-seq profiles, including epithelial (alveolar
type 1 [AT1], alveolar type 2 [AT2], club, ciliated, basal, and pul-
monary neuroendocrine [PNEC]), mesenchymal (myofibroblast,
pericyte, matrix fibroblast 1 [matrix fib. 1], and matrix fibroblast
2 [matrix fib. 2]), endothelial (arterial, lymphatic, capillary 1
[cap1], and capillary 2 [cap?2]), and hematopoietic (macrophage,
B cell, T cell, NK cell, and enucleated erythrocyte) cell types. We
adopted these 19 cell types as the reference set within lung tis-
sue throughout our study. Based on snATAC-seq peaks called in
one or more of the 19 cell types, we used RefMap to identify dis-
ease-associated genomic regions from the COVID-19 GWAS
summary data, resulting in 6,662 1-kb regions that passed the
5% significance threshold (referred to as RefMap COVID-19 re-
gions hereafter; STAR Methods). By examining the intersection
of identified regions with open chromatin in individual cell types
based on corresponding snATAC-seq peaks, we derived cell-
type-specific RefMap regions (mean per cell type = 1,733, stan-
dard deviation [SD] = 624; Figure 2A).

Next, we sought to map the target genes of RefMap COVID-19
regions in a cell-type-specific manner (Figure 1). In particular, we
identified the regulatory targets that are expressed in the corre-
sponding cell type for individual RefMap regions (STAR
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Figure 1. Schematic of the study design

(A-H) The COVID-19 GWAS and human lung single-cell multiome (A) are integrated by the RefMap model shown in (B), where gray nodes represent observations,
green nodes are local hidden variables, and pink nodes indicate global hidden variables (STAR Methods). Cell-type-specific risk genes are mapped using single-
cell multiome profiling (C). Heritability analysis (D), Mendelian randomization (E), transcriptome analysis (F), and network analysis (G) together characterize the
functional importance of RefMap genes, particularly for NK cells, in severe COVID-19. Rare variant analysis (H) orthogonally supports the role of NK cells in severe

disease. cCRE, candidate cis-regulatory element.
See also Table S1.

Methods). In total, we discovered 1,370 genes (referred to
RefMap COVID-19 genes hereafter; mean per cell type = 280
and SD = 80; Figure 2B; Table S1) associated with the severe dis-
ease. Interestingly, hematopoietic cells have the largest number

of unique RefMap regions and genes among all major cell types
(Figure 2C); for example, there is a significant enrichment of
unique RefMap regions observed for hematopoietic cells versus
epithelial cells (p = 5.2e—3, odds ratio [OR] = 1.15, Fisher’s exact
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Figure 2. RefMap identifies cell-type-specific risk genes associated with severe COVID-19

(A) Total number and number of unique genomic regions containing genetic variation associated with severe COVID-19 for 19 different cell types.

(B) Total number and number of unique genes implicated by genetic variation associated with severe COVID-19 for 19 different cell types.

(C) Fraction of unique genomic regions and genes associated with severe COVID-19 for major cell types; statistical comparison of enrichment was determined by

Fisher’s exact test.

(D) Similarity between different cell types quantified by the overlap of RefMap genes. Gene set overlap was calculated by the Jaccard similarity index.

See also Table S1.

test; Figure 2C). To profile the cell-cell interactions underlying se-
vere COVID-19 from a genetic perspective, we constructed a cell
correlation matrix based on the overlap of RefMap genes be-
tween cell types (Figure 2D). We discovered that the correlation
is strongest between functionally related cells, demonstrating
that the RefMap signal is consistent with known biology (Wang
et al., 2020a).

Toreplicate our findings, we obtained available summary statis-
tics of SNPs associated with severe COVID-19 (p < 1e—4, n =
5,779) from a GWAS of an entirely independent cohort (the
23andMe cohort, 15,434 COVID-19-positive cases, and
1,035,598 population controls) (Shelton et al., 2021). The total
union of RefMap regions is significantly enriched with SNPs asso-
ciated with multiple COVID-19 phenotypes defined in this new da-
taset (mean p = 1.24e—3, Fisher’s exact test; Table S2; STAR
Methods). Specifically, the most significant enrichment is with
SNPs associated with COVID-19 requiring respiratory support

4 Cell Systems 13, 1-17, August 17, 2022

(mean p = 3.83e—4, mean OR = 9.52, mean standard error
[SE] = 42.0, Fisher’s exact test; Table S2). As further confirmation,
we obtained GWAS summary statistics for a whole-genome
sequencing (WGS) cohort of severe COVID-19 (the GenOMICC
cohort; STAR Methods) (Kousathanas et al., 2021), including
7,491 severe COVID-19 patients and 48,400 population controls.
Although this dataset overlaps the COVID19-hg cohort (EUR,
Release 5, phenotype A2), 78% of the severe COVID-19 cases
and 83% of the controls are distinct. Again, the total union of
RefMap regions is significantly enriched with SNPs associated
with severe COVID-19 in this dataset (mean p = 3.43e—4, mean
OR =10.29, mean SE = 48.0, Fisher’s exact test; Table S2).

RefMap COVID-19 genes highlight known disease
biology

The RefMap COVID-19 gene list contains known driver genes for
severe COVID-19. For instance, a recent study mapped the
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3p21.31 risk locus of severe COVID-19 (Pairo-Castineira et al.,
2021) to altered expression of LZTFL1 in lung epithelial cells
and in ciliated epithelial cells (Downes et al., 2021). Extensive
functional follow-up analysis demonstrated that the 3p21.31
risk genotype is associated with increased expression of LZTFL1
by ciliated epithelial cells and inhibition of epithelial-mesen-
chymal transition (EMT). EMT is a component of the innate im-
mune response that is thought to be beneficial in the context
of SARS-CoV-2 infection via repair of damaged tissues and
reduced expression of ACE2 and TMPRSS2, which may limit
intracellular viral uptake (Downes et al., 2021). Consistent with
this prior evidence, LZTFL1 is also identified as a RefMap
gene and is specifically associated with ciliated epithelial cells
(Table S1).

In addition, excessive activity of ADAM9, a metalloprotease,
has been associated with severe COVID-19 (Carapito et al.,
2021). ADAM9 promotes the conversion of monocytes and mac-
rophages to multinucleated giant cells as part of the immune
response (Chou et al., 2020). Notably, ADAMS is identified as a
RefMap gene expressed by cell types associated with the extra-
cellular matrix (ECM), including matrix fibroblasts, myofibro-
blasts, and pericytes (Table S1). ADAM proteins, including
ADAMS9, are typically localized to the ECM (Chou et al., 2020),
and hence, our finding is consistent with known biology.

Heritability enrichment within COVID-19 risk genes

Linkage disequilibrium score regression (LDSC) (Bulik-Sullivan
et al., 2015) has been used to measure the total SNP-based her-
itability (h?) of severe COVID-19 (COVID-19 Host Genetics Initia-
tive, 2021). Here, we examined the partitioning of SNP-based
heritability for severe COVID-19 within RefMap genes (STAR
Methods). We discovered that the heritability of severe COVID-
19 (COVID19-hg, EUR, Release 5, phenotype definition A2) is
significantly enriched within RefMap genes (proportion of SNP-
based heritability = 77%, OR = 4.6, SE = 0.78, p = 1.55e—7; Fig-
ure 3A; Table S3). We also compared RefMap with several widely
used methods for genetic association study (STAR Methods),
including naive GWAS (COVID-19 Host Genetics Initiative,
2021), MAGMA (Delorey et al., 2021b), PAINTOR (Kichaev
et al., 2014), and Pascal (Lamparter et al., 2016), and observed
superior performance of RefMap in terms of the proportion of
recovered heritability (up to 5-fold increase; Table S3). The pro-
portion of SNP-based heritability for hospitalized COVID-19
(COVID19-hg, EUR, Release 5, phenotype definition B2) within
RefMap genes is 62% and for COVID-19 independent of severity
(COVID19-hg, EUR, Release 5, phenotype definition C2) it is
52% (Table S3). In both cases, the improvement in captured her-
itability based on RefMap compared with traditional methods
is up to 3-fold. Consistent with the design of our model, the

Cell Systems

recovered heritability is highest for severe COVID-19. As further
confirmation, we calculated recovered heritability based on the
GenOMICC GWAS. RefMap genes are highly enriched with
heritability for severe COVID-19 in this replication cohort (pro-
portion of SNP-based heritability = 50%, OR = 3.0, SE = 0.48,
p = 5.12e—6; Table S3).

Prioritizing cell types by heritability partitioning

Next, we used cell-type-specific RefMap COVID-19 genes to
determine which cell types are relatively more important in the
development of severe COVID-19. Specifically, we calculated
the partitioned heritability per cell type within the severe
COVID-19 GWAS (A2) and also within GWAS for hospitalized
versus non-hospitalized COVID-19 (B2) and COVID-19 versus
population (C2) (STAR Methods). For severe COVID-19, of all
19 cell types tested, NK-cell and T cell genes are the most en-
riched with SNP-based heritability (NK cells: OR = 8.87, SE =
3.68, p = 0.016; T cells: OR = 8.64, SE = 3.28, p = 0.005; Fig-
ure 3A; Table S3). The same is also true for hospitalized
COVID-19 (NK cells: OR = 10.57, SE = 4.95, p = 0.039; T cells:
OR = 8.67, SE = 4.13, p = 0.041), but this enrichment is not sta-
tistically significant for COVID-19 irrespective of severity (NK
cells: OR =5.74, SE = 3.09, p = 0.077; T cells: OR = 4.16, SE =
2.56, p =0.18; Table S3). In the GenOMICC GWAS, we obtained
a similar result, whereby NK cells and T cells are the most en-
riched with SNP-based heritability for severe COVID-19 (NK
cells: OR = 5.13, SE = 1.68, p = 0.01; T cells: OR = 4.28, SE =
1.32, p = 0.01; Table S3) compared with other cell types.

We extended our analysis of T cells by dividing them into CD4*
and CD8* subtypes based on fluorescence-activated cell sorting
(FACS) purified single cell RNA sequencing (scRNA-seq) profiling
of the human lung (Travaglini et al., 2020). We first examined the
relative expression of RefMap T cell genes within CD4* and
CD8* T cells but discovered no significant difference between
these two cell types (p = 0.34, two-tailed Wilcoxon rank-sum
test). Furthermore, when we split RefMap T cell genes into CD4*
and CD8" specific genes based on relative overexpression (fold
change [FC] > 1.5 between subtypes; STAR Methods), we
observed no significant difference in the heritability enrichment
for severe COVID-19 between these two gene sets (CD4*: OR =
6.95, CD8": OR = 6.23; Figure 3B; Table S3), suggesting that
both subtypes may contribute to the immune response leading
to severe disease. We observed similar results (CD4*: OR =
5.40, CD8": OR = 4.66; Table S3) using the GenOMICC GWAS.

Dissecting NK-cell subtypes using MR and single-cell
multiome profiling

NK cells have diverse biological functions, and therefore, we
sought to understand which of these functions is a determinant

(B) Heritability enrichment for different subsets of T cells and NK cells.

(C-E) Significant Mendelian randomization results for three exposures linked to severe COVID-19, including blood counts of CD335+ CD314— (C), CCR7—
CD314— (D), and CD314+ (E), NK cells; points indicate effect size () and standard errors for each SNP-outcome relationship.

(F) Sensitivity analyses and robust tests for MR analyses (STAR Methods).

(G) Comparative gene expression analysis of RefMap NK-cell genes in NKG2D+ and NKG2D— NK cells. Fold change was calculated as the ratio of gene expres-
sion levels in NKG2D+ NK cells to NKG2D— NK cells. The transcriptome was defined by all the expressed genes (with at least one unique molecular identifier
[UMI]) in NK cells. Violin plots show the distributions of fold change values within each group, and boxplots indicate the median, interquartile range (IQR),
Q1 — 1.5 x IQR, and Q3 + 1.5 x IQR. Distributions were compared by one-tailed Wilcoxon rank-sum test.

See also Figures S1 and S2 and Table S3.
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of COVID-19 severity. Two-sample MR facilitates identification
of a causal relationship between an exposure and an outcome
(Smith, 2010). We examined whether NK-cell populations
measured in the blood are causally related to severe COVID-
19. In total, 26 GWAS measures of NK-cell subtypes were iden-
tified based on a previous study in which flow cytometry was
used to quantify both counts of immune cell subsets and im-
mune-cell-surface protein expression (Roederer et al., 2015;
STAR Methods). After harmonizing exposure and outcome ge-
netic instruments, we excluded tests with less than five SNPs
that are likely to be underpowered (STAR Methods). With MR,
three exposures were shown to be causally related to severe
COVID-19 after correcting for multiple testing (p < 2e—3, multi-
plicative random effects [MREs] inverse-variance weighted
[IVW] estimate). All three exposures relate to the proportion of
NK cells expressing NKG2D/CD314 on the cell surface (Roe-
derer et al., 2015), which is the major receptor responsible for
NK-cell activation (Raulet, 2003). A higher proportion of
NKG2D/CD314— cells is linked to severe COVID-19 (A2)
(Figures 3C and 3D), but a higher proportion of NKG2D/
CD314+ cells is protective (Figure 3E). Checks for genetic plei-
otropy (MR Egger intercept not significantly different from zero,
p > 0.05; Figure 3F) and instrument heterogeneity (p > 0.05, Co-
chran’s Q test, and I’gx > 0.95; Figure 3F) were satisfactory.
Moreover, robust measures are significant for all three expo-
sures (Figure 3F). Furthermore, MR revealed that the proportion
of NKG2D/CD314— cells is also causally associated with hos-
pitalized COVID-19 (B2) and with COVID-19 independent of
severity (C2) (Figure S1), but in each case, the effect size is
reduced compared with severe COVID-19 (A2). To validate
these findings, we repeated the MR analysis of NKG2D/
CD314 cell count in the GenOMICC GWAS; again, a higher pro-
portion of NKG2D/CD314— cells is linked to severe COVID-19
(p = 0.035; Figure S2).

Inspired by our MR analysis, we tested if the expression of
RefMap NK-cell genes reflects a functional difference between
NKG2D/CD314+ and NKG2D/CD314— cells. We examined
gene expression using scRNA-seq data from healthy lungs
(Travaglini et al., 2020); we discovered that RefMap NK-cell
genes are expressed at a higher level within NKG2D/CD314+
cells compared with NKG2D/CD314— cells (p = 0.036, one-tailed
Wilcoxon rank-sum test; Figure 3G). We conclude from these an-
alyses that NK-cell activation via NKG2D/CD314 receptors may
be protective against severe COVID-19. We note that the

Cell Systems

NKG2D/CD314 signaling pathway is not specific with respect
to diverse NK-cell functions.

To achieve a finer characterization of NK-cell subtypes, we
isolated NK cells from an uninfected human donor and per-
formed single-cell multiome profiling (STAR Methods). NKG2D/
CD314+ NK cells and various functional subtypes including
CD56™"9" CD16+, and NKG2A+ NK cells were identified based
on relative expression and open chromatin over the gene body
and promoter (Figure 4A; STAR Methods). As expected, most
NK cells are NKG2D/CD314+ (Figure 4A), and moreover,
RefMap NK-cell genes that are relatively overexpressed
in NKG2D/CD314+ compared with NKG2D/CD314— cells
(FC > 1.5; STAR Methods) are not significantly enriched with her-
itability of severe COVID-19 compared with the total set of
RefMap NK-cell genes (OR = 9.2 for NKG2D/CD314+ NK-cell
genes versus OR = 8.9 for all NK-cell genes; Figure 3B;
Table S8). The major functional subdivision of NK cells is be-
tween CD56"9™ NK cells, which are responsible for cytokine
production and immunomodulation, and CD56%™ NK cells,
which are directly cytotoxic (Michel et al., 2016). A prominent
mechanism for activation of cytotoxic NK cells is via CD16 ligand
crosslinking, and therefore, it is expected that CD56°"9™ NK cells
are largely non-overlapping with CD16+ NK cells (Romee et al.,
2013) as we observed (Figure 4A). Interestingly, RefMap NK-
cell genes are relatively overexpressed in CD56°79M cells
compared with CD56%™ cells (FC = 1.3, p = 0.02, Student’s t
test). Moreover, RefMap NK-cell genes overexpressed in
CD56°9" NK cells (FC > 1.5) are highly enriched with heritability
for severe COVID-19 compared with the total set of RefMap NK-
cell genes (OR = 24.5 for CD56°"9™ NK-cell genes versus OR =
8.9 for all NK-cell genes; Figure 3B; Table S3). This result was
replicated in the GenOMICC GWAS (OR = 16.5 for CD56°"9"
NK-cell genes versus OR = 5.1 for all NK-cell genes; Table S3).
This difference in heritability enrichment is statistically significant
when considering the two datasets together (FC = 2.93, p =
0.045, Student’s t test). To further develop this observation, we
used MR to test whether NK-cell surface expression of CD56
(Roederer et al., 2015) is causally linked to severe COVID-19;
the test was relatively underpowered at the chosen significance
threshold (STAR Methods), but higher expression of CD56 was
associated with lower risk of severe COVID-19 (MRE IVW p =
0.01). We conclude that severe COVID-19 may be associated
with the function of CD56°"9" NK cells; both our MR analysis
and transcriptome study suggest that reduced function of these

Figure 4. Transcriptomic signature of RefMap COVID-19 genes in different cell types

(A) UMAP of iterative latent semantic indexing (LSI) for combined gene expression and open chromatin over the gene body and promoter. Cells are colored by
relative expression of NKG2D, CD56, CD16, and NKG2A, respectively. Expression is quantified as log,(normalized gene counts + 1); yellow/orange cells have
relatively high expression of each marker.

(B) Enriched TF motifs of RefMap COVID-19 regions across 19 cell types. Relative enrichment per cell type is indicated by circle size and significant enrichment
(HOMER, Q value < 0.1) is annotated with black circle; TF expression is indicated by color according to log(normalized gene counts + 1). Only highly expressed
(expression level in the top 95% in corresponding cell types) TFs were considered.

(C) Gene expression analysis of RefMap genes across different cell types in healthy lungs. The transcriptome was defined as the total set of expressed genes for
each cell type. Violin plots show the distributions of log expression levels within each group, and point plots indicate the median and IQR.

(D and E) Comparative gene expression analysis of cell-type-specific RefMap genes in severe COVID-19 patients versus moderately affected patients based on
scRNA-seq datasets from Ren et al. (D) and Liao et al. (E), respectively. The Z score of Wilcoxon rank-sum test was used to indicate the change of gene expres-
sion between severe and moderate patient groups, where a positive value means higher gene expression in severe patients. Violin plots show the distribution of
gene expression changes within each group, and boxplots indicate the median, IQR, Q1 — 1.5 x IQR, and Q3 + 1.5 x IQR. *: 0.01 < FDR < 0.1. +: FDR < 0.01.
Distributions were compared by one-tailed Wilcoxon rank-sum test.

See also Figure S3.
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cells may be an upstream cause of SARS-CoV-2 infection. The
observed heritability enrichment of severe COVID-19 associated
with CD56°"™ NK cells is significantly larger than that of any
other profiled cell type including subtypes of T cells (Figure 3B).
This has functional implications because CD56°9" cells are
responsible for production of IFN-y and other immunomodula-
tory cytokines important for the innate immune response (He
et al., 2004). Our interpretation is that deficiency of the NK-
cell-derived IFN-y defense may precipitate uncontrolled viral
replication.

Unlike CD56°"9" NK cells, RefMap NK-cell genes overex-
pressed in CD16+ NK cells (FC > 1.5) are not significantly en-
riched with heritability of severe COVID-19 compared with NK-
cell genes overall (OR = 9.4 for CD16+ NK-cell genes versus
OR = 8.9 for all NK-cell genes; Figure 3B; Table S3). We consid-
ered one additional functional subtype of NK cells: NKG2A+ NK
cells. A preponderance NKG2A+ NK cells has been associated
with reduced diversity and potency of both the cytotoxic and
chemokine producing arms of the NK-cell response linked to ge-
netic variation within the HLA-B gene (Horowitz et al., 2016). NK-
cell genes overexpressed in NKG2A+ NK cells are not signifi-
cantly enriched with heritability for severe COVID-19 compared
with NK-cell genes overall (OR = 9.7 for NKG2A+ NK-cell genes
versus OR = 8.9 for all NK-cell genes; Figure 3B; Table S3). We
conclude that this may not be an important distinction driving se-
vere COVID-19. This is consistent with fine-mapping studies of
the HLA locus that have not revealed genetic variation signifi-
cantly linked to severe COVID-19 (Degenhardt et al., 2021),
and in vitro studies showing that HLA blockade of NK cells
does not alter their capacity for control of SARS-CoV-2 replica-
tion (Witkowski et al., 2021).

Functional profiling of severe COVID-19 risk genes

We sought to systematically characterize the functional roles of
RefMap COVID-19 regions and genes across the 19 cell types
in both healthy and diseased contexts. We first performed motif
enrichment analysis (Heinz et al., 2010) (STAR Methods) for
RefMap regions, which identified four transcription factors
(TFs), including CUX1, TCF12, ZEB1, and ZEB2, whose binding
motifs are enriched in at least one of 19 cell types (HOMER, Q
value < 0.1 and expression percentile >95; Figure 4B). Interest-
ingly, although T cell and NK-cell RefMap gene lists were equally
enriched with heritability for severe COVID-19 (Figure 3A), only
NK-cell risk regions were enriched with a TF binding motif:
ZEB2. ZEB2 is an essential driver of NK-cell maturation (van Hel-
den et al., 2015), and immature NK cells from ZEB2-null mice
perform deficient immunosurveillance in vivo even when in vitro
functions are maintained (Bi and Wang, 2020). We conclude
that deficient NK-cell function leading to severe COVID-19 may
be a result of failed maturation.

Next, we performed functional enrichment analysis for
RefMap genes using Enrichr (Kuleshov et al., 2016; Tables S4
and S5). We observed that RefMap NK-cell genes are enriched
with pathways and gene ontology (GO) terms related to intra-
and inter-cellular signaling important for NK-cell activation,
including “Phospholipase D signaling pathway” (Balboa et al.,
1992), “Antigen processing and presentation,” “regulation of
small-GTPase-mediated signal transduction” (GO:0051056)
(Watzl and Long, 2010), and “regulation of intracellular signal

¢ CellP’ress

transduction” (GO:1902531) (adjusted p < 0.1; Tables S4 and
S5). This is consistent with the hypothesis that COVID-19
severity is determined by failed activation of NK cells. Other
cell-type-specific RefMap gene lists are also enriched with rele-
vant biological pathways. For example, AT2-cell genes are linked
to pathways associated with viral infection such as “human
papillomavirus infection” and “viral carcinogenesis” (adjusted
p < 0.1; Table S5), which is consistent with the established role
of AT2 cells as the initial site of SARS-CoV-2 entry into host cells
(Hoffmann et al., 2020). T cell genes are enriched with “IL-17-
signaling pathway” (adjusted p = 0.021; Table S5), which is inter-
esting in light of previous literature highlighting the production of
IL-17 by T cells from COVID-19 patients as a potential therapeu-
tic target (De Biasi et al., 2020).

We investigated the baseline expression pattern of RefMap
genes in healthy lungs. In particular, we calculated mean expres-
sion levels of genes in different cell types based on lung snRNA-
seq data from Wang et al., 2020a), and then compared the
expression of RefMap genes with the total set of expressed
genes in each cell type. Interestingly, although the gene expres-
sion level was not an input to the RefMap model, RefMap genes
are expressed at a higher level compared with expressed genes
in all 19 cell types, including immune and epithelial cells (false
discovery rate [FDR] < 0.1, one-tailed Wilcoxon rank-sum test;
Figure 4C) but with the exception of pericytes (FDR = 0.11,
Z score = 1.25); notably, pericytes may be downstream in the
pathogenesis of COVID-19 because they are protected by an
endothelial barrier (He et al., 2020). This supports the functional
significance of RefMap genes across multiple cell types in
healthy human lungs. As a negative control, we performed a
similar expression comparison between non-developmental
genes and all expressed genes in lungs, which yielded no signif-
icant difference (Figure S3; STAR Methods).

Finally, given that RefMap COVID-19 genes were identified via
their associated regulatory elements (i.e., ShATAC-seq peaks),
we examined whether there is any expression change for
RefMap genes in the context of SARS-CoV-2 infection. We ob-
tained scRNA-seq data from the respiratory system for a large
COVID-19 cohort (Ren et al., 2021), including 12 bronchoalveolar
lavage fluid (BALF) samples, 22 sputum samples, and 1 sample
of pleural fluid mononuclear cells (PFMCs) from 27 severely and
8 mildly affected patients. Severity was classified based on the
World Health Organization (WHO) guidelines (https://www.
who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1).
For individual cell types, we compared the expression level of
RefMap genes in severe patients versus moderately affected pa-
tients (STAR Methods). Compared with the background tran-
scriptome, we observed that RefMap genes are expressed at a
lower level in corresponding cell types from severe patients
compared with moderate patients (FDR < 0.01, one-tailed Wil-
coxon rank-sum test; Figure 4D), supporting the functional sig-
nificance of RepMap genes in severe COVID-19. As a replication
experiment, we carried out a similar analysis based on an
independent COVID-19 scRNA-seq dataset (Liao et al., 2020),
including 9 BALF samples from 6 severe patients and 3 moder-
ate patients (STAR Methods). The lower expression of RefMap
genes in severe patients is consistent across multiple cell types
(FDR < 0.01, one-tailed Wilcoxon rank-sum test; Figure 4E). Alto-
gether, these transcriptome-based orthogonal analyses are
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consistent with the hypothesis that identified cell-type-specific
RefMap genes are functionally linked to COVID-19 severity.

Identification of gene modules associated with severe
COVID-19
To delineate cell-type-specific molecular mechanisms underlying
severe COVID-19, we next mapped RefMap COVID-19 genes to
the global PPI network and then inspected functional enrichment
of COVID-19-associated network modules. In particular, we ex-
tracted high-confidence (combined score >700) PPIs from
STRING v11.0 (Szklarczyk et al., 2019), which include 17,161 pro-
teins and 839,522 protein interactions. To eliminate the bias of hub
genes (Krishnan et al., 2016), we performed the random walk with
restart algorithm over the raw PPl network to construct a
smoothed network based on edges with weights in the top 5%
(STAR Methods). Next, this smoothed PPI network was decom-
posed into non-overlapping subnetworks using the Leiden algo-
rithm (Traag et al., 2019). This process yielded 1,681 different
modules (Table S6) in which genes within modules are densely
connected but sparsely connected with genes in other modules.
Six modules including M62 (n = 370; mesenchymal cells), M148
(n=364; mesenchymal cells), M546 (n = 90; epithelial cells), M750
(n = 281; endothelial and mesenchymal cells), M1164 (n = 396;
endothelial, epithelial, hematopoietic, and mesenchymal cells),
and M1540 (n = 226; hematopoietic cells) are significantly en-
riched with at least one cell-type-specific RefMap gene list (FDR
<0.1, hypergeometric test; Figures 5A-5C; Table S6). In particular,
RefMap genes specific to ciliated epithelial cells are enriched in
module M546 (FDR < 0.1, hypergeometric test; Figure 5A;
Table S6), which is enriched with biological functions including
“hippo signaling” (GO:0035329) (adjusted p<0.7; Figure 5D). Hip-
po signaling is involved in the EMT response (Lei et al., 2008), and
hence, this result is consistent literature linking the RefMap risk
gene LZTFL1 to severe COVID-19 via increased expression within
ciliated epithelial cells and reduced EMT. RefMap genes ex-
pressed by several epithelial cell types including AT1, AT2, basal,
and ciliated cells are enriched within module M1164 (FDR < 0.1,
hypergeometric test; Figure 5B; Table S6), which is linked to infec-
tion (e.g., “Bacterial invasion of epithelial cells”) and intracellular
signaling (e.g., “regulation of small-GTPase-mediated signal
transduction” (GO:0051056) and “Rho protein signal transduc-
tion” (GO:0007266)) (adjusted p < 0.1; Figure 5E). Moreover,
NK-cell and T cell RefMap genes are specifically enriched within
module M1540 (FDR < 0.1, hypergeometric test; Figure 5C;
Table S6), which is linked to interferon signaling (e.g., “inter-
feron-gamma-mediated signaling pathway” (GO:0060333) and
“positive  regulation of NK-cell cytokine production”
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(GO:0002729)) (adjusted p < 0.1; Figure 5F). Interestingly,
M1540 is also enriched with gene expression linked to CD56+
NK cells (adjusted p < 0.1, Human Gene Atlas).

To further characterize the function of identified modules, we
investigated the expression patterns of module genes based
on scRNA-seq profiling of healthy and diseased tissues. In
particular, genes in module M1540 are relatively overexpressed
in NK and T cells of healthy lungs (Wang et al., 2020a) compared
with the background transcriptome (p = 1.02e—4 and p =
1.81e-5, respectively, one-tailed Wilcoxon rank-sum test; Fig-
ure 5G). In contrast, in respiratory samples infected with
SARS-CoV-2, we observed a downregulation of M1540 genes
in NK and T cells in patients suffering severe disease (Ren
et al., 2021) (p = 6.37e—14 and p = 3.74e—13, respectively,
one-tailed Wilcoxon rank-sum test; Figure 5H). This observation
was replicated in another cohort (Liao et al., 2020) (p = 6.5e—3
and p = 5.88e—7 for NK and T cells, respectively, one-tailed Wil-
coxon rank-sum test; Figure 5l). These results together are
consistent with our previous findings, suggesting that interferon
signaling by NK cells can prevent severe COVID-19.

Rare variant association analysis of COVID-19

risk genes

To verify the set of RefMap genes, we utilized a rare variant anal-
ysis that is orthogonal to our methods described to this point,
which rely on common variant analysis. Rare variants were
used to construct gene-level mutation burden in a large meta-
analysis, including 4,964 severe COVID-19 patients and
570,461 population controls (STAR Methods). Rare variants
were identified by minor allele frequency (MAF) < 1% (STAR
Methods). Only loss-of-function (LoF) mutations were consid-
ered, including nonsense mutations, frameshift mutations, and
splice-site mutations (STAR Methods). A random-effect (Dersi-
monian-Laird) meta-analysis was performed to combine results
from multiple independent cohorts. Of NK-cell RefMap genes,
225 are present within this dataset where 18 are significantly en-
riched (p < 0.05, REGENIE; Mbatchou et al., 2021) with rare var-
iants associated with severe COVID-19. This enrichment is sta-
tistically significant (FDR < 0.1, permutation test; Figures 6A
and 6B; STAR Methods). These 18 genes are significantly en-
riched with biological functions including “negative regulation
of cell adhesion” (GO:0007162) (adjusted p = 2.1e—4, OR =
82.5), which is consistent with a role in recruitment of NK cells
to an area of infection. One of these 18 genes is APOBECS3G (Fig-
ure 6B), which is a cytidine deaminase implicated in the immune
defense against Coronaviridae (Milewska et al., 2018; Wang and
Wang, 2009) and in enhancement of NK-cell antiviral function

Figure 5. PPl modules enriched with COVID-19 genes and their functional characterization

(A-C) Three PPI network modules, including M546 (A), M1164 (B), and M1540 (C), are significantly enriched with ciliated-cell gene, epithelial-cell genes, and
immune-cell genes, respectively. Blue nodes represent RefMap COVID-19 genes and yellow nodes indicate other genes within each module. Edge thickness is
proportional to STRING confidence score (>400).

(D-F) Gene functions that are significantly enriched (Fisher’s exact test, adjusted p < 0.1) in modules M546 (D), M1164 (E), and M1540 (F). GOBP, GO biological
process.

(G) Gene expression analysis of module genes in NKand T cells. The transcriptome was defined as the total set of expressed genes in NK and T cells, respectively.
(H and I) Comparative gene expression analysis of module genes in severe COVID-19 patients versus moderate patients based on scRNA-seq datasets from Ren
etal. (H) and Liao et al. (I), respectively. The Z score of Wilcoxon rank-sum test was used to indicate the change of gene expression between severe and moderate
patient groups. Violin plots show the distribution of gene expression changes within each group, and boxplots indicate the median, IQR, Q1 — 1.5 X IQR, and Q3 +
1.5 x IQR. Distributions were compared by one-tailed Wilcoxon rank-sum test.

See also Table S6.
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APOBEC3G  1.142597 0.3980405 0.004098 4166 568193 837
CMTM7 4.3951113 | 1.6693336 0.008467 | 1562 530113 70
FNDC3B 3.3909267 1.5220001  0.02588 1685 530607 52
GRAP2 1.8907092 0.7901131 0.01671 3719 552392 174
HDAC4 2.296866 1.1535357 | 0.04646 1763 549913 52
HIVEP3 1.8490742 0.5255951 0.0004347 2309 560204 339
IL17RA 1.4887629 0.634454 0.01895 3905 566000 254
NF2 1.0959715 0.5513719 0.04684 1749 558569 731
NOTCH1 2.1166519 | 0.9240593 0.02199 1999 545559 152
PITPNB 3.3541076  1.4894145 0.02432 1749 558569 74
PLXND1 1.667027 0.5102646 0.001087 | 3779 553498 307
PTBP2 3.0119456  1.4398726 0.03646 1638 517166 25
RBM6 -2.7524372 1 1.1931974 | 0.02107 3069 509201 93
RHOA 3.6892732 1.3212193  0.005233 | 1263 400410 13
SLC20A2 2.9348089 | 1.0968631 0.007459 | 1800 547954 77
TBC1D2B 1.7838432 0.904058  0.04848 3748 564773 182
TNFRSF1B 2.5571908 0.8787731 0.003615 | 3232 559779 63
ZNF638 1.5041852 0.5531376 0.006541 | 3957 566509 808

Figure 6. Rare variant analysis supports the association of NK cells with severe COVID-19

(A) Enrichment analysis of cell-type-specific RefMap COVID-19 genes based on rare variant associations. *: Q value < 0.1, permutation test.

(B) Overlapping genes between the RefMap NK-cell gene set and the rare-variant-associated gene set (p < 0.05, REGENIE). MAC, minor allele count.

(C) Q-Q plot of rare variant association test for RefMap NK-cell genes and all RefMap genes, including expected p values based on the null hypothesis and
observed p values by REGENIE.

See also Figure S4 and Table S7.
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(Norman et al., 2011). Moreover, the mean p value and median p
value of NK-cell RefMap genes in the rare variant test are signif-
icantly lower than expected by chance (p = 0.02 and p = 0.03,
respectively, permutation test; STAR Methods). The enrichment
of rare variants associated with severe COVID-19 within NK-cell
RefMap genes is greater than for RefMap genes overall (A\gc =
1.09 for NK-cell genes versus Agc = 0.89 for all RefMap genes;
Figure 6C; STAR Methods) or any other cell-type-specific
RefMap gene list, again, consistent with a role of NK cells in se-
vere COVID-19.

Similar enrichment with rare variants associated with severe
COVID-19 was observed for macrophage RefMap genes, which
supports a role for this cell type in susceptibility to COVID-19;
this idea has been proposed previously by others (Delorey
et al,, 2021a). Of 450 macrophage RefMap genes, 32 are
significantly enriched (p < 0.05, REGENIE) with rare variants
associated with severe COVID-19 (FDR<O0.1, permutation test;
Figure 6A; Table S7; STAR Methods). These 32 genes are en-
riched with biological functions including “response to chemo-
kine” (GO:1990868) (adjusted p = 0.02, OR = 111), which is
consistent with a role in immune cell recruitment. Overall, our
data suggest that rare LoF genetic variation associated with se-
vere COVID-19 selectively impairs migration of immune cells to
the site of viral entry, in accordance with previous literature
(Hussman, 2020).

DISCUSSION

The COVID-19 pandemic is a global health crisis (Dong et al.,
2020). Vaccination efforts have led to early successes (Shilo
et al., 2021), but the prospect of evolving variants capable of im-
mune-escape (Darby and Hiscox, 2021) highlights the importance
of efforts to better understand the COVID-19 pathogenesis and to
develop effective treatments. Host genetic determinants of dis-
ease severity have been investigated (Severe Covid-19 GWAS
Group et al., 2020; Benetti et al., 2020; COVID-19 Host Genetics
Initiative, 2021; Kosmicki et al., 2021; Novelli et al., 2020; Pairo-
Castineira et al., 2021; Shelton et al., 2021; Wang et al., 2020b),
but the findings and functional interpretations so far have been
limited (Huang et al., 2020). In contrast, studies of the immune
response accompanying severe COVID-19 (Arunachalam et al.,
2020; Lucas et al., 2020; Mathew et al., 2020; Sosa-Hernandez
et al., 2020) have struggled to establish causality leading to a
diverse array of candidates and little consensus. Our contributions
are an integrated analysis of common and rare host genetic vari-
ation causally linked to severe COVID-19, together with biological
interpretations via single-cell omics profiling of lung tissue and
identification of >1,000 risk genes explaining the majority of
SNP-based heritability of severe COVID-19.

Our RefMap analysis, which integrates GWAS summary statis-
tics with epigenetic profiles (Zhang et al., 2022), uncovers a land-
scape of cellular dysfunction within lung tissue leading to severe
COVID-19. Our findings are consistent with previous literature,
but our focus on host genetics allows us to make conclusions
about upstream causation, which has been missing from previ-
ous studies. In particular, we highlight the failure of cytokine pro-
duction by CD56°"9" NK cells. Our MR analyses revealed that
genetic predisposition to lower counts of mature NK cells is
associated with increased risk of severe COVID-19 and NK-
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cell-specific RefMap risk genes are enriched for binding motifs
for ZEB2, a TF involved in NK-cell maturation. Our rare variant
analysis revealed that LoF variants, which impair NK-cell func-
tion and potentially NK-cell recruitment to a site of infection, in-
crease risk of severe COVID-19. Interestingly, we showed that
LoF variants within APOBECS3G increase the risk of severe
COVID-19, which is consistent with previous literature linking
this protein to the NK-mediated immune response to Coronavir-
idae (Milewska et al., 2018; Norman et al., 2011; Wang and
Wang, 2009).

Previous work has implicated both the IFN-y response and the
importance of CD56°"9" NK cell function in development of se-
vere COVID-19. Our contribution is that we have arrived at this
result through study of host genetics, which are fixed at concep-
tion and so necessarily upstream of SARS-CoV-2 infection. This
also helps to explain an apparent contradiction between our re-
sults that predict a failure of the IFN-y response in severe
COVID-19 and studies that have positively correlated serum
IFN-y with COVID-19 mortality (Gadotti et al., 2020). In a purely
observational study, it is impossible to distinguish cause and ef-
fect, and individuals with mild disease will likely have a lower viral
load and therefore an attenuated IFN-y response. The key com-
parison is the capacity of NK cells to produce a suitable immune
response to SARS-CoV-2 at the earliest stages of infection or
even before infection has actually occurred. Given that experi-
mentally introducing viruses to healthy individuals is not feasible,
we believe that our genetics-based approach is an optimal
method to determine which events are upstream and truly causal
in the development of severe COVID-19. Other observational
studies are entirely consistent with our own observations; for
example, NK-cell counts at the time of admission predict the
rate of decline in viral load (Witkowski et al., 2021), which is exactly
what we would predict from our MR results. The same study
observed a relationship between low blood counts of CD56°" 9"
NK cells in the first week after COVID-19 symptom onset and
increased likelihood of severe disease, which directly mirrors
our own conclusions regarding this NK-cell subtype. Another
study of immune cell profiles during active infection observed a
relative contraction of NKG2D+ and CD56°"9" NK-cell counts in
patients with poor COVID-19 outcomes (Varchetta et al., 2021).
These studies are of course important, but our work now shows
that these findings are dependent on host factors and not deter-
mined by viral properties. Ultimately, this could enable prediction
of COVID-19 risk in uninfected individuals. In the cancer field, NK-
cell stimulation has been postulated as a therapeutic strategy (Hu
etal., 2019). We propose that this strategy could protect at-risk in-
dividuals in future waves of COVID-19.

We highlight the importance of T cells and NK cells in
particular. Other immune cell types, such as B cells, carry
less genetic risk for severe COVID-19. This is consistent
with previous literature demonstrating robust immune re-
sponses to infection with SARS-CoV-2, even in patients with
dramatic B cell depletion due to hematological malignancy
(Bange et al., 2021).

Our study has several limitations. Our genetic discovery data
are largely focused on European ancestry, which may limit wide-
spread applicability. In part, this was because we did not have
access to individual-level data, and therefore, we necessarily
performed out-sample LD estimation, which can lead to false
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positive results (Benner et al., 2017). To mitigate this, both our
transcriptome analyses and rare variant burden testing encom-
passed several population groups. We also analyzed the gene
intolerance to LoF variants using probability of loss of function
intolerance (pLI) and observed/expected ratio (o/e) scores (Karc-
zewski et al., 2020; Lek et al., 2016), which measure the excess
of LoF variants for individual genes compared with the genome-
wide expected baseline. The pLI score and o/e scores are calcu-
lated based on EXAC and gnomAD exome cohorts, respectively,
which involve multiple populations. Interestingly, we observed
that our RefMap NK-cell genes have significantly larger pLlI
scores and smaller o/e scores compared with the total set of pro-
tein-coding genes (pLl: p = 3.16e—16, Wilcoxon rank-sum test;
o/e: p =1.33e—16, Wilcoxon rank-sum test; Figure S5), suggest-
ing that the RefMap NK-cell genes are intolerant to LoF muta-
tions, regardless of populations and demonstrating their func-
tional significance. The validation of our genes in orthogonal,
and independent data from diverse ancestries indicate the pop-
ulation transposability of our findings. In addition, in the absence
of tissue-specific QTL data, we mapped risk genes from regula-
tory regions using the “closest-gene” method, which has been
widely used in the absence of 3D genome profiling (e.g., Hi-C)
(Buniello et al., 2019; Mountjoy et al., 2020). Indeed, in the
context of mapping disease risk loci, assigning the cis-regulatory
elements (CREs) to their closest neighbors yields comparable re-
sults compared with more advanced methods (Nasser et al.,
2021). Using decaying weights (e.g., exponentially) based on
the distance from CREs to the transcription start sites (TSSs) in
predicting gene expression also gives competitive results
(Zhou et al., 2018). These previous studies indicate that the
closest-gene method is a reasonable method when lacking other
orthogonal molecular profiling. Next, our analysis did not have
sufficient resolution to detect all potentially relevant cellular sub-
types, and some rare cell types, such as ionocytes (Montoro
et al., 2018), went completely undetected in the profiling data
we used.

Finally, we have not performed any in vitro experimental
follow-up studies; we expect that cultured NK cells derived
from individuals carrying an at-risk genotype would demonstrate
reduced expression of RefMap COVID-19 genes and reduced
ability to control viral replication in co-culture with an appropriate
cell type, such as Calu3 cells. We note that use of this system by
others confirmed our prediction that NKG2D signaling is neces-
sary for NK cell control of viral replication (Witkowski et al., 2021).
However, there are limitations of such in vitro systems that fail to
capture all the interactions between the numerous cell types pre-
sent invivo. A recent study revealed that manipulating the activa-
tion of NK cells in a mouse model resulted in a significantly higher
viral burden (Wang et al., 2021), but there are limitations to animal
models that do not necessarily translate to human disease. We
suggest that our genetic profile could be used to guide a pro-
spective study and even a protective intervention trial in human
patients.

In conclusion, we have uncovered a genetic architecture of se-
vere COVID-19 integrated with single cell-resolution biological
functions. Both common and rare variant analyses have high-
lighted NK-cell activation as a key determinant of disease
severity. Our framework can be applied to decipher the genetic
and biological basis of other complex diseases.
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Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

The RefMap model

The general idea of RefMap is to model the genetic associations within individual genomic regions whose function is informed by
epigenetic features. In particular, in RefMap allele Z-scores were calculated as Z=b/se, where b and se are effect size and standard
error, respectively, as reported by the COVID-19 GWAS (COVID-19 Host Genetics Initiative, 2021) (COVID-19 Host Genetics Initia-
tive, Release 5, phenotype definition A2, EUR only) where the sample age, sex, and ancestry information were included as covariates.
Given Z-scores and lung snATAC-seq peaks, we aim to identify functional genomic regions in which the Z-score distribution is signif-
icantly shifted from the null distribution, informing the disease association. Suppose we have K 1Mb linkage disequilibrium (LD)
blocks, where each LD block contains J (k=1,..., K) 1kb regions and each region harbors /; (j=1,..., Ji, l;x>0) SNPs, the Z-scores
follow a multivariate normal distribution, i.e.,

zk|uk~./\/(2kuk,2k), k = 1,"',’(7 (EqUatiOn 1)
where the Z-score of the i-th SNP in the j-th region of the k-th block is denoted as z; j « (i=7...., /;) and uy are the effect sizes that can
be expressed as
-

= T “ee T Ry T i
U = Uiy g 5 Yggne Uiy k] (Equation 2)

3 € RkXl in Equation 1 represents the in-sample LD matrix comprising of the pairwise Pearson correlation coefficients between
pairs of SNPs within the k-th block, and I« is the total number of SNPs given by I, = EI-JQ 4ljx. Here, since we have no access to the
individual-level data, we used EUR samples from the 1000 Genomes Project (Phase 3) to estimate X, which yields the out-sample LD
matrix. A modified Cholesky algorithm (Cheng and Higham, 1998) was used to get a symmetric positive definite (SPD) approximation
of the LD matrix.

Further, we assume u;; (i=1,..., ;) are independent and identically distributed (i.i.d.), following a normal distribution given by

Uijk {mf,ka A/'.,k ~ N(m]'.,k7 Aj‘_k1) 7i =1 5" ”>Ij,ka (Equation 3)
in which the precision A follows a Gamma distribution, i.e.,
Ak ~ Gamma(ao, bo). (Equation 4)

Furthermore, to characterize the shift of the expectation in Equation 3 from the null distribution, we model m; , by a three-compo-
nent Gaussian mixture model (GMM) given by

(1) {0 1)

Mik|tix, Vo1,Vi1, 70,71 ~ N (= Vq,Tj)t"‘; N0, 7 )N (viq, 7 1), (Equation 5)

negative zero positive
in which the precisions follow
T_1,T0,T+1 ~ Gamma(ao, bo), (Equation 6)

and v_q; and v,; are non-negative variables measuring the absolute values of effect size shifts for the negative and positive
components, respectively.

To impose non-negativity over v_; and v,41, we adopt the rectification nonlinearity technique proposed previously (Harva and
Kaban, 2007). In detail, we assume v_; and v, follow

Voqm_q, A4 ~ f)tN(m,17A,1), (Equation 7)
V+1‘m+17171 N%N(m+1al+1)7 (Equation 8)
in which the rectified Gaussian distribution is defined via a dumb variable. We then define v_4 and v, by
v_y = max(r-1,0), (Equation 9)
Vi1 = max(ryq,0), (Equation 10)

which guarantees that v_; and v, are non-negative. The dump variable r_4 and r,; follow the Gaussian distributions given by

roqlm_q, A ~ N (m_y,27}), (Equation 11)

Cell Systems 13, 1-17.e1-e6, August 17, 2022 e2




Please cite this article in press as: Zhang et al., Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity, Cell Systems
(2022), https://doi.org/10.1016/j.cels.2022.05.007

¢ CellP’ress Cell Systems

OPEN ACCESS

r+1|m+1.,/1+1 "\“N(m+17A:1)7 (Equation 12)

where m, and 1. follow the Gaussian-Gamma distributions, i.e.,
Moy, g~ N(ﬂo, (Bor_1)"" )Gamma(ao,bo), (Equation 13)
M1, Ay ~ /\/’(uo, (BoAs1) ™" )Gamma(ao,bo). (Equation 14)

Note that an advantage of the rectification nonlinearity is it is tractable in the variational inference framework (Harva and Ka-
ban, 2007).

The indicator variables in Equation 5 denote whether that region is disease-associated or not. Indeed, we define the region to be
disease-associated if t;; V=1or tj(,:' Y = 1, and to be non-associated otherwise. To simplify the analysis, we put a symmetry over

tj(;” and t;;”, and define the distribution by

p(twc| miwe) = (O~57rj,k)t1(';”(1 _ mk)ﬁﬁ?(0‘5771_‘;{)1,5;”7/- =1, ok =1, K. (Equation 15)
Furthermore, to incorporate the functional information into the modeling, we define the probability parameter ; in Equation 15 as
Tik = C (WTS/,k), (Equation 16)

where o(.) is the sigmoid function, s; is the vector of epigenetic features for the j-th region in the k-th LD block, and the weight
vector w follows a multivariate normal distribution, i.e.,

w4 ~N(0,4"), (Equation 17)
and A4 follows
A~WWy, ). (Equation 18)

In this study, the epigenetic feature s; x was calculated as the overlapping ratios of that region with the snATAC-seq peaks detected
in any of the cell types in healthy human lungs. All priors in RefMap are defined based on the conjugacy rule to make the variational
inference tractable.

Based on the model defined in Equations 1-18, we are interested in calculating the posterior probability p(T | Z, S), where the mean-
field variational inference (MFVI) and local variational method (Blei et al., 2017) were adopted to solve the intractability. Here, we used
variational inference, an approximate inference framework, because of its superiority in convergence rate compared to sampling
methods. More technical details, including a coordinate ascent-based inference algorithm, can be found in Zhang et al. (2022). In
this study, we ran the MFVI algorithm per chromosome to further accelerate the computation. The Q*- and Q -scores were defined
asq(t*" = 1) and g(t\~") = 1), respectively, and we also defined the Q-score as Q=Q*+Q". RefMap regions were identified by Q*-
or Q™-score >0.95.

Mapping cell-type-specific genes from RefMap regions

For each cell type within lung tissue, we defined cell-type-specific RefMap regions as the overlap between RefMap regions and the
total set of sSnATAC-seq peaks detected in that cell type. Cell-type-specific RefMap genes were then identified if the extended gene
body (i.e., the region up to 10kb either side of the annotated gene body) overlapped with any of the cell-type-specific regions (Turro
et al., 2021). To get the final gene lists, non-expressed genes in corresponding cell types were excluded from RefMap genes in the
downstream analysis. In addition, we note that there are non-adult samples (~30 weeks gestation and ~3 years) sequenced in the
single cell profiling data (Wang et al., 2020a). To remove the bias towards lung development, we first calculated the fold change of
gene expression levels between the adult sample (~30 years) and non-adult ones, and defined non-developmental genes (nDG) as
those with FC>1.5. Only RefMap genes that were identified as expressed and non-developmental in each cell type were kept for
downstream analysis.

Validation of RefMap results in 23andMe and GenOMICC datasets
We calculated the overlap of total RefMap regions and of cell-type-specific RefMap regions with genomic regions shown to contain
COVID-19-associated SNPs (p < 1e-04) based on the GWAS of an independent cohort recruited by 23andMe (Shelton et al., 2021).
To determine whether the observed overlap is statistically significant, we examined the average overlap with ten sets of control re-
gions of equivalent length to RefMap regions. Control regions were +/-1Mb-5Mb distant from the RefMap regions (Quinlan and Hall,
2010). The same procedure was performed for the GenOMICC dataset (Kousathanas et al., 2021).

SNP association with COVID-19 in the 23andMe and GenOMICC datasets was calculated as previously described (Kousathanas
et al., 2021; Pairo-Castineira et al., 2021).
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Heritability analysis

We used LD score regression (LDSC) (Bulik-Sullivan et al., 2015) to calculate the SNP-based heritability based on different GWAS and
different gene sets in this study. Partitioned heritability was calculated as previously described (Finucane et al., 2015). Briefly, for all
gene lists, we examined the proportion of total SNP-based heritability carried by SNPs +/-100kb from the transcription start site (TSS)
of each gene in the list. Enrichment was calculated by comparing the ratio of partitioned heritability to the quantity of genetic material.

Implementation details of MAGMA, PAINTOR and Pascal

MAGMA (v1.08) (de Leeuw et al., 2015) and Pascal (Lamparter et al., 2016) were applied using default settings. Input consisted of
summary statistics for all SNPs genome-wide as measured in the COVID-19 GWAS (COVID-19 Host Genetics Initiative, 2021).
We employed PAINTOR (v3.0) following the guidance provided in Kichaev et al. (2014) and https://github.com/gkichaev/
PAINTOR_V3.0/. The genome was annotated based on the snATAC-seq peaks detected in human lungs (Wang et al., 2020a). We
ran the algorithm in the MCMC mode. All other parameters in PAINTOR were left to be default. In all cases, we estimated the LD struc-
ture using EUR samples from the 1000 Genomes Project phase 3.

Mendelian randomization

In total, 46 GWAS measures of NK cell subtypes were identified from the IEU Open GWAS Project, including "met-b-124", "met-b-
245", "met-b-242", "met-b-237", "met-b-258", "met-b-246", "met-b-249", "met-b-140", "met-b-240", "met-b-123", "met-b-250",
"met-b-239", "met-b-120", "met-b-154", "met-b-247", "met-b-251", "met-b-238", "met-b-243", "met-b-244", "met-b-153", "met-
b-248", "met-b-152", "met-b-122", "met-b-121", "met-b-252", and "met-b-241" (Roederer et al., 2015). Exposure SNPs or instru-
mental variables (IVs) are chosen based on an arbitrary P-value cutoff (Choi et al., 2019; Wootton et al., 2018). A cutoff that is too
low will lose informative instruments, but a cutoff that is too high could introduce non-informative instruments. We chose to set
the cutoff at 5e-06 in line with our previous work (Julian et al., 2021). We employed a series of sensitivity analyses to ensure that
our analysis was not confounded by invalid 1Vs. Identified SNPs were clumped for independence using PLINK clumping in the
TwoSampleMR tool (Purcell et al., 2007). A stringent cutoff of R <0.001 and a window of 10,000kb were used for clumping within
a European reference panel. Where SNPs were in LD, those with the lowest P-value were retained. SNPs that were not present in the
reference panel were excluded. Where an exposure SNP was unavailable in the outcome dataset, a proxy with a high degree of LD
(R?>0.9) was identified in LDlink within a European reference population (Machiela and Chanock, 2015). Where a proxy was iden-
tified to be present in both datasets, the target SNP was replaced with the proxy in both exposure and outcome datasets in order to
avoid phasing issues (Hartwig et al., 2016). Where a SNP was not present in both datasets and no SNP was available in sufficient LD,
the SNP was excluded from the analysis. The effects of SNPs on outcomes and exposures were harmonized in order to ensure that
the beta values were signed with respect to the same alleles. For palindromic alleles, those with minor allele frequency (MAF) > 0.42
were omitted from the analysis in order to reduce the risk of errors due to strand issues (Hartwig et al., 2016).

The MR measure with the greatest power is the inverse-variance weighted (IVW) method, but this is contingent upon the exposure
IV assumptions being satisfied (Burgess and Thompson, 2017). With the inclusion of a large number of SNPs within the exposure 1V, it
is possible that not all variants included are valid instruments and therefore, in the event of a significant result, it is necessary to
include a range of robust methods which provide valid results under various violations of MR principles at the expense of power
(Burgess et al., 2019). Robust methods applied in this study include MR-Egger, MR-PRESSO, weighted median, weighted mode,
and MR-Lasso.

With respect to the IVW analysis, a fixed-effects (FE) model is indicated in the case of homogeneous data, whilst a multiplicative
random effects (MRE) model is more suitable for heterogeneous data. Burgess et al. recommended that an MRE model be imple-
mented when using GWAS summary data to account for heterogeneity in variant-specific causal estimates (Burgess et al., 2019).
In the interest of transparency, we calculated both results but present the MRE in the text.

MR analyses should include evaluation of exposure IV strength. In order to achieve this, we provided the F-statistic, MR-Egger
intercept, MR-PRESSO global test, Cochran’s Q test, and I? for our data. The F-statistic is a measure of instrument strength with
>10 indicating a sufficiently strong instrument (Burgess et al., 2011). We provided F-statistics for individual exposure SNPs and
the instrument as a whole. Cochran’s Q test is an indicator of heterogeneity in the exposure dataset and serves as a useful indicator
that horizontal pleiotropy is present as well as directing decisions to implement FE or MRE IVW approaches (Bowden et al., 2018).
The MR-Egger intercept test determines whether there is directional horizontal pleiotropy. The MR-PRESSO global test determines if
there are statistically significant outliers within the exposure-outcome analysis (Verbanck et al., 2018). /2 was calculated as a measure
of heterogeneity between variant specific causal estimates, with a low /? indicating that Egger is more likely to be biased towards the
null (Bowden et al., 2016). Finally, we performed a leave-one-out analysis using the method of best fit for each exposure SNP within
the IV in order to determine if any single variants were exerting a disproportionate effect upon the results of our analysis (Burgess
et al., 2019). The same MR analysis was conducted for COVID19-hg and GenOMICC GWAS independently.

Single-cell multiome profiling of NK cells

To obtain the NK single-cell multiome data, human PBMCs were isolated from a 33 year old male and sorted including CD14 exclu-
sion (Renoux et al., 2015) to isolate NK cells (as utilized in Gauthier et al. (2019). NK cells were isolated by a series of monoclonal
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antibodies conjugated to magnetic beads (Miltenyi Biotech). The final step was sorting (AutoMACS pro separator, Miltenyi Biotech) to
achieve CD14 exclusion (monocytes). A detailed nuclei isolation protocol can be found at https://www.encodeproject.org/
experiments/ENCSR710NDM/.

After nucleiisolation the 10x multiome protocol (Chromium Next GEM Single Cell Multiome ATAC + Gene Expression Reagent Bundle,
PN-1000283) was followed according to manufacturer’s instructions (10X Genomics, USA) and can be accessed at https://assets.
ctfassets.net/an68im79xiti/1MrGvRY2vJFOFc1lcn3BPW/d24d1099ee82656f5¢230cd08bdaec8b/CG000338_ChromiumNextGEM_
Multiome_ATAC_GEX_User_Guide_RevD.pdf or https://www.encodeproject.org/experiments/ENCSR710NDM/.

Libraries were sequenced on a NovaSeq6000 instrument. The scATAC-seq libraries were sequences as follows: Read 1N, 50 cy-
cles; i7 Index, 8 cycles; i5 Index, 24 Cycles; Read 2N, 49 cycles. The snRNA-seq libraries were sequenced as follows: Read 1, 28
cycles; i7 Index, 10 cycles; i5 Index, 10 Cycles; Read 2, 90 cycles.

12,834 cells were profiled; 5,046 ATAC fragments and 858 expressed genes were identified per cell. TSS enrichment score for the
scATAC-seq data was 11. Raw data was analyzed using CellRanger ARC (10X Genomics).

Deriving cell-type-specific genes for T-cell and NK-cell subtypes

We derived CD4" and CD8* T-cell genes from RefMap T-cell genes based on their relative expression (Travaglini et al., 2020). In
particular, we defined CD4" T-cell genes as those genes higher expressed in CD4* T cells compared to CD8* T cells (FC>1.5).
The CD8" T-cells genes were defined similarly. Identified gene sets were then analyzed in downstream analysis such as heritability
partitioning as described above (see section “heritability analysis”).

NK-cell multiome data was analyzed using ArchR (Granja et al., 2021). NK-cell subtypes were identified based on relative expres-
sion and open chromatin over the gene body and promoter, respectively. In downstream analysis doublets (a single droplet contain-
ing multiple cells) were excluded. Missing data was imputed using MAGIC (Markov affinity-based graph imputation of cells) (van Dijk
et al., 2018). Dimensionality reduction was performed by iterative latent semantic indexing (LSI) and data was visualized using uni-
form manifold approximation and projection (UMAP). RefMap NK-cell genes were assigned to NK-cell subtypes based on relative
expression within NK multiome data. For each subtype, a suitable control group provided a comparison to identify genes overex-
pressed (FC>1.5) in the subgroup of interest: CD56°"9" NK cells were compared to CD56™" NK cells; NKG2D+, CD16+ and
NKG2A+ NK cells were compared to NKG2D-, CD16- and NKG2A- NK cells respectively. Whereas the latter three groups were iden-
tified based on presence/absence of expression, CD56°"9"dM NK cells were identified by first excluding cells with no CD56 expres-
sion, and then dividing the remaining cells based on the overall median expression of CD56. The method applied here is analogous to
that used to assign RefMap T-cell genes to CD4*/CD8" T-cells.

Motif enrichment analysis

Motif enrichment analysis was performed using HOMER v4.11 (Heinz et al., 2010). Specifically, to focus on RefMap regions and re-
move enrichment bias from the general chromatin accessibility, we used the original snATAC-seq peaks as the background in the
analysis. Other parameters were left to be default.

Transcriptome analysis

Four single-cell RNA-seq datasets were used in the transcriptome analyses, including human healthy lungs (Travaglini et al., 2020;
Wang et al., 2020a) and COVID-19 patients (Liao et al., 2020; Ren et al., 2021). Data after quality control (QC) was acquired for each
study. Only samples from the respiratory system were considered in the analyses. For the healthy lung data, only expressed genes
were considered in the analysis. For the disease samples, we removed the overlap of severe patients between the two cohorts (Liao
etal., 2020; Ren et al., 2021). In the comparative expression analysis of severe versus moderate patients, to stabilize the analysis we
estimated the change of gene expression levels using the Z-score estimated from Wilcoxon rank-sum test, wherein a positive
Z-score indicates a higher expression level in severe patients and a negative value suggests the lower expression. The Benja-
mini-Hochberg (BH) procedure was used for multiple testing correction throughout the study.

Network analysis

We first downloaded the human PPIs from STRING v11, including 19,567 proteins and 11,759,455 protein interactions. To eliminate
the bias caused by hub proteins, we first carried out the random walk with restart algorithm (Wang et al., 2015) over the PPI network,
wherein the restart probability was set to 0.5, resulting in a smoothed network after retaining the top 5% predicted edges. To decom-
pose the network into different subnetworks/modules, we performed the Leiden algorithm (Traag et al., 2019), a community detection
algorithm that searches for densely connected modules by optimizing the modularity. After the algorithm converged, we obtained
1,681 modules with an average size of 9.98 nodes (SD=53.35; Table S6).

Rare-variant burden testing

Rare-variant burden testing was performed to determine whether any genes were differentially enriched with rare variants between
severe COVID-19 patients and population controls. MAF were checked against gnomAD/ESP, as well as a pooled common variant
list obtained from 19 of the 21 participating cohorts; variants with MAF >1% were removed. We utilized an additive model in which a
score of 0 was assigned if there were no deleterious variants identified in a particular gene; 1 if at least one deleterious variant, but all
heterozygous; and 2 if at least one homozygous deleterious variant. All burden tests were performed using REGENIE v2 (Mbatchou
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et al., 2021) with firth correction. LoF variants were identified by HIGH impact in the Ensembl annotations from VEP (McLaren et al.,
2016). Meta-analysis was performed in two steps: first an inverse-variance weighted fixed-effect meta-analysis was performed to
obtain summary statistics of the same ancestry. Then a random-effect (Dersimonian-Laird) meta-analysis was applied across the
resulting mono-ancestry summary statistics. To avoid inflation of test statistics we removed all genes for which the number of con-
trols was <5,000 or the MAC<10. A QQ-plot confirmed that there was no significant genomic inflation (Agc=0.825; Figure S4). Sig-
nificant enrichment of rare LoF variants associated with severe COVID-19 for each cell-type-specific RefMap gene set was deter-
mined by comparing with 10,000 gene sets of the same size randomly selected from genes which passed all stages of QC.
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