
This is a repository copy of A Methodology for Efficient Tile Size Selection for Affine Loop
Kernels.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/189159/

Version: Accepted Version

Article:

Kelefouras, V, Djemame, K, Keramidas, G et al. (1 more author) (2022) A Methodology for
Efficient Tile Size Selection for Affine Loop Kernels. International Journal of Parallel
Programming, 50 (3-4). pp. 405-432. ISSN 0091-7036

https://doi.org/10.1007/s10766-022-00734-5

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part
of Springer Nature 2022. This is an author produced version of an article published in
International Journal of Parallel Programming. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

A methodology for efficient tile size selection for

affine loop kernels

Vasilios Kelefouras · Karim Djemame ·

Georgios Keramidas · Nikolaos Voros

Received: date / Accepted: date

Abstract Reducing the number of data accesses in memory hierarchy is of
paramount importance on modern computer systems. One of the key optimiza-
tions addressing this problem is loop tiling, a well-known loop transformation
that enhances data locality in memory hierarchy. The selection of an appropri-
ate tile size is tackled by using both static (analytical) and dynamic empirical
(auto-tuning) methods. Current analytical models are not accurate enough to
effectively model the complex modern memory hierarchies and loop kernels
with diverse characteristics, while auto-tuning methods are either too time-
consuming (due to the huge search space) or less accurate (when heuristics are
used to reduce the search space).

In this paper, we reveal two important inefficiencies of current analytical
loop tiling methods and we provide the theoretical background on how current
methods can address these inefficiencies. To this end, we propose a new loop
tiling method for affine loop kernels where the cache size, cache line size and
cache associativity are better utilized, compared to the existing methods.

Our evaluation results prove the efficiency of the proposed method in terms
of cache misses and execution time, against related works, icc/gcc compilers
and Pluto tool, on x86 and ARM based platforms.

Keywords loop tiling · data cache · cache misses · analytical model · data
reuse · energy consumption

1 Introduction

Loop tiling is one of the key code transformations in optimizing data locality
and it is one of the most performance critical optimizations for data dominant
loop kernels [8]. The selection of an efficient tile size is a critical parameter as
tiles of different sizes can lead to significant variations in performance [25].

Address(es) of author(s) should be given

2 Vasilios Kelefouras et al.

The two main strategies to address the tile size selection problem are ana-
lytical [25] and empirical [35]. The former refers to static approaches in which
the tile size is selected based on static code analysis of the loop kernel and the
processor memory configuration (number of caches, cache sizes, associativity,
line size). Typically, the analytical loop tiling methods output the number of
cache misses as a function of the tile sizes, input size (of the executed kernel),
and cache characteristics, normally for single-threaded affine loop kernels. The
second strategy refers to empirical (experimental-based) approaches that rely
on auto-tuning. In auto-tuning, the input program is executed multiple times
assuming different tile sizes, until the best solution is found. The input pro-
gram is considered as a black-box and no information of the source code is
extracted. A well-known auto-tuning library for linear algebra is ATLAS [37].

To the best of our knowledge, current analytical methods fail to identify
optimal tile sizes across a wide range of programs and target platforms [35].
As a result, the gap between the performance delivered by the best known
tile sizes (which are found manually) and those selected by current analytical
methods, is high. The main reason for which current analytical methods are
not that successful lies in the fact that modelling the complex and deep modern
memory hierarchies and the diverse arrays’ memory access patterns and data
reuse, is a very hard and complex task.

In this paper, we first demonstrate two important inefficiencies of current
analytical methods and provide insight on how current methods can address
these inefficiencies. Second, we propose a new loop tiling method, for single-
threaded programs. The first drawback of current analytical methods is that
they poorly calculate the tiles sizes; in fact, the actual tiles sizes are usually
larger than the calculated sizes and as a consequence additional unforeseen
cache misses occur (not captured by the method). The second drawback is that
the tiles cannot remain in the cache in most cases due to the cache modulo
effect. This is because the cache line size, cache associativity and data reuse of
tiles, are not efficiently taken into account. Therefore, current methods cannot
accurately calculate the number of cache misses for each tile size, leading to
sub-optimal tile sizes.

The aim of our loop tiling method is to find the tile sizes (tile set) that
minimize the number of cache misses. Although the number of cache misses
does not always align with performance (execution time), it is the key perfor-
mance indicator for loop tiling [25] [31]. First, the proposed method discards
all the tile sets that cannot fit or remain into the cache. They considered as
inefficient, as they give high cache misses values. Then, the remaining tile sets
are processed and their number of cache misses is estimated by using a simple
and lightweight model. Last, the tile set that offers the minimum number of
cache misses is selected.

Our experimental results depict that by using our method the tiles indeed
fit and remain into the cache and it is also possible to estimate the number
of cache misses with a maximum error of 1% using simulation and 3.2% and
5.9% by using the processor’s hardware counters on L1 data cache and L3
cache, respectively, leading to more efficient tile sizes. Our method offers high

A methodology for efficient tile size selection for affine loop kernels 3

cache misses gains and significant speedups over a related method, icc and gcc
compilers and Pluto tool [8] (for a fair comparison only the loop tiling feature
of Pluto is enabled).

This research work has resulted in three contributions.

– A research work demonstrating two important inefficiencies of current an-
alytical loop tiling methods

– A research work providing the theoretical background on how current
methods can tackle the aforementioned inefficiencies

– A new loop tiling method that better exploits the cache size, cache line
size and cache associativity

The remainder of this paper is organized as follows. In Section 2, the related
work is reviewed. The proposed methodology is presented in Section 3 while
experimental results are discussed in Section 4. Finally, Section 5 is dedicated
to conclusions.

2 Related Work

As noted, the problem of the optimum tile size selection is addressed by using
two main approaches, analytical methods and empirical methods. The analyt-
ical methods refer to static approaches, where the tile size is selected based
on static analysis of the loop kernel and the memory’s hardware characteris-
tics. In this case, the tile sizes are fixed at compile time and cannot change at
runtime.

In [31], an analytical model for loop tile selection is proposed for esti-
mating the memory cost of a loop kernel and for identifying a good tile size.
However, cache associativity is not taken into account in this model. In [9],
authors use Presburger formulas to express cache misses, but they fail to ac-
commodate the high set associativity values of modern caches. In [25], an
improved analytical model is proposed where associativity value is taken into
account, but the cache line size, cache associativity and data reuse, are not
efficiently utilized compared to our method. [26] well considers temporal and
spatial reuse, but the cache associativity and cache line size are not taken
into account. In [22], an accurate analytical model is proposed but for tensor
contractions only; tensor contraction is a higher-dimensional generalization of
Matrix-Matrix Multiplication (MMM). This method works well for this family
of applications, as array copying is applied to all the arrays and as a conse-
quence the problem of cache misses estimation is simplified. Note that when
using array copying each tile is copied into a contiguous buffer and the ele-
ments are ordered based on the order in which they are accessed by the kernel.
Also note that array copying introduces a significant overhead, which normally
degrades the overall program performance in non MMM-based applications. In
[16], the authors combine loop tiling with array padding in order to improve
the tile size selection process for specific array sizes (a techniques so-called
pathological array sizes).

4 Vasilios Kelefouras et al.

So far no analytical method has been shown to be effective in finding
optimal tile sizes across a wide range of programs and target platforms [35].

Due to the problem of finding the optimum tile size is very complex and in-
cludes a vast exploration space, in addition to general methods, a large number
of algorithm-specific analytical methods also exist for Matrix-Matrix Multipli-
cation (MMM) [18] [21], Matrix-Vector Multiplication (MVM) [19], tensor
contractions [22], Fast Fourier Transform (FFT) [20], stencil [23] and other
algorithms, but the proposed approaches are limited in nature and cannot be
generalized for different kernels. In particular, regarding stencil applications,
there has been a long thread of research and development tackling data lo-
cality and parallelism, where many loop tiling strategies have been proposed
such as overlapped tiling [39] [11], diamond tiling [7] and others. [3] propose
an MMM-based, write efficient tiling method, for non-volatile main memories.

Although the aforementioned application specific methods take into ac-
count some or all of the following: cache size, cache associativity and cache
line size, we will show that there is ample room for improvement, as the cache
line size, cache associativity and the arrays’ memory access patterns, are not
fully exploited. As a result, they do not analyse the cache behaviour in that
detail, compared to our method.

The second line of techniques for addressing the tile size selection prob-
lem relies on empirical approaches. These approaches perform empirical auto-
tuning by executing the program multiple times for different tile sizes. A suc-
cessful example is the ATLAS library [37] which performs empirical tuning
at installation time, to find the best tile sizes for different problem sizes on a
target machine. The main drawback in empirical approaches is the enormous
search space that must be explored. Other self-tuning library generators suffer
from the same problem of time-consuming design space exploration.

Moreover, there are several frameworks able to generate tiled code with
parameterized tiles such as PrimeTile [15], PTile [6] and DynTile [14]. Pa-
rameterized tiling refers to the application of the tiling transformation without
employing predefined tiles sizes, but inserting symbolic parameters that can be
fixed at runtime [30]. In [6], PTile is proposed, a compile-time framework, for
tiling affine nested loops whose tile sizes are handled at runtime. Par4All [24]
is a source-to-source compiler for C and Fortran that generates tiled parallel
code. In [35], authors propose a novel approach for generating code to enable
dynamic tile size selection, based on monitoring the performance of a few loop
iterations. In [30], authors present a formulation of the parameterized tiled
loop generation problem using a polyhedral set called the outset. In [34], a
comparative study of PrimeTile, DynTile and PTile is presented. Pluto [8] is
a popular polyhedral code generator including many additional optimizations
such as parallelization and register blocking. A comparison of these tools is
provided in [13]. The authors in [13] conclude their paper by pointing out
that exploiting the target hardware architecture is one of the interesting points
remain to be studied.

In [38], tile size selection models are created using machine learning tech-
niques. In [32], authors use an autotuning method to find the tile sizes, when

A methodology for efficient tile size selection for affine loop kernels 5

the outermost loop is parallelised. In [28] [2], authors use genetic algorithms
to search the solution space.

Finally, in [10] and [33], hybrid models are proposed by combining an
analytical model with empirical search to manage the search space. In [10],
authors introduced a framework that combines the use of compiler models
and search heuristics to perform auto-tuning. In [33], a model to determine
the upper and lower bounds on the search space and consider data reuse in
multiple cache levels is proposed. However, this model ignores the impact of
set associativity in caches.

In [4], authors present defensive tiling, a technique to minimize cache
misses in inclusion shared caches, when multiple programs run simultaneously.
In [17], loop tiling is combined with cache partitioning to improve performance
in shared caches.

3 Proposed Method

This section is partitioned into two subsections. In Subsection 3.1, we demon-
strate and discuss the inefficiencies of current analytical models/methods. In
Subsection 3.2, we propose an improved loop tiling method overcoming the
inefficiencies found in Subsection 3.1.

3.1 Inefficiencies of Current Analytical Methods

The two main inefficiencies of the current loop tiling analytical methods are
described in detail, in Subsection 3.1.1 and Subsection 3.1.2.

3.1.1 Current analytical methods do not accurately calculate the tiles sizes

As noted, the main idea of loop tiling optimization is to partition the arrays
into smaller ones (a.k.a. tiles), so as they can fit and remain into the cache.
This way, the number of accesses to the slow and energy demanding main
memory is minimized. The memory size needed for a tile should be measured
in cache lines and not in bytes, as data are loaded/stored from/to memory
hierarchy in cache lines.

Current methods, such as [25] [31], calculate the number of cache lines
occupied by a tile, by using the following formula:

number.lines = ⌈
tile.size.in.bytes

line.size.in.bytes
⌉ (1)

A ceiling function is required in Eq. 1 as even just one element of a cache
line is needed, the entire cache line is loaded into L1 data cache.

Eq. 1 is not accurate as different tiles (of the same size) occupy a varied
number of cache lines. Let us give an example (Fig. 1). Consider an one-
dimensional (1-d) array of 200 elements and non-overapping tiles consisting

6 Vasilios Kelefouras et al.

of 25 elements each. Also consider that each array element uses 4 bytes and
the cache line size is 64 bytes. The array elements are stored into consecutive
main memory locations and as a consequence they are loaded into consecutive
cache locations. Current methods assume that each tile occupies two cache
lines (⌈ 25×4

64 ⌉ = 2) (Eq. 1), therefore just two cache misses are assumed when
loading the tile into the cache. However, as it can be shown in Fig. 1, half of
the tiles occupy two cache lines and the other half occupy three cache lines.

16 32 48 64 80 96 112 128 144 160 176 192 208

0 25 50 75 100 125 150 175 200

1st tile

2 lines

2nd tile

3 lines

3rd tile

2 lines

4th tile

3 lines

5th tile

2 lines

6th tile

3 lines

7th tile

2 lines

8th tile

3 lines

Fig. 1 An 1-d array is partitioned into tiles. 25 element tiles occupy a varied number of
cache lines

The maximum and the minimum number of cache lines occupied by a tile
is given by Eq. 2a- 2b.

max.number.cache.lines = ⌈
tile.size.in.bytes

line.size.in.bytes
⌉+ 1 (2a)

min.number.cache.lines = ⌈
tile.size.in.bytes

line.size.in.bytes
⌉ (2b)

There are cases where the tiles occupy a varied number of cache lines (e.g.,
in Fig. 1, both Eq. 2a and 2b hold) and cases where the tiles occupy a constant
number of cache lines given either by Eq. 2a or Eq. 2b; it depends on the tile
size and cache line size values, as well as on the (tile.size/line.size) value.
Note that tiles are normally accessed many times from memory and therefore
Eq.1 and Eq.2 can give significant disparities in terms of cache misses.

In Subsection 3.2, we show that the cache size allocated for a tile, must
equal to its largest size; thus, we ascertain that all the tiles fit and remain in
the cache.

To conclude, current models do not accurately calculate the tiles sizes and
normally, the actual tiles size is bigger than the calculated tile size. This means
that less cache memory size is allocated for the tiles and as a consequence, ad-
ditional unforeseen cache misses might occur. In fact the number of unforeseen
cache misses is not insignificant, as the tiles are normally accessed many times.

3.1.2 The tiles proposed by current methods cannot remain in the cache

The main idea behind loop tiling is to access the tiles as many times as possible
from the fast cache memory rather than the slow and energy demanding main

A methodology for efficient tile size selection for affine loop kernels 7

memory (or lower level cache). Therefore the reused tiles (the tiles accessed
more than once) must fit and remain into the cache. However, this is not
always true in current methods, where normally only part of the tiles (and not
the entire tiles) remain into the cache.

Related works such as [31] [26] assume that if the aggregated size of the
tiles is smaller than the cache size, then the reused tiles will remain into the
cache. However, this is rarely true due to the cache modulo effect [25]. An
improved model is proposed in [25], where the cache associativity value is
taken into account, but still the tiles cannot remain in the cache in many
cases, leading to a significant number of unforeseen cache misses.

Let us showcase the above problem with another example, the well-known
MMM algorithm (Fig. 2). Although different tiles of A and B are multiplied
by each other, the tile of C is reused N/Tilek times (data reuse), where T ilek
is the tile size and N is the arrays size in each dimension (Fig. 2). The current
analytical models, such as [25], will well consider data reuse in this case and
therefore they will include this information to their cache misses calculation
model; therefore, current methods do assume that the tile of C is loaded just
once in the cache, not N/Tilek times, which is accurate. However, the tile of
C cannot remain in the cache unless all the following three bullets hold (note
that in current analytical methods only the first condition or none is satisfied):

C A B

=
x

j loopj loop

i loop i loop k loop

k loop
for (ii=0; ii<N; ii+=Tilei)

for (jj=0; jj<N; jj+=Tilej)

for (kk=0; kk<N; kk+=Tilek)

for (i=ii; i<ii+Tilei; i++)

for (j=jj; j<jj+Tilej; j++)

for (k=kk; k<kk+Tilek; k++)

C[i][j] += A[i][k] * B[k][j];

Fig. 2 An example. Loop tiling for MMM algorithm

– Each tile must contain consecutive memory locations

The sub-rows of tile of C are not stored into consecutive main memory
locations and as a consequence they are not loaded into consecutive cache
locations; thus, cache conflicts occur due to the cache modulo effect. Note
that the array’s rows (and not the tile’s sub-rows) are stored into consec-
utive main memory locations.
A solution to this problem is array copying transformation, where the tiles
of an array are copied into a new array in the order in which they are
accessed by the kernel. Thus, an extra loop kernel is added prior to the
studied loop kernel that copies the input array to a new one, in a tile-wise
format (all the elements are stored into the new array with the exact order
they are loaded in the tiled-version). Then, the tiled loop kernel uses the
new array instead, and thus the tile elements are loaded in consecutive
cache locations. However, array copying introduces an overhead, as the

8 Vasilios Kelefouras et al.

new array must be stored and loaded to/from memory and this is why it
is not always performance efficient.

– A cache way must not contain more than one tile, unless they

are stored into consecutive memory locations.

Assume an 8-way associative L1 data cache of size 32KB and an MMM
tiling implementation with the following tile sizes: (T ilei, T ilej, T ilek) =
(112, 32, 32); also assume that the three tiles contain consecutive memory
locations (the previous bullet holds). The accumulated size of the three
tiles equals to the cache size (the size of tile of C,A and B is 14336, 14336
and 4096 bytes, respectively, 32768 bytes in total), and the tiles’ occupy
cache size which equals to (3.5, 3.5, 1) cache ways, respectively (each way
is 4096 bytes).
An illustration of how the tiles might be allocated to the cache in this case
is shown on the top of Fig. 3. The tile of C is shown in green. The tile of
C occupies 14336 bytes and thus it requires 4 cache ways, one of which is
used to store part of the tile of C and A (e.g., Way-0 on the top figure of
Fig. 3). Note that multiple tiles of A and B are loaded and multiplied, but
the tile of C must remain in the cache. When the next tiles of A and B are
loaded into the cache, the part of the C tile which belongs to way-0 will be
replaced by the tiles of A,B, as there is no other cache line available to hold
the new tiles of A and B. This problem is mitigated (but not solved) when
(T ilei, T ilej, T ilek) = (64, 64, 32), as the tiles occupy (4, 2, 2) cache ways,
respectively (bottom figure in Fig. 3). In this case, there is a non-C-Tile
cache line available to hold the tiles of A and B (a cache line is available
for each different modulo of the tiles memory addresses).
For the remainder of this paper, we will be writing that a tile is written
in a separate cache way if an empty cache line is always granted for each
different modulo (with respect to the size of the cache) of the tile memory
addresses, e.g., in the bottom figure of Fig. 3, the tile in red is written in
two (and not three) ’separate’ cache ways as an empty cache line is always
granted for each different cache modulo value.

– Extra cache space must be granted for the non-reused tiles

Even if the two aforementioned bullets hold, it is false to assume that all
the elements of C tile will remain in the cache. This is because there is no
cache space allocated for the next tiles of A and B; therefore, when the
next tiles of A and B are loaded into the cache they might evict cache lines
from the tile of C (LRU cache replacement policy is assumed). However, if
(T ilei, T ilej, T ilek) = (64, 64, 16) is selected instead of (T ilei, T ilej, T ilek) =
(64, 64, 32), then cache space for 2 tiles of A and B is allocated and therefore
the Tile of C will definitely remain in the cache.
Note that granting extra cache space for the non-reused tiles leads to
smaller tile sizes and as a consequence to more L/S and arithmetical in-
structions, which might degrade performance in rare cases. However, if
extra cache space is not granted for the next tiles, unforeseen cache misses
occur and therefore the number of cache misses cannot be accurately esti-
mated.

A methodology for efficient tile size selection for affine loop kernels 9

Set 0

Set N-1

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

256-bit

Set 0

Set N-1

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Fig. 3 An illustration of how tiles might be allocated to the cache, for the example shown
in Fig. 2. On the top, (T ilei, T ilej, T ilek) = (112, 32, 32) is shown, while in the bottom
(T ilei, T ilej, T ilek) = (64, 64, 32). Each tile is shown in a different colour.

3.1.3 Motivation Example

We evaluated the above assumptions on the dL1 cache of two host PCs, an
Intel i5-7500 CPU at 3.40GHz running Ubuntu 20.04 (PC1) and an Intel i7-
4790 CPU at 3.60GHz running Ubuntu 18.04 (PC2). Both PCs support a
32KB 8-way associative dL1. Three different tile sets are used, one satisfying
just the first bullet above (112, 32, 32), one satisfying only the first two bullets
(64, 64, 32) and another satisfying all the bullets above (64, 64, 16). All the
codes are manually written and compiled with gcc 9.4.0 on PC1 and gcc 7.4.0
on PC2, and ’-O2’ optimization option. We have not used ’-O3’ option here as
in this case auto-vectorization is applied and adds ’noise’ to our experimental
results, e.g., small tile sizes along the vectorized iterator normally lead to lower
performance [26]. Note that in the experimental results section (Section 4),
vectorization is used.

The following tile sets (T ilei, T ilej, T ilek) = (112, 32, 32), (64, 64, 32), (64, 64, 16)
give (10.2, 9.8, 5.2) million dL1 misses and (3.3, 3.4, 4.3)/(3.1, 3.3, 7.4) Gflops,
on PC1/PC2 respectively (square matrices of type float are used). For a fair
comparison, we have chosen an input size that is multiple of all the tile sizes
(N = 1344). The non-tiled code gives 2470 million dL1 misses and 1.53/0.35
Gflops, on PC1/PC2 respectively. The number of dL1 misses is measured by
using Cachegrind tool [27] (simulation). We can conclude that the tile of C
array cannot remain into dL1 unless all the three aforementioned bullets hold.

To conclude, current methods fail to provide accurate cache miss estimation
for the following reasons. Firstly, the actual tile size might be bigger than the
calculated tile size. This means that less cache memory is allocated for the
tiles and as a consequence, additional unforeseen cache misses might occur.
Secondly, the tiles cannot remain in the cache in most cases and therefore
the cache misses calculation process might omit a significant number of cache
misses, leading to inefficient tile sizes.

10 Vasilios Kelefouras et al.

3.2 Proposed Loop Tiling Method

In this Subsection, the proposed loop tiling method is provided. The aim of our
loop tiling method is to find the tile sizes (tile set) that minimize the number
of cache misses. Although the number of cache misses does not always align
with performance, it is the key performance indicator for loop tiling [25] [31].
This is further explained in Subsection 3.3 (Discussion) and Section 4.

Our method takes as input the cache hardware architecture details (cache
size, associativity and cache line size) and the the loop kernel’s information
(loops and their bounds, the array references and their subscripts), and gener-
ates the tile sizes (tile set) and the iterators’ nesting level values. The inputs
are manually provided to our tool. After the tile set is found, the process of
generating loop tiling source code is easy and straightforward by using well
known tools such as Pluto. Pluto is a powerful tool able to generate source
code for loop tiling with the specified tile sizes. Furthermore, Pluto applies
dependence analysis and thus the output tiled code is always safe (it does not
violate data dependencies).

The basic idea behind our method is first, to find all different tile sets whose
tiles fit and remain into the cache, and then select the tile set achieving the
minimum number of cache misses. The tile sets whose tiles do not remain into
the cache are discarded as they are considered inefficient. For the remaining
tile sets, a simple and lightweight method to estimate the number of cache
misses for each tile set, is proposed. Note that this method can estimate the
number of cache misses only when the tiles remain into the cache.

Although more accurate methods exist for calculating the number of cache
misses for affine loop kernels, such as [12] [5], higher accuracy comes with
computationally expensive cache models, where the cache misses calculation
process normally takes some seconds. These models are not feasible in our
case, as the cache misses of multiple tile sets need to be estimated (they can
even be some millions) and this would take many days of simulations.

Our approach is illustrated in Algorithm 1. All the tile sets that fit and
remain into the cache are given by a mathematical inequality (Step 3). All
the tile sets in this inequality satisfy the three bullets in Subsection 3.1.2. In
Section 4.1, we will prove experimentally that these tiles indeed fit and remain
into the cache. The steps of Algorithm 1 are explained in detail hereafter.

STEP.1: In this step the iterators that loop tiling is applicable to, are
manually provided; not all the loops are eligible to loop tiling mainly because
of data dependencies in the code. Note that Pluto applies dependence analysis
and thus generates tiled source code that yields correct behaviour.

STEP.2: The first loop in Algorithm 1 specifies the number of the iterators
to be tiled, e.g., just one iterator is tiled when i=1, two iterators are tiled
when i=2, etc. Then, all different nesting level values are considered so as not
to exclude any efficient tiling solutions. For example, in a loop kernel with
three iterators (i, j, k) eligible to loop tiling, such as the original (non-tiled)
version of MMM in Fig. 2, the following 15 loop tiling implementations will be
generated: (i), (j), (k), (i, j), (i, k), (j, i), (j, k), (k, i), (k, j), (i, j, k), (i, k, j),

A methodology for efficient tile size selection for affine loop kernels 11

Algorithm 1: Proposed Loop Tiling Method

Step.1 Specify the iterators that loop tiling is eligible to (let n iterators)
//this for loop specifies the number of loops to be tiled
for (i=1,n) do

Step.2 Generate all different iterator orderings using i out of n iterators
for (each different ordering found in Step.2) do

Step.3 Generate all different tile sets that fit and remain into the cache (Eq. 3).
for (each different tile set) do

if (the tile set does not satisfy Eq. 3) then
Discard this tile set

else
if (there are tiles that contain non-consecutive memory locations) then

Step.4 Either discard this tile set or use array copying transformation
end if
Step.5 Estimate the number of cache misses for each tile set (Eq.5)

end if
end for

end for
end for
Step.6 Choose the tile set achieving the minimum number of cache misses

(j, i, k), (j, k, i), (k, i, j), (k, j, i). The first three loop tiling implementations
refer to loop tiling to one loop only, the next six implementations to two loops
and the rest to three loops.

STEP.3: All the tile sets that fit and remain into the cache are expressed
by a mathematical inequality (Eq. 3). The tile sets that satisfy Eq. 3 fit and
remain into the cache and therefore they are further processed, while all the
others are discarded as inefficient. Eq. 3, which overcomes all the inefficiencies
discussed in Subsection 3.1, is shown below:

m ≤ ⌈ Tile1
Lj/assoc

⌉+ ⌈Tile1 next

Lj/assoc
⌉+ ...+ ⌈ Tilen

Lj/assoc
⌉+ ⌈Tilen next

Lj/assoc
⌉ ≤ assoc (3)

where T ilei is the tile size in bytes of the ith array reference (the number
of tiles equals to the number of different array references), Lj is the cache size
in bytes, assoc is the Lj associativity and m defines the lower bound of Eq.3
and it equals to the number of different array references in the loop kernel.
The special case where m ≻ assoc is not discussed in this paper. In Eq. 3,
there is one tile for each different array reference (in the loop kernel) and thus
an array might have multiple tiles.

To address the first bullet in Subsection 3.1.2, all the tiles must contain
consecutive memory locations. The tile sets that give tiles with non-consecutive
memory locations are discarded (this is further explained Step.4), e.g., 2D tiles
of shape T1×T2, where T2 ≺ upper.bound do not contain consecutive memory
locations.

Eq.3 addresses the second bullet in Subsection 3.1.2 too. The value of
(⌈ Tile1

Lj/assoc
⌉) is a positive integer representing the number of Lj cache ways

used by Tile1, or equivalently, is a positive integer representing the number

12 Vasilios Kelefouras et al.

of Lj cache lines with identical cache addresses used for Tile1. Eq. 3 satisfies
that the array tiles directed to the same cache subregions do not conflict with
each other as the number of cache lines with identical addresses needed for the
tiles is not larger than the assoc value (addressing the second bullet in section
3.1.2).

To address the third bullet in Subsection 3.1.2, for each tile in Eq. 3, we
grant cache space for its next tile too, i.e., T ilen next. In case where the next
tile is the same as the current tile, then the T ilei next term is removed from
Eq.3, e.g., in Fig.2, there are no next tiles for C array. Furthermore, if the
next tile is stored in memory just after the currect tile, then just one term is
inserted in Eq.3, that is ⌈Tile1+Tile1 next

Lj/assoc
⌉.

To address the inefficiency studied in Subsection 3.1.1, T ilei, which con-
tains consecutive memory locations, is given by Eq. 4:

T ilei = max.number.cache.lines× cache.line.size× element.size (4)

where cache.line.size is the size of the cache line in elements, element.size
is the size of the array’s elements in bytes and the max.number.cache.lines
gives the maximum number of cache lines occupied by the tile (Eq. 2a- 2b).

As it was mentioned above, for each tile in Eq. 3, we grant cache space for
its next tile too; however, these tiles might overlap and this is why Eq. 3 must
be appropriately updated. The overlapping tiles are merged to one, bigger tile,
which consists of their union (if the tiles match, then the new tile will be of
the same size). In this case, the number of terms in Eq. 3 is reduced by one.
This step is needed so as there are no tile duplicates in the cache. Two tiles
overlap, if their memory locations overlap. Consider the example where the
following two array references exist in the loop body A[i][j−2], A[i][j+2] and
j loop spans from 2 to N-2. By applying loop tiling to j loop with tile size T,
the 1st tile of the 1st array reference spans within (0,T) and the 1st tile of the
2nd array reference spans within (4,T+4). These tiles are merged and a single
bigger tile is created of size (T + 4).

Step.4 in Algorithm 1: It is common practice to apply array copying
transformation before loop tiling in order all the tiles to contain consecutive
memory locations. In array copying, an extra loop kernel is added prior to the
studied loop kernel, where it copies the input array to a new array, in a tile-
wise format; it loads the elements of the input array with the exact order they
are used in the main loop kernel and stores them in the new array in-order.
Then the main loop kernel uses the new array instead. Array copying adds an
extra overhead in terms of memory accesses and arithmetical instructions and
therefore it is not always performance efficient.

In Step.4, all the tile sets giving tiles with no consecutive memory locations
are either discarded as they cannot remain into the cache, or array copying
transformation must be applied to create new tiles with consecutive memory
locations. Given that array copying introduces a significant overhead and thus
it is not always efficient, the user can specify whether array copying is enabled

A methodology for efficient tile size selection for affine loop kernels 13

or not. If array copying option is enabled, then two tile sets are extracted by
Algorithm 1, the best tile set that uses array copying and the best tile set that
does not use array copying.

Note that there is a special case where tiles of no consecutive memory
locations can be further processed, without applying array copying; a tile with
no consecutive memory locations can be faced as multiple tiles of consecutive
memory locations, e.g., a tile of size 2×T can be faced as two tiles of size 1×T .
In this case, Eq. 3 must be appropriately updated with an extra (⌈ Tilei

Li/assoc
⌉)

term, as an extra tile is inserted now. Given that the associativity value is
always a small number, this special case normally holds for tiles of size b× T ,
where b ≤ 3 only.

Step.5 in Algorithm 1: In Step.5, the number of cache misses is approxi-
mated theoretically, considering the cache hardware details, the array memory
access patterns of each loop kernel and the problem’s input size. To do so, we
calculate how many times the selected tiles (whose dimensions and sizes are
known) are loaded/stored from/to the cache.

We are capable of approximating the number of cache misses because the
number of unforeseen misses has been minimised (the reused tiles fit and re-
main in the cache). This is because only the proposed tiles reside in the cache,
the tiles are written in consecutive memory locations, an empty cache line
is always granted for each different modulo and we use cache space for two
consecutive tiles and not one (when needed). Additionally,we refer to CPUs
with an instruction cache; in this case, the program code typically fits in L1
instruction cache; thus, it is assumed that the shared cache or unified cache
(if any) is dominated by data.

The number of cache misses is estimated by Eq. 5.

Num Cache Misses =
∑i=sizeof(Tiles.List)

i=1 (repetition i× cache.lines i) (5)

where cache.lines i is the number of cache lines accessed when this tile
traverses the array (given by Eq. 6), repetition i gives how many times the
entire array (of this tile) is loaded/stored from/to this cache memory (given by
Eq. 7), and T iles.List contains all the tiles that contribute to Eq. 5 (further
explained below).

The cache.lines value in Eq. 5 is given by

cache.lines =































N

Ty
×

j=M/Tx
∑

j=1

(⌈
j × Tx

line
⌉ − ⌊

(j − 1)× Tx

line
⌋), row-wise data array layout

j=tiles
∑

j=1

(⌈
j × (Tx× Ty)

line
⌉ − ⌊

(j − 1)× (Tx× Ty)

line
⌋), tile-wise

(6)
where (Tx, Ty) are the tile sizes of the iterators in the (x,y) dimension

of the array’s subscript, respectively, (N,M) are the corresponding iterators’
upper bounds (for 1D arrays Ty = 1), line is the cache line size in elements,
tiles is the total number of the array’s tiles and (tiles = N/Ty ×M/Tx) or
(tiles = M/Tx) whether for 2D/1D arrays, respectively. The second branch in

14 Vasilios Kelefouras et al.

Eq.6 is when array copying has been applied and therefore the array is stored
into memory tile-wise.

Let us give an example for the first branch of Eq. 6, consider a 2D array
and a tile of size (10 × 10) traversing the array in the x-axis. Also consider
that (line = 16) array elements. The first tile occupies 10× (⌈ 10

16⌉−⌊ 0
16⌋) = 10

cache lines while the second tile occupies 10× (⌈ 20
16⌉ − ⌊ 10

16⌋) = 20 cache lines.
Although the array’s tiles are of equal size, they occupy a different number of
cache lines and this is why a sum is used in Eq.6. If array copying has been
applied and therefore the array is written tile-wise in memory, the first tile lies
between (0, 100), the second between (100, 200) etc.

The repetition value in Eq. 5 is given by Eq. 7. Eq. 7 gives how many
times the entire array is accessed from memory; an array is accessed more
than once when the loop kernel contains iterators than are not included in the
array’s subscript, e.g., in Fig.2, B[k][j] does not include ‘ii’ and ‘i’ iterators and
therefore these iterators force B array to be accessed several times.

repetition =
∏j=D

j=1
(upj−lowj)

Tj
×
∏k=W

k=1
(upk−lowk)

Tk
(7)

where D is the number of new/extra iterators (generated by loop tiling)
that a) do not exist in the corresponding array’s subscript and b) exist above
of the iterators of the corresponding array, e.g., regarding the B tile in Fig. 2,
this is the ii iterator. W is the number of new/extra iterators that a) do
not exist in the array and b) exist between of the iterators of the array, e.g.,
regarding the A tile in Fig. 2, this is the jj iterator. The ii iterator forces the
whole array of B to be loaded N/Tilei times, while the jj iterator forces the
whole array of A to be loaded N/Tilej times.

The T iles.List includes all the tiles included in Eq. 3 (the ’next’ tiles are
not included; the only reason they exist in Eq. 3 is to grant extra cache space).
There is a special case where not all the tiles contribute to Eq. 5 and this is
why these tiles must be deleted from the T iles.List. This is likely only when
an array has multiple (different) array references and therefore multiple tiles.
In this case, different tiles of the same array might access memory locations
that have already been accessed just before and thus the tile resides in the
cache; in this case, accessing the tile will lead to a cache hit, not a miss. This
special case is not further discussed here because the aforementioned equations
become complex.

3.3 Discussion

3.3.1 Multiple Levels of Tiling

Modern processors support multiple levels of cache and therefore loop tiling is
normally applied to more than one cache memories (multiple levels of tiling),
to further reduce the overall number of cache misses in memory hierarchy.
Normally, up to k levels of tiling are applied, where k is the number of cache
memories. Prior to applying loop tiling to multiple cache memories, we should

A methodology for efficient tile size selection for affine loop kernels 15

consider the following questions. How many levels of tiling should be applied,
to which memories (e.g., on L1 and L3 or on L1 and L2) and on what order
(e.g., first apply tiling on L1 or L3)? To the best of our knowledge there is
no general formal method or theoretical work that answers to these questions
and therefore all different combinations must be evaluated in order to find
the most efficient solution. The answers to the questions above depend on the
target loop kernel, its input size and hardware architecture. Note that the more
the levels of tiling applied, the higher the number of arithmetical instructions
being inserted. Furthermore, different orders of tiling (e.g., first apply tiling to
L1 and then to L2, or vice versa) give different binaries, as these optimizations
are interdependent.

The proposed loop tiling algorithm (Algorithm 1) can be applied to each
cache memory separately.

3.3.2 Loop tiling and Vectorization

Small tile sizes along the vectorized iterator can diminish the benefits of vec-
torization and hardware prefetching [26]. Therefore, it is common practice
that the tile size of the vectorized iterator is large enough and power of 2. In
this work, we select the tile size (let Tile) of the iterator corresponding to the
vectorized loop to be T ile ≥ 64 and multiple of k, where k is the length of the
vectorization technology by the length of the arrays’ data type, e.g., for float
elements and AVX technology k=256/32=8.

3.3.3 Cache misses and Execution Time

Although the execution time of data intensive loop kernels mainly depends
on the time needed to load/store the data from/to memory hierarchy, the tile
set that provides the minimum number of cache misses for a specific memory
(or more) does not always provide the best performance. This is because the
hardware architecture of modern processors is complex and thus the execution
time depends on many parameters, e.g., vectorization and hardware prefetch-
ing. Furthermore, loop tiling increases the number of program instructions.

Correlating the number of cache misses with Execution Time (ET) on mod-
ern processors is a hard problem, mainly because modern memory systems sup-
port concurrent data accesses, e.g., multi-port, multi-banked and non-blocking
caches. This is the reason the well-known but simplified AMAT [36] ET model
fails to provide an accurate ET estimation on modern processors. The AMAT
model is described by the following formula Tdata = TL1 + TL2 + TL3 + TMM ,
where Tdata is the overall time needed to load/store the data from/to memory
hierarchy, TL1/2/3 is the time needed to load/store the data from/to L1/2/3
cache and TMM is the time needed to load/store the data from/to main
memory. Note that TLi = Li.accesses × Li.Latency and L(i + 1).accesses =
Li.misses. Also, we can assume that Toverall ≈ Tdata for memory bound loop
kernels.

16 Vasilios Kelefouras et al.

Step 5 and Step 6 of Algorithm 1 can be extended by using the AMAT
model and therefore, the tile set achieving the minimum ET value can be
selected instead of the tile set achieving the minimum number of misses. The
extension is trivial when loop tiling is applied to all the cache memories, as
the proposed method (in its current form) can approximate the number of Li
cache misses, only when loop tiling is applied to the i memory. Estimating the
number of cache misses for the cache memories that loop tiling is not applied
to, is more complicated. Let us give an example. Consider that loop tiling has
been applied only to dL1, for the example shown in Fig.2; in this case, the
number of L3 misses depends on whether the block row of A remains into the
cache or whether the entire A array remains into the cache, and as consequence
the number of L3 misses depends on the cache size, dL1 tile sizes and input
size. However, the proposed method can be extended to estimate the number
of Li cache misses, when loop tiling is not applied to the i memory, but with
a lower accuracy.

An extension of AMAT model is C-AMAT [36], where the notions of
cache hit concurrency and cache miss concurrency are introduced, but its
application in this context is not trivial. In our future work, we are plan-
ning to extend C-AMAT model to correlate the number of cache misses with
execution time. A starting point would be extending the AMAT model to
Tdata = TL1/c1 + TL2/c2 + TL3/c3 + TMM/c4, where c1, c2, c3, c4 introduce
cache hit and miss concurrency (ci ≥ 1). c1− c4 vary depending on both the
memory hardware architecture and loop kernel characteristics. The first step
of our future work includes a training step that estimates the (c1− c4) values
for the target hardware architecture; although this step assumes that only the
hardware architecture affects the (c1 − c4) values (and not the loop kernel
characteristics), we expect that it will be more accurate than the simplified
AMAT model.

3.3.4 Cache misses and Energy Consumption

The energy consumed by memory hierarchy accounts for a significant amount
of the total energy consumed by modern processors. By reducing the number
of Li cache misses, the number of L(i + 1) memory accesses is reduced and
as a consequence the dynamic energy consumption of L(i + 1) memory is
reduced. Thus, the proposed method can be used as a solution to reduce
energy consumption.

3.3.5 Loop Tiling for Multi-Threaded Programs

Besides optimizing for data locality, loop tiling is also used to exploit paral-
lelism. In this case, loop tiling partitions the iteration space into tiles that
are executed concurrently on different processors or CPU cores. Regarding
multi-threaded programs, OpenMP programming framework is normally used
to parallelize a data parallel loop into multiple threads which they all share the
same last level cache. The current design trend in multi-core CPUs includes a

A methodology for efficient tile size selection for affine loop kernels 17

last level cache memory which is shared amongst all the CPU cores, while all
the other upper level cache memories are private. As it was explained above,
tiling can be applied to all the cache memories.

Algorithm 1 can be applied to the upper level (private) cache memories
of multi-threaded programs, but not to the last level shared cache (in its
current form), e.g., on x86-64 processors, Algorithm 1 can be used to apply
loop tiling to dL1 and/or L2 but not to L3. However, we are planning to
extend the proposed method to the shared cache in our future work. In this
case, multiple threads and thus multiple tiles use the last level cache, some
of which are shared by all the threads. The proposed equations must take
all the tiles into account as all the tiles must fit and remain into the cache.
Furthermore, the tile size selection affects the workload of each thread which
must be high enough to exploit parallelism.

4 Experimental Results

This section is divided into three parts. In Subsection 4.1, the proposed method
is validated. In Subsection 4.2, our approach is evaluated in terms of cache
misses and execution time over [26], icc and gcc compilers and Pluto [8]. In
Subsection 4.3, we evaluate the simulation time required to generate the tile
sizes.

The experimental results are performed in two host PCs, an Intel i5-
7500 CPU at 3.40GHz running Ubuntu 20.04 (PC1), an Intel i7-4790 CPU
at 3.60GHz running Ubuntu 18.04 (PC2), and in a Zybo Zynq-7000 FPGA
platform with ARM Cortex-A9 hard processor running petalinux Operating
System (OS). PC1 and PC2 support three levels of cache, while Arm supports
two levels of cache. PC1 supports 32KB 8-way dL1, 256KB 4-way L2 cache
and 6MB 12-way L3 cache. PC2 supports 32KB 8-way dL1, 256KB 8-way L2
cache and 8MB 16-way L3 cache. Arm processor supports 32KB 4-way dL1
and a 512KB 8-way L2 cache.

The benchmarks used in this study consist of eleven popular linear algebra
loop kernels taken from 4.1 PolyBench/C suite [29] (Table. 1). The input size
of the loop kernels is specified with letter ’N’ (square matrices are taken of size
N×N). PolyBench supports different input sizes, a.k.a., mini, small, standard,
large and extra large. The first two input sizes are not the appropriate to
evaluate loop tiling as the arrays are small and fit into the cache in most
cases. The extra large input size exceeds our DDR memory in some cases
and it is not used. Thus, we have used the large and the standard sizes. We
have also used their in-between values as a third input size. To sum up, three
different input sizes are used and the average gain values are reported. The
results shown in the next Subsections include the initialization of the arrays.

We define ’Re-usage ratio’ the number of array elements accessed more
than once by the number of the overall array elements, e.g., in Fig.2 (gemm),
Reusage ratio = (3 × N2)/(3 × N2) = 1. The re-usage ratios of the studied
kernels are shown in Table. 1. In Subsection 4.2, we show that loop tiling

18 Vasilios Kelefouras et al.

Table 1 Loop kernels studied (taken from 4.1 PolyBench/C suite [29]). All the arrays are
of type float.

kernel Re-usage ratio Different tile sets Memory Size in elements
gemm 1 3 !N3 3N2

mvm 2/N 2 !N2 2N +N2

doitgen 1 4 !N4 N2 + 2N3

gemver 4/N 2 !N2 4N +N2

bicg 4/N 2 !N2 4N +N2

gesumv 1.5/N 2 !N2 3N + 2N2

2mm 1 3 !N3 6N2

3mm 1 3 !N3 9N2

atax 3/N 2 !N2 3N +N2

syrk 1 3 !N3 2N2

syrk2 1 3 !N3 3N2

cannot provide significant performance gains for kernels with low re-usage
ratios.

Pluto tool is used to generate the tiled source code for the studied loop
kernels (version 0.11.4). In general, Pluto takes as input C language source
code and generates another optimized C source code, including loop tiling,
vectorization, loop interchange and other optimizations. In this paper, only
loop tiling optimization is enabled. We have used the ’tile’ option to generate
1 level of tiling code versions and the ’l2tile’ option to generate 2 levels of
tiling code versions. If the tile sizes are not provided (by the user) as input to
Pluto, then Pluto uses square tile sizes of fixed size ‘32’ in all cases.

For a fair comparison on the x64 processor, we have re-written the eleven
tiled loop kernels (that Pluto generated) by using AVX intrinsics. By using
scalar (common) C code, icc compiler becomes aggressive and applies different
high level optimizations for different tile sizes and thus the performance gains
we get are not related to loop tiling, e.g., vectorization is not applied for some
tile sizes and register blocking might be applied to the non-tiled version, and
this adds ’noise’ to our experiments. We did not face such a problem with gcc
on Arm.

4.1 Validation of the Proposed Method

The objectives of this sub-section are to showcase that i) the tiles generated
by the proposed methodo fit and remain into the cache and ii) the proposed
equations (Step.5 in Algorithm 1) can accurately estimate the number of cache
misses. Note that it is not possible to accurately estimate the number of cache
misses (by using the aforementioned equations) if the tiles cannot remain into
the cache, as unforeseen cache misses occur in this case. Therefore, if the
second objective is met then the first objective is met too.

In this Subsection, we have applied loop tiling for dL1 and L3 cache memo-
ries, for the three aforementioned input sizes, and we have selected five random
tile sets of each case. Then, the number of cache misses is measured in each

A methodology for efficient tile size selection for affine loop kernels 19

case and the maximum error value (error% = |experimental−theoretical|
theoretical × 100)

is calculated (Eq. 8).

error% =
| cache.misses.measured− Eq. 5.misses |

Eq. 5.misses
× 100 (8)

The maximum error value in Eq. 8 is extracted for PC2 by using i) Cachegrind
tool [27] (simulation) and ii) Perf tool [1] using the ’l1d.replacement’, ’LLC-
load-misses’ and ’LLC-store-misses’ hardware counters. We used both simu-
lation and hardware counters in order to provide a thorough experimental
analysis. Cachegrind and Perf give different cache misses values (especially
when the tile sizes are almost equal to the cache size) as Perf measures the
number of cache misses of all the running processes, not just the process we
are interested in. The number of cache misses shown by Perf is affected by any
operating system process that loads/stores data from/to this memory. Thus,
to get an accurate measurement, each loop kernel runs for at least 1 minute
(the kernel runs multiple times if needed); this way the number of cache misses
due to other programs is minimized.

It is important to note that if the compiler applies high level optimizations
(such as loop tiling, loop interchange or register blocking), then the arrays’
memory access patterns will change and thus Eq.5 will not accurately estimate
the number of cache misses. To make sure that the compiler does not apply any
high level optimizations, we have used ’-O2’ optimization flag and not ’-O3’.
In this Subsection gcc 7.5.0 is used. In this Subsection we do not evalute the
execution time of the proposed method but whether the tiles remain into the
cache and whether Eq.5 can accurately estimate the number of cache misses.

The number of unforeseen cache misses in L3 is higher than in dL1. The
main reasons follow. Firstly, the binary code is also loaded to L3 cache apart
from the data. Secondly, the default page/frame size is smaller than the size
of one cache way and therefore, multiple pages might be loaded into a cache
way, introducing ’noise’ to the cache. This problem can be alleviated by using
the Operating System (OS) huge page tables (we did not do that though).
Thirdly and most importantly, hardware prefetching adds extra noise to our
method and this is why it has been disabled.

Each loop kernel is pinned to a specific CPU core. When using Perf, the tar-
get core must be specified so as to not measure the overall number of dL1 misses
(from all dL1s) using the following command: ’perf record -e l1d.replacement
-C 2 ./executable’, where ’-C 2’ relates to the core number.

In Table 2, we compare the number of dL1 misses as extracted from Eq. 5
against the measurements from Cachegrind and Perf. As Table 2 indicates
the proposed equations provide roughly the same number of cache misses as
Cachegrind. This means that first, the proposed tiles fit and remain in the
cache and second, the proposed equations give a very good approximation of
the number of cache misses. Five different tile sizes have been used for each
loop kernel (they are shown in Table 2).

As it was expected, the error values are higher (about 3%) when using the
dL1 hardware counter (Table 2), as other processes are loading/storing data

20 Vasilios Kelefouras et al.

Table 2 The error in cache misses is measured for five different tile sizes using Eq. 8 and
the maximum value is shown.

Tiling for dL1 Tiling for L3
kernel Cachegrind Perf Cachegrind Perf
gemm 0.8% 2.9% 0.8% 5.7%
mvm 0.8% 2.8% 0.8% 2.0%

doitgen 0.9% 3.1% 0.9% 2.6%
gemver 0.9% 2.9% 0.9% 1.9%
bicg 0.9% 2.9% 0.9% 2.0%

gesumv 0.9% 2.7% 0.9% 2.1%
2mm 0.8% 2.9% 0.8% 5.8%
3mm 0.9% 3.0% 0.9% 5.9%
atax 0.8% 2.7% 0.8% 2.1%
syrk 1.0% 3.2% 1.0% 5.4%
syrk2 1.0% 3.2% 1.0% 5.7%

from/to this memory too. It is important to note that Table 2 shows only the
tile sizes that need roughly the size of seven out of eight cache ways, or less;
the tiles that use more cache space give a much higher error value, which is up
to 20%. Given that this inconsistency holds only for the Perf measurements
and not for Cachegrind, it is valid to assume that this is due to the fact that
other processes using the dL1. In this case, each dL1 access of another process
leads to an unforeseen miss.

In Table 2, we also compare the number of L3 misses as extracted from Eq. 5
against the measurements from Cachegrind and Perf. Regarding Cachegrind
(simulation), the proposed method provides roughly the same number of cache
misses as Cachegrind. As far as the results using the hardware counters are
concerned, the noise in L3 is higher than that in dL1 for the reasons explained
above. Table 2 shows only the tile sizes that need roughly the size of 9 out of
16 cache ways, or less; the tiles that use more cache space give a much higher
error value, which is up to 37%. This is because all the running processes use
L3 cache. Note that for a fair comparison, we disabled HW prefetching. As
Table 2 indicates the proposed equations give a very good approximation of
the number of cache misses. mvm, doitgen, bicg, gesumv, atax and gemver
give a smaller error value compared to gemm, 2mm, 3mm, syrk and syr2k, as
the reused arrays fit and remain in L3 even without using loop tiling. This is
not the case for the other kernels and this is why their error values are higher.

4.2 Performance Evaluation

In this section the proposed method is evaluated in terms of cache misses and
execution time, on PC1 and Arm. The comparison is made over [26] and Pluto
tool on both processors and over icc/gcc compilers on PC1/Arm, respectively.
The kernels are compiled by using icc version 2021.5.0 for PC1 and by using
the arm-linux-gnueabi-gcc 7.5.0 for Arm. The ’-O3’ compiler flag is used in all
cases. Each loop kernel is pinned to a specific CPU core by using the Linux
kernel affinity sets (cpu set t).

A methodology for efficient tile size selection for affine loop kernels 21

Table 3 Tile sizes found by the tile size selection model in [26] for PC1. ’*’ indicates that
loop interchange is applied between the two innermost loops

Kernel Tiling for dL1 only Tiling for dL1 and L2
dL1 tile sizes dL1 tile sizes L2 tile sizes

gemm (10,256,20)* (10,256,20)* (90, 256, 180)
mvm (61,256) (61,256) -

doitgen (4,4,256,9)* (4,4,256,9)* (12, 12, 256, 27)
gemver (29,256) (29,256) -
bicg (29,256) (29,256) -

gesumv (30,256) (30,256) -
2mm (10,256,20)* (10,256,20)* (90, 256, 180)
3mm (10,256,20)* (10,256,20)* (90, 256, 180)
atax (29,256) (29,256) -
syrk (15, 15, 256) (15, 15, 256) (105, 105, 256)
syr2k (7, 7, 256) (6,6,256) (60, 60, 256)

The evaluation is carried out by applying first loop tiling to dL1 only (one-
level of tiling), and second both to dL1 and L2 (two-levels of tiling). Note that
the HW-prefetching mechanism which was disabled in the previous Subsection,
is now enabled. Although our method achieves significant cache miss gains in
all cases, we show that execution time does not always align with the number
of cache misses, especially for the loop kernels with low re-usage ratio values
(Table 1).

In [26], a fast and lightweight tile size selection model is proposed that
considers data reuse. In Table 3, we show the tile sizes generated by this
model. This model supports both single-threaded and multi-threaded loop
kernels. However, in this work we are focusing on single-threaded kernels only
and thus the tile sizes shown in Table 3 refer to the single-threaded case only.
According to [26], the tile size of the vectorized loop is always fixed to 256
to allow for efficient vectorization. Although [26] was evaluated by using one
level of tiling only, according to [26], this model can be applied to more levels
of tiling too. To do so, we have slightly amended the tile sizes found by [26]
in order the L2 tiles to be multiples of the dL1 tiles (slightly smaller tiles are
selected). This is common practice as it reduces the number of arithmetical
instructions. Note that Pluto does not support multi-level tiling where the
tile sizes of the bigger tiles are not multiples of the smaller ones, and this is
another reason for this decision. The ’-’ in the last column of Table 3 indicates
that only one level of tiling is applied. This is because for these loop kernels
the one level of tiling case always achieves better performance than the two
levels of tiling case. Note that the tile sizes of [26] do not depend on the input
size and thus they are used for all different input sizes. On the contrary, the
tile sizes of the proposed method depend on the input size and are not fixed.

In Table 4, we show average speedup and cache misses gain values over icc
compiler on PC1, when applying tiling just for dL1 and for both dL1 and L2.
In Table 5, we show average speedup and cache misses gain values over gcc
compiler on Arm, when applying tiling just for dL1 and for both dL1 and L2.

22 Vasilios Kelefouras et al.

Table 4 Comparison over icc compiler in terms of execution time and cache misses on PC1
(average values of three different input sizes are shown).

kernel Pluto Model in [26] Model in [26] Prop. Prop.
(dL1 only) (dL1 only) (dL1+L2) (dL1 only) (dL1+L2)

dL1 speed dL1 speed dL1 L2 speed dL1 speed dL1 L2 speed
gain up gain up gain gain up gain up gain gain up

gemm x12.8 x1.04 x6.3 x1.2 x6.0 x8.8 x1.21 x22.4 x2.21 x21.9 x25.4 x2.65
mvm x1.47 x0.95 x1.48 x0.85 x1.49 x1.0 x0.95 x1.49 x0.96 x1.48 x1.0 x1.02
doitgen x0.22 x0.43 x0.88 x0.96 x0.75 x0.78 x0.93 x26.8 x1.81 x23.7 x18.4 x1.86
gemver x1.94 x0.94 x1.93 x0.97 x1.93 x0.96 x0.97 x2.0 x0.94 x2.0 x1.0 x1.02
bicg x1.3 x0.26 x1.93 x0.85 x1.93 x0.96 x0.85 x2.0 x0.93 x2.0 x1.0 x1.02
gesumv x1.11 x0.66 x1.11 x0.67 x1.13 x0.99 x0.67 x1.12 x0.86 x1.125 x1.0 x1.00
2mm x0.95 x0.76 x6.03 x1.16 x6.0 x9.1 x1.15 x21.2 x2.1 x20.6 x25.9 x2.67
3mm x0.93 x0.75 x6.01 x1.15 x5.8 x8.7 x1.14 x21.0 x2.2 x20.7 x25.7 x2.61
atax x1.46 x1.17 x1.46 x1.16 x1.46 x0.97 x1.17 x1.5 x0.93 x1.29 x1.31 x1.29
syrk x3.7 x0.78 x1.91 x1.17 x1.98 x5.6 x1.28 x4.1 x1.40 x3.8 x5.8 x1.43
syr2k x3.85 x0.75 x0.91 x1.12 x1.08 x3.94 x1.17 x4.4 x1.37 x3.9 x5.9 x1.41

Table 5 Comparison over gcc compiler in terms of execution time and cache misses on Arm
Cortex-A9 (average values of three different input sizes are shown).

kernel Pluto Model in [26] Model in [26] Prop. Prop.
(dL1 only) (dL1 only) (dL1+L2) (dL1 only) (dL1+L2)

dL1 speed dL1 speed dL1 L2 speed dL1 speed dL1 L2 speed
gain up gain up gain gain up gain up gain gain up

gemm x11.3 x1.21 x7.7 x1.34 x6.4 x7.8 x1.37 x28.3 x2.43 x26.6 x30.8 x2.91
mvm x1.46 x0.97 x1.47 x0.96 x1.48 x1.0 x1.03 x1.48 x0.97 x1.48 x1.0 x1.04
doitgen x0.23 x0.76 x0.92 x0.97 x0.75 x0.91 x0.94 x28.7 x1.88 x24.3 x17.1 x1.89
gemver x1.94 x0.98 x1.93 x0.97 x1.93 x0.98 x0.99 x1.96 x0.98 x1.96 x1.0 x1.04
bicg x1.32 x0.75 x1.94 x0.91 x1.97 x0.96 x0.94 x1.96 x0.98 x1.96 x1.0 x1.04
gesumv x1.11 x0.92 x1.11 x0.94 x1.15 x1.0 x1.01 x1.24 x0.95 x1.2 x1.0 x1.02
2mm x1.13 x1.02 x6.01 x1.18 x5.8 x9.4 x1.17 x28.4 x2.41 x25.6 x29.9 x2.88
3mm x1.12 x1.02 x6.02 x1.16 x5.8 x8.8 x1.16 x28.0 x2.44 x25.7 x29.7 x2.89
atax x1.46 x1.19 x1.46 x1.14 x1.45 x1.0 x1.16 x1.5 x1.0 x1.29 x1.30 x1.31
syrk x3.8 x1.03 x1.91 x1.23 x1.98 x5.7 x1.31 x3.9 x1.42 x4.3 x5.7 x1.44
syr2k x3.85 x1.03 x0.92 x1.14 x1.09 x3.61 x1.15 x4.0 x1.41 x3.9 x5.9 x1.42

The cache misses gain values are taken by using Cachegrind. The routine that
initializes the arrays is included to the results. Pluto uses fixed tile sizes of size
32, while the tile sizes of [26] are shown in Table. 3. The proposed method
gives different tile sizes for each input size. The cache misses gain value is given
by the number of cache misses of the un-optimized version by the number of
cache misses of the evaluated tiled method.

First an analysis is provided when tiling is applied for dL1 only. The pro-
posed method provides significant dL1 miss gains in all cases but worse execu-
tion time for the loop kernels with low re-usage ratios, i.e., mvm, gemver, bicg,
gesumv, atax (Table 4). Pluto and [26] give worse execution time too, apart
from the atax kernel. The main reason for this lies in the fact that most of the
tile sets give a slightly higher number of L2 and L3 misses here (about 0.1%).
In this case, the number of dL1 misses does not align with performance be-

A methodology for efficient tile size selection for affine loop kernels 23

cause the number of L2 and L3 misses are slighly increased. Furthermore, loop
tiling introduces extra loops and thus the number of arithmetical instructions
is increased too. As it was explained in Section 3.3.3, performance depends
on many different parameters apart from the number of cache misses. It is
important to note that Algorithm 1 does generate dL1 tile sets that provide
performance gains (although marginal) but they are not selected by Step 6 as
they do not achieve the minimum number of dL1 misses.

The dL1 miss gain is higher in gemm, doitgen, 2mm, 3mm, syrk and syr2k
as all their arrays/tiles achieve data reuse; their tiles (which remain in dL1)
are loaded (re-used) many times from dL1, highly reducing the number of dL1
misses. On the contrary, mvm, bicg, gemver, atax and gesumv loop kernels load
most of their data just once from memory. For example, mvm (matrix-vector
multiplication) has two 1-dimensional arrays of size N and one 2-dimensional
array of size N×N (which is loaded just once). Loop tiling transformation can
reduce the number of memory accesses of the 1-dimensional arrays but not the
memory accesses of the big 2-dimensional array (loaded just once); note that
(N2 ≫ 2×N). The same holds for atax, gemver, gesumv and bicg loop kernels
where most of their data are accessed just once. Therefore, loop tiling has a
smaller effect in performance for these loop kernels compared to the others.
Another reason that the high re-usage ratio kernels achieve higher miss and
performance gains on both CPUs is that array copying transformation has been
applied (Step.4 in Algorithm 1). Array copying introduces a high overhead (an
extra loop kernel is added) and this is why it provides performance gains only
for kernels with high re-usage ratios. The overhead of array copying is included
in Table 4 and Table 5.

All methods achieve higher speedup values on Arm for two main reasons.
First, there is no big L3 cache on Arm and thus the effect of loop tiling (and
memory management in general) has a higher impact. Second, we believe that
icc compiler, which targets Intel processors only, generates faster code for Intel
processors, compared to gcc compiler on Arm processors.

The proposed method provides higher cache misses gains in all cases, com-
pared to Pluto and [26]. This is because the tiles of the proposed method
remain into the cache as the cache associativity and cache line size are well
considered. [26] provides cache misses gains in all cases apart from diotgen
and syr2k. In these two cases the tile sizes are not well selected. Pluto’s fixed
tile sizes well utilize the cache in most cases, apart from diotgen, where the
bigger 3D tiles cannot fit into the cache (a 2D tile of size 32x32 needs 4 KB,
while a 3D tile of size 32x32x32 needs 131 KB). One of the reasons Pluto
does not achieve significant performance gains here is that the tile size of the
vectorized loop is not large enough to take full advantage of vectorization and
hardware prefetching. On the contrary, the tile size of this loop is fixed to 256
in [26].

We have also evaluated the proposed method when two levels of tiling are
applied (Table 4,Table 5). In this case, we first find the tile sizes for dL1 and
then for L2. Note that if loop tiling is applied first to L2 and then to dL1,

24 Vasilios Kelefouras et al.

then the tile sets would be different (Subsection 3.3.1). The latter order is not
evaluated here.

The proposed method now provides high cache miss gains on both dL1
and L2, on both processors (Table 4,Table 5), for the reasons explained above.
The speedup values achieved are even higher now as both cache memories are
utilized. Regarding the low re-usage ratio kernels (mvm, bicg, gemver, atax
and gesumv), they do not provide any L2 miss gains as their reused arrays
are small enough to fit in L2 in all cases, even for the largest input sizes used.
However, performance is never degraded in this case (L2 was not well utilized
when tiling just for dL1 was applied). Loop tiling cannot provide that high
cache miss gains for the low data re-usage kernels as in gemm, doitgen, 2mm,
3mm, syrk and syr2k, and therefore the performance improvement is lower.
[26] provides good tile sizes for gemm, 2mm, 3mm, syrk, syr2k and atax but
performance is slighly degraded for mvm, diotgen, gemver, bicg and gesumv.

4.3 Tile Size Selection Overhead

In this subsection, the execution time required to generate the tile set (over-
head) is evaluated on the one CPU core of PC1 (icc compiler is used). The
overall number of different tile sets for the studied loop kernels can be found
in Table 1. The factorial indicates different iterator orderings. According to
Algorithm 1, all different tile sets are processed. The tile sets that satisfy
Eq.3 are further processed, while all the others are discarded. For the latter
tile sets, only a few and simple arithmetical operations are performed, and
thus, the tile size selection overhead mainly depends on the number of tile
sets that satisfy Eq.3. The more the tile sets that satisfy Eq.3 the higher
the execution time as further processing is required to estimate the number
of cache misses. Although Eq.3 includes many ceiling operations, which are
time-consuming, they are implemented by using bitwise operations. ⌈ n

m⌉ is
replaced by ((n >> log(m)) + (((n)&(m − 1))! = 0)), as m value is always a
power of 2 and n,m positive integers. Furthermore, m is a constant (depends
on the hardware details) and thus the logarithm can be computed just once.

The average execution time of Algorithm 1 (for the three studied input
sizes) when applying loop tiling just for dL1 or just for L2 of PC1, is shown
in Table 6. As it can be observed, the high re-usage ratio kernels give a higher
overhead compared to the low re-usage ones, as they contain a larger search
space (Table 1). In dL1 case, the overhead is low for all kernels apart from
diotgen, which needs almost an hour.

The overhead for L2 is much higher because a higher number of tile sets
satisfy Eq.3 in this case. L2 is larger than dL1 and thus a larger number of solu-
tions satisfy Eq.3. Note that it is not always the case that bigger cache memo-
ries give a higher overhead than smaller cache memories. However, small mem-
ories normally include lower overheads. The overhead when applying tiling to
L2 ranges between 0.5 to 5.4 hours. In diotgen, the simulation time takes more

A methodology for efficient tile size selection for affine loop kernels 25

than 24 hours and thus we process only the even tile sizes here to speedup the
process.

When loop tiling is applied to multiple cache memories, then the overhead
is lower. For example, if Algorithm 1 is applied first to dL1 and then to L2,
the L2 tile sizes are selected as multiples of the dL1 tile sizes and in this case
the number of L2 tile sizes that satisfy Eq.3 is many times lower, and thus
the simulation time is highly reduced. Note that this common practice for
multi-level tiling.

Although, the overhead shown in Table 6 can be high, there are several
schemes that can be used to reduce the execution time by about one order
of magnitude or even more. For example, processing the tiles that perfectly
divide the iterator’s upper bound only, processing the even or odd tile sizes
only, or processing less loop iterators’ orderings (Step 2 in Algorithm 1). Last,
we believe that the process of finding the tile sizes can be further optimized
by adopting constraint programming techniques.

Table 6 Tile size selection overhead on one CPU core of PC1. The * indicates that only
the even tile sizes are processed to speedup the process.

Average Tile size selection time (minutes)
Kernel Tiling for dL1 Tiling for L2
gemm 5.3 186.5
mvm 0.4 29.2

doitgen 56.3 325.1*
gemver 0.4 29.3
bicg 0.4 28.9

gesumv 0.4 29.0
2mm 5.4 186.4
3mm 5.4 186.5
atax 0.4 29.1
syrk 4.9 172.3
syr2k 5.0 172.7

5 Conclusions and Future Work

In this article, two important inefficiencies of current analytical loop tiling
methods are demonstrated. We showcase that first, current methods do not
accurately calculate the tiles sizes, and second, in current methods the tiles
cannot remain into the cache in most cases due to the cache modulo effect. This
results to inefficient tile sizes as only part of the tiles remains into the cache.
Furthermore, the number of cache misses for each tile size is not accurately
calculated, leading to sub-optimal tile sizes.

To address the aforementioned inefficiencies, a new loop tiling method is
proposed that well considers the cache line size, cache associativity and cache
size. We show that the tiles generated by our method remain into the cache and
their number of cache misses can be accurately estimated. The experimental

26 Vasilios Kelefouras et al.

results show that it is possible to estimate the number of cache misses with
a maximum error of 1% using simulation and 3.2% and 5.9% by using the
processor’s hardware counters, on L1 data cache and L3 cache, respectively,
leading to more efficient tile sizes, for static loop kernels.

The proposed loop tiling method achieves significant speedup values for the
loop kernels with high data re-usage ratios, in all cases, over icc/gcc compilers,
Pluto and other related methods. For the kernels with low data re-usage ratios,
two levels of tiling are required to achieve performance gain. Last, we show
that loop tiling is a transformation that cannot provide high speedup values
for kernels with low data re-usage ratios.

As far as our future work is concerned, we first plan to extend the pro-
posed method to multi-threaded loop kernels that use OpenMP framework
(see Subsection 3.3.5). In this case, the tile size selection affects the workload
of each thread which must be high enough to exploit parallelism. Furthermore,
as it was explained in Subsection 3.3.3, we plan to extend C-AMAT model to
correlate the number of cache misses with execution time.

Acknowledgements This work has received funding from the European Union’s Horizon
2020 research and innovation programme under Grant Agreement No 957210 - XANDAR:
X-by-Construction Design framework for Engineering Autonomous & Distributed Real-time
Embedded Software Systems.

References

1. Linux kernel profiling with perf. URL https://perf.wiki.kernel.org/index.php/Tutorial.
Accessed: 2020-10-10

2. Abella, J.: Near-optimal loop tiling by means of cache miss equations and genetic al-
gorithms. In: Proceedings of the 2002 International Conference on Parallel Processing
Workshops, ICPPW ’02, p. 568. IEEE Computer Society, USA (2002)

3. Alshboul, M., Tuck, J., Solihin, Y.: Wet: Write efficient loop tiling for non-volatile
main memory. In: Proceedings of the 57th ACM/EDAC/IEEE Design Automation
Conference, DAC ’20. IEEE Press (2020)

4. Bao, B., Ding, C.: Defensive loop tiling for shared cache. In: Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
CGO ’13, pp. 1–11. IEEE Computer Society, Washington, DC, USA (2013). DOI
10.1109/CGO.2013.6495008. URL http://dx.doi.org/10.1109/CGO.2013.6495008

5. Bao, W., Krishnamoorthy, S., Pouchet, L.N., Sadayappan, P.: Analytical modeling of
cache behavior for affine programs. Proc. ACM Program. Lang. 2(POPL) (2017). DOI
10.1145/3158120. URL https://doi.org/10.1145/3158120

6. Baskaran, M.M., Hartono, A., Tavarageri, S., Henretty, T., Ramanujam, J., Sadayappan,
P.: Parameterized tiling revisited. CGO ’10, p. 200–209. Association for Computing
Machinery, New York, NY, USA (2010)

7. Bondhugula, U., Bandishti, V., Pananilath, I.: Diamond tiling: Tiling techniques to
maximize parallelism for stencil computations. IEEE Transactions on Parallel and Dis-
tributed Systems 28(5), 1285–1298 (2017). DOI 10.1109/TPDS.2016.2615094

8. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic
polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113 (2008).
DOI 10.1145/1379022.1375595. URL http://doi.acm.org/10.1145/1379022.1375595

9. Chatterjee, S., Parker, E., Hanlon, P.J., Lebeck, A.R.: Exact analysis of the cache be-
havior of nested loops. SIGPLAN Not. 36(5), 286–297 (2001)

A methodology for efficient tile size selection for affine loop kernels 27

10. Chen, C., Chame, J., Hall, M.: Combining models and guided empirical search to opti-
mize for multiple levels of the memory hierarchy. In: Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’05, p. 111–122. IEEE Com-
puter Society, USA (2005)

11. Cohen, A., Zhao, J.: Flextended Tiles: a Flexible Extension of Overlapped Tiles for
Polyhedral Compilation. ACM Transactions on Architecture and Code Optimization
(2020). DOI 10.1145/3369382. URL https://hal.inria.fr/hal-02458507

12. Gysi, T., Grosser, T., Brandner, L., Hoefler, T.: A fast analytical model of fully associa-
tive caches. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, p. 816–829. Association for Com-
puting Machinery, New York, NY, USA (2019). DOI 10.1145/3314221.3314606. URL
https://doi.org/10.1145/3314221.3314606

13. Hammami, E., Slama, Y.: An overview on loop tiling techniques for code generation.
2017 IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA) pp. 280–287 (2017)

14. Hartono, A., Baskaran, M., Ramanujam, J., Sadayappan, P.: Dyntile: Parametric tiled
loop generation for parallel execution on multicore processors. In: 2010 IEEE Interna-
tional Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

15. Hartono, A., Baskaran, M.M., Bastoul, C., Cohen, A., Krishnamoorthy, S., Norris, B.,
Ramanujam, J., Sadayappan, P.: Parametric multi-level tiling of imperfectly nested
loops. In: Proceedings of the 23rd International Conference on Supercomputing, ICS
’09, p. 147–157. Association for Computing Machinery, New York, NY, USA (2009)

16. Hsu, C.h., Kremer, U.: A quantitative analysis of tile size selection algorithms. J.
Supercomput. 27(3), 279–294 (2004). DOI 10.1023/B:SUPE.0000011388.54204.8e. URL
https://doi.org/10.1023/B:SUPE.0000011388.54204.8e

17. Kelefouras, V., Georgios, K., Nikolaos, V.: Combining software cache partition-
ing and loop tiling for effective shared cache management. ACM Trans. Em-
bed. Comput. Syst. 17(3), 72:1–72:25 (2018). DOI 10.1145/3202663. URL
http://doi.acm.org/10.1145/3202663

18. Kelefouras, V., Kritikakou, A., Mporas, I., Kolonias, V.: A high-performance matrix—
matrix multiplication methodology for cpu and gpu architectures. J. Supercomput.
72(3), 804–844 (2016)

19. Kelefouras, V., Kritikakou, A., Papadima, E., Goutis, C.: A methodology for speeding
up matrix vector multiplication for single/multi-core architectures. J. Supercomput.
71(7), 2644–2667 (2015)

20. Kelefouras, V.I., Athanasiou, G.S., Alachiotis, N., Michail, H.E., Kritikakou, A.S.,
Goutis, C.E.: A methodology for speeding up fast fourier transform focusing on mem-
ory architecture utilization. IEEE Transactions on Signal Processing 59(12), 6217–6226
(2011)

21. Kelefouras, V.I., Kritikakou, A., Goutis, C.: A Matrix–Matrix Multiplication methodol-
ogy for single/multi-core architectures using SIMD. Supercomputing, Springer (2014).
DOI 10.1007/s11227-014-1098-9

22. Li, R., Sukumaran-Rajam, A., Veras, R., Low, T.M., Rastello, F., Rountev, A., Sa-
dayappan, P.: Analytical cache modeling and tilesize optimization for tensor con-
tractions. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19. Association for Comput-
ing Machinery, New York, NY, USA (2019). DOI 10.1145/3295500.3356218. URL
https://doi.org/10.1145/3295500.3356218

23. Li, Y., Sun, H., Pang, J.: Revisiting split tiling for stencil computations in polyhedral
compilation. Journal of Supercomputing (2021)

24. Mehdi, A., Béatrice, C., Stéphanie, E., Ronan, K., Onil, G., Serge, G., Janice, O.,
François Xavier, P., Grégoire, P., Villalon., P.: Par4all : From convex array regions to
heterogeneous computing. In: 2nd International Workshop on Polyhedral Compilation
Techniques (2012)

25. Mehta, S., Beeraka, G., Yew, P.C.: Tile size selection revisited. ACM Transactions on
Architecture and Code Optimization 10(4) (2013)

26. Narasimhan, K., Acharya, A., Baid, A., Bondhugula, U.: A practical tile size se-
lection model for affine loop nests. In: Proceedings of the ACM International

28 Vasilios Kelefouras et al.

Conference on Supercomputing, ICS ’21, p. 27–39. Association for Computing
Machinery, New York, NY, USA (2021). DOI 10.1145/3447818.3462213. URL
https://doi.org/10.1145/3447818.3462213

27. Nethercote, N., Walsh, R., Fitzhardinge, J.: Building workload characterization tools
with valgrind. In: IISWC, p. 2. IEEE Computer Society (2006)

28. Parsa, S., Lotfi, S.: A new genetic algorithm for loop tiling. The Journal of Supercom-
puting 37, 249–269 (2006)

29. POUCHET, L.: Polybench/c. URL http://web.cse.ohio-
state.edu/ pouchet.2/software/polybench/. Accessed: 2020-10-10

30. Renganarayanan, L., Kim, D., Strout, M.M., Rajopadhye, S.: Parameterized loop tiling.
ACM Trans. Program. Lang. Syst. 34(1) (2012)

31. Sarkar, V., Megiddo, N.: An analytical model for loop tiling and its solution. In: 2000
IEEE International Symposium on Performance Analysis of Systems and Software. IS-
PASS (Cat. No.00EX422), pp. 146–153 (2000)

32. Sato, Y., Yuki, T., Endo, T.: An autotuning framework for scalable execution of tiled
code via iterative polyhedral compilation. ACM Trans. Archit. Code Optim. 15(4),
67:1–67:23 (2019). DOI 10.1145/3293449. URL http://doi.acm.org/10.1145/3293449

33. Shirako, J., Sharma, K., Fauzia, N., Pouchet, L.N., Ramanujam, J., Sadayappan, P.,
Sarkar, V.: Analytical bounds for optimal tile size selection. In: Proceedings of the
21st International Conference on Compiler Construction, CC’12, p. 101–121. Springer-
Verlag, Berlin, Heidelberg (2012)

34. Tavarageri, S., Hartono, A., Baskaran, M., Pouchet, L.N., Ramanujam, J., Sadayappan,
P.: Parametric tiling of affine loop nests. In: 15th Workshop on Compilers for Parallel
Computing (CPC’10). Vienna, Austria (2010)

35. Tavarageri, S., Pouchet, L.N., Ramanujam, J., Rountev, A., Sadayappan, P.: Dynamic
selection of tile sizes. In: Proceedings of the 2011 18th International Conference on High
Performance Computing, HIPC ’11, p. 1–10. IEEE Computer Society, USA (2011)

36. Wang, D., Sun, X.H.: Apc: A novel memory metric and measurement methodology
for modern memory systems. IEEE Trans. Comput. 63(7), 1626–1639 (2014). DOI
10.1109/TC.2013.38

37. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimization of Soft-
ware and the ATLAS Project. Parallel Computing 27(1–2), 3–35 (2001)

38. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A.E.,
O’Brien, K.: Automatic creation of tile size selection models. In: Proceedings of the
8th Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’10, p. 190–199. Association for Computing Machinery, New York, NY, USA
(2010)

39. Zhou, X., Giacalone, J.P., Garzarán, M.J., Kuhn, R.H., Ni, Y., Padua, D.: Hierar-
chical overlapped tiling. In: Proceedings of the Tenth International Symposium on
Code Generation and Optimization, CGO ’12, p. 207–218. Association for Comput-
ing Machinery, New York, NY, USA (2012). DOI 10.1145/2259016.2259044. URL
https://doi.org/10.1145/2259016.2259044

