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End-to-End Capacities of Hybrid Quantum Networks

Cillian Harney, Alasdair I. Fletcher, and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

Future quantum networks will be hybrid structures, constructed from complex architectures of
quantum repeaters interconnected by quantum channels that describe a variety of physical domains;
predominantly optical-fiber and free-space links. In this hybrid setting, the interplay between the
channel quality within network sub-structures must be carefully considered, and is pivotal for ensur-
ing high-rate end-to-end quantum communication. In this work, we combine recent advances in the
theory of point-to-point free-space channel capacities and end-to-end quantum network capacities
in order to develop critical tools for the study of hybrid, free-space quantum networks. We present
a general formalism for studying the capacities of arbitrary, hybrid quantum networks, before speci-
fying to the regime of atmospheric and space-based quantum channels. We then introduce a class of
modular quantum network architectures which offer a realistic and readily analysable framework for
hybrid quantum networks. By considering a physically motivated, highly connected modular struc-
ture we are able to idealize network performance and derive channel conditions for which optimal
performance is guaranteed. This allows us to reveal vital properties for which distance-independent
rates are achieved, so that the end-to-end capacity has no dependence on the physical separation
between users. Our analytical method elucidates key infrastructure demands for a future satellite-
based global quantum internet, and for hybrid wired/wireless metropolitan quantum networks.

I. INTRODUCTION

The current internet is a vast classical network, de-
signed to facilitate global communication and distributed
information processing [1–4]. The inherent robustness of
classical information allows for hybrid, flexible network
architectures which operate in both optical-fiber and free-
space, befitting an environment and mode of application.
A future quantum internet will aim to play an analogous
role for quantum information technologies [5–8], but the
inherent fragility of quantum information makes achiev-
ing high-rates over long distances much more challeng-
ing. In pursuit of this goal, theoretical and experimental
progress in the study of hybrid quantum networks is fun-
damental and necessary.

The ultimate limits of fiber-networks are well under-
stood. By means of the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound, it is known that the capacity
of a fiber-link decays exponentially with respect to the
link-length with a precise law [9, 10]. The PLOB bound
has been used to understand the end-to-end network ca-
pacities of fiber-based quantum architectures [11], to as-
sess the limits of realistic, random network structures
[12, 13] and idealized, highly-connected, analytical archi-
tectures [14]. These investigations have provided essen-
tial insight and motivation for the construction of high
performance quantum networks, elucidating key physical
properties and network characteriztics. Chiefly, to de-
velop a high-performance, fiber-based quantum network
one must carefully consider not only connectivity, but
nodal density and maximum link length; leading to high
resource demands for large-scale designs.

However, quantum networks will not be limited to just
optical-fiber but will collaborate with free-space methods
of communication. On the ground, the flexibility of free-
space links are obviously more suitable for mobile quan-
tum devices and short-range connections. Meanwhile,

the ability to establish ground-to-satellite and intersatel-
lite free-space connections offers remarkable short-cuts
for global quantum communications [15–21]. Such con-
nections bypass many decibels of loss that would be
otherwise experienced on the ground, and utilize the
dynamic nature of satellites to achieve high-rates over
global distances.

Determining the ultimate limits of free-space quantum
channels is difficult, requiring tools from quantum in-
formation theory [22–24], optics [25–27] and turbulence
theory [28–31]. Recent advancements have placed tight
upper-bounds on the quantum capacities of point-to-
point free-space channels, using a modified PLOB bound
that accounts for atmospheric fading processes [32, 33].
With these results in hand, we have the ingredients to
go beyond the point-to-point scenario and quantitatively
study the ultimate limits of communications in free-space
quantum networks.

In this work, we combine results from Refs. [11] and
[32, 33] in order to place bounds on the end-to-end capaci-
ties of generally hybrid quantum networks. In particular,
we put forward a formalism for studying the capacities of
quantum networks whose channels are described by free-
space, fiber, or any medium that can be generalized as a
fading channel. This treatment is then specified to fading
processes that are experienced by optical transmissions
through the atmosphere, or in space.

Furthermore, we introduce a framework to investigate
the ultimate limits of hybrid, modular quantum net-
works. We focus on a modular network design which
consists of disjoint sub-networks (or communities) con-
nected to a large-scale backbone network used to medi-
ate intercommunity quantum communication. For the
first time, this provides the tools to investigate highly
relevant quantum network models, such as: Globally dis-
tant fiber sub-networks connected to a satellite backbone
network, offering insight into the resource requirements
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of a satellite-based quantum internet; and wireless, free-
space sub-networks on the ground interconnected via a
fiber backbone, presenting a useful model for studying
hybrid metropolitan networks.
Extending the techniques of Ref. [14] we employ ideally

connected structures within different parts of the mod-
ular network. In doing so, we are able to derive sim-
ple, yet powerful analytical constraints which promise
distance-independent rates for modular quantum archi-
tectures, and thus optimal performance. These results
provide valuable insight into the ultimate limits of hybrid
networks, can help to motivate future quantum network
designs and provide a valuable platform upon which to
further develop realistic free-space quantum networks.

A. Paper Structure

This paper is structured as follows: In Section II we
provide a comprehensive review of quantum networks,
point-to-point capacities of general fading channels and
the end-to-end network capacities of quantum networks
generally composed of fading channels. We then spec-
ify this review to optical free-space quantum communi-
cations, summarizing recent progress in the determina-
tion of ultimate limits for a number of key settings. In
Section III we formalize a network architecture for the
study of hybrid, modular quantum networks. We fur-
ther specify an idealized network architecture which al-
lows us to establish properties that guarantee optimal
end-to-end performance and distance-independence. Fi-
nally, Section IV applies the machinery from the previ-
ous sections to investigate the optimal performance of
hybrid quantum architectures. In particular, we estab-
lish network constraints for communication between re-
mote fiber-based sub-networks connected to a satellite
backbone, and for ground-based free-space sub-networks
connected to a fiber backbone. Concluding remarks and
future investigative paths are then discussed.

II. PRELIMINARIES

A. Quantum Networks

An arbitrary quantum network can be described as a
finite, undirected graph N = (P,E) where P is the set of
all network nodes (points/vertices) on the graph, and E is
the set of all edges within the network. Each node x ∈ P
represents a local register of quantum systems which can
be exchanged with connected neighbors. Meanwhile each
edge in the network is denoted by the unordered pair
(x,y) ∈ E, and is used to represent a quantum channel
Exy through which users can exchange quantum systems.
Two nodes x and y are connected if the edge (x,y) exists
within E.
It is important to note that the physical orientation

of each channel Exy in the network can be a forwards

or backwards and need not be specified. Under the assis-
tance of two-way classical communications (CCs), the op-
timal transmission of quantum information is connected
with optimal entanglement distribution. It does not de-
pend on the physical direction of system exchange but the
Local Operations (LOs) that are applied at each point,
and thus the direction of teleportation. This refers to the
logical direction of quantum communication. If an undi-
rected edge represents a physically asymmetric channel
(i.e. Exy 6= Eyx) then the users can always enable a tele-
portation protocol that uses the most efficient physically
directed channel. Hence, the logical flow of quantum in-
formation can always be made independent of the phys-
ical flow of quantum systems.
Consider two end-users Alice and Bob, who reside at

remote nodes within the quantum network, α and β re-
spectively. An end-to-end communication protocol be-
tween Alice and Bob can be most broadly captured by a
general adaptive protocol. Alice and Bob propagate the
exchange of quantum systems between nodes through-
out the network in accordance with an overarching pro-
tocol in order to establish some global, target quantum
state. This may involve point-to-point, or point-to-multi-
point exchanges dependent on the nature of the protocol.
Quantum interactions between any two nodes is alter-
nated with adaptive network-wide LOCCs, allowing for
consistent optimization of the network protocol. Com-
munication is complete when the target state is eventu-
ally established between the end-users after a number of
uses of the network.
The optimal performance over any such network proto-

col is captured via the generic two-way assisted network
capacity C(N ) which describes the ultimate rate with
which a desired target state can be established. If the tar-
get is a private state, this refers to the network secret-key
capacity K(N ) measured in secret-bits per network use.
If it is a maximally entangled state then this becomes the
network entanglement distribution capacity E(N ) mea-
sured in entanglement bits (ebits) per network use.
Note that we consider a general information-theoretic

definition of a quantum repeater as a middle third-party
helping the quantum communication between a sender
and a receiver (therefore not connected by a direct link).
In practice, there are many possible physical realizations,
e.g., see Refs. [34–36] among others.

1. Network Routing

Thanks to the interconnectivity of quantum networks,
there is no unique path that network interactions must
follow in order to establish end-to-end quantum commu-
nication. However, there exist two fundamental classes
of routing strategy under which all protocols can be de-
scribed: Single-path or multi-path routing.
Single-path routing is the simplest network communi-

cation method which utilizes point-to-point communica-
tions in a sequential manner. Quantum systems are ex-
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changed from node-to-node followed by LOCC operations
after each transmission until eventually communication
has been established between the end-users. One may
define a single-path network capacity Cs(N ) which de-
scribes the optimal performance obtained via a sequential
end-to-end strategy. A repeater chain forms a particular
instance of quantum network under single-path routing
where there only exists one unique end-to-end route.
A more powerful strategy is multi-path routing, which

properly exploits the multitude of possible end-to-end
routes available in a quantum network. A user may
exchange an initially multi-partite quantum state with
a number of neighboring receiver nodes, who may each
then perform their own point-to-multi-point exchanges
along their unused edges. Again, every exchange of quan-
tum systems can be interleaved with adaptive network
LOCCs, and this process continues until multi-point in-
teractions are carried out with the end-users. A multi-
path routing strategy in which all channels in the net-
work are used precisely once per end-to-end transmission
is known as a flooding protocol. This is achieved via non-
overlapping point-to-multi-point transmissions at each
network node, such that receiving nodes only choose to
transmit along unused edges for subsequent connections.
Therefore, there exists a multi-path network capacity (or
flooding capacity) Cm(N ) which describes the optimal
network performance out of all possible strategies (single
or multi-path).

B. Quantum Networking over Fading Channels

The effect of fading refers to the temporal variation of
transmissivity along a bosonic lossy channel. The trans-
missivity along a fading channel is not fixed, but instead
follows a probability distribution described by the dy-
namics of the environment. For example, the propaga-
tion of bosonic modes through low-altitude free-space in-
stigates a fading channel thanks to chaotic processes in
the atmosphere. The impact of fading on a communi-
cations channel is described via its speed, i.e. the ability
for a receiver to resolve the dynamics of the transmis-
sivity fluctuations. Slow-fading implies that the users
can resolve the fading dynamics and accurately perform
channel estimation because either the fading process is
weak or the users possess sufficiently fast detectors. On
the other hand, fast-fading refers to the situation where
the users cannot reconcile the dynamics of the channel
and can only estimate the statistical distribution of the
channel transmissivity [37, 38]. It is clear that fast-fading
poses a more formidable task for communicators.
More precisely, a bosonic lossy fading channel is de-

fined as an ensemble of lossy channels in accordance with
some probability density function F (τ) which describes
the instantaneous transmissivity along the channel. We
denote a lossy fading channel as the ensemble

EF (η) := {F (τ); Eτ} (1)

where Eτ is a lossy channel with fixed, instantaneous
transmissivity τ ∈ [0, η] and η is the maximum trans-
missivity that is attainable along the channel.

1. Capacities of Fading Channels

The absolute maximum rate that two parties can trans-
mit qubits, establish secret-keys, or distribute entangle-
ment over bosonic lossy channels is known exactly via
the PLOB bound [10]. This states that generic two-way
assisted capacity of a quantum channel is precisely

C(Eη) = B(η) := − log2(1− η) (2)

measured in bits per channel use, and where we intro-
duce B(η) as the capacity function for stable lossy chan-
nels. While this assumes a fixed transmissivity η, the
PLOB bound can be readily employed to study fading
channels [10, 39]. Thanks to convexity properties of the
relative entropy of entanglement (REE) over ensembles
of channels, the capacity of a lossy fading channel can be
bounded according to,

C[EF (η)] ≤ BF (η) :=

ˆ η

0

dτ F (τ) B(τ). (3)

where we have defined BF (η) as the capacity function for
lossy fading channels. This can be interpreted as a gener-
alization of Eq. (2), modified to include potential fading
processes. Indeed, it is simple to retrieve the standard
bound − log2(1 − η) for fixed lossy channels by consid-
ering a trivial probability distribution where only one
transmissivity value is possible, η. Hence, this format is
conveniently general and allows one to describe any lossy
bosonic channel (with or without fading).
More generally, lossy channels will also be exposed to

thermal-noise, resulting in a thermal-loss channel Eτ,n̄.
This channel equates to mixing an input mode with a
thermal mode of mean photon number n̄e = n̄/(1−τ) on
a beam splitter of transmissivity τ , effectively adding n̄
photons to the signal mode. The capacity of thermal-loss
channels is not known exactly, but upper-bounds have
been derived through the techniques developed for the
PLOB bound. For a fixed thermal-loss channel Eτ,n̄ the
capacity can be upper-bounded via [10]

C(Eτ,n̄) ≤ L(τ, n̄) := − log2
(

τ n̄e(1− τ)
)

− h(n̄e), (4)

where h(x) := (x+ 1) log2(x+ 1)− x log2(x). Otherwise
L(τ, n̄) = 0 when τ < n̄, meaning that there exists a
minimum transmissivity at which communication can be
reliably secured.
Analogous to the pure-loss setting, a thermal-lossy fad-

ing channel can be described by the ensemble

EF (η, n̄) := {F (τ, n̄); Eτ,n̄}, (5)

where it is possible that both transmissivity and ther-
mal noise are probabilistic and described within a prob-
ability density function F (τ, n̄). Typically, thermal noise
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can always be considered constant by either assuming
stable operational conditions, or by minimising (max-
imising) its potential value for best-case (worst-case)
rates. This allows us to consider the simpler ensemble
EF (η, n̄) = {F (τ); Eτ,n̄} on which we place the following
upper-bound of its capacity [32, 33],

C[EF (η, n̄)] ≤ LF (η, n̄) :=

ˆ η

n̄

dτ F (τ) L(τ, n̄). (6)

Here we have defined LF (η, n̄) as a tight capacity
bounding-function for thermal-lossy fading channels [40].
Intuitively, one can never outperform the pure-loss PLOB
bound in the presence of thermal-noise, hence we can al-
ways write

C[EF (η, n̄)] ≤ LF (η, n̄) ≤ BF (η). (7)

2. Capacities of Fading Networks

We can combine the theory from these previous sec-
tions in order to provide a general model for quantum
networks with fading channels. Indeed, we may con-
struct a quantum network N = (P,E) such that all
edges (x,y) ∈ E are generally associated with a unique
thermal-lossy fading channel,

Exy = EFxy
(ηxy, n̄xy), ∀(x,y) ∈ E. (8)

In this way, each network edge not only possesses a
unique maximum transmissivity ηxy and thermal-noise
properties n̄xy, but also a unique instantaneous trans-
missivity probability density function Fxy through which
each edge can adopt its own fading dynamics (or lack
thereof). This allows for a description of network chan-
nels within different environmental media such as fiber
channels, ground-based free-space channels, or free-space
channels beyond the atmosphere. Furthermore, we can
retrieve pure-loss fading channels via n̄xy = 0.
It has been shown that the capacities of quantum net-

works can be derived through a combination of quantum
information theoretic tools and ideas from classical net-
work theory [11]. By transforming the notion of classi-
cal network cuts into entanglement cuts of a quantum
network, one can determine compact, analytical expres-
sions for the network capacities of arbitrary architectures.
Consider a pair of end-users within the fading network
α,β ∈ P . We define an entanglement cut C as a means
of disconnecting/partitioning the network into two dis-
joint super-users A and B such that α ∈ A and β ∈ B

and P = A∪B. A network cut C generates an associated
cut-set,

C̃ = {(x,y) ∈ E | x ∈ A,y ∈ B}, (9)

defining a collection of network edges which when re-
moved successfully partitions the network.
As discussed in previous sections, single-path routing

can be thought of as a generalization of repeater-chains,

where end-to-end communication is established via the
sequential exchange of quantum systems along a desig-
nated path. The single-path network capacity Cs(N ) is
bounded by determining the network cut Cmin that gen-
erates the smallest, maximum single-edge capacity in the
cut set. For lossy and thermal-lossy fading networks, we
may define the single-path capacity quantities [11],

Bs(N ) := min
C

max
(x,y)∈C̃

BFxy
(ηxy), (10)

Ls(N ) := min
C

max
(x,y)∈C̃

LFxy
(ηxy, n̄xy), (11)

which upper-bound the single-path network capacity,

Cs(N ) ≤ Ls(N ) ≤ Bs(N ). (12)

In the absence of thermal noise, the single path capac-
ity Bs(N ) is achievable and equates to performing se-
quential communication along the optimal route ω∗ in
the network. For an arbitrary network, finding the opti-
mal route is equivalent to solving the well known widest-
path problem and can be solved efficiently [41]. It is
unknown whether the thermal upper-bound in Eq. (6) is
achievable, hence in the presence of thermal noise Ls(N )
presents a tight upper-bound.
More powerful network protocols employ multi-path

routing [42]. The multi-path network capacity is asso-
ciated with an optimal flooding protocol, and is found
by locating the entanglement cut Cmin which minimizes
the multi-edge capacity over all cut-sets. For lossy and
thermal-lossy fading networks we can compute the multi-
path quantities [11],

Bm(N ) := min
C

∑

(x,y)∈C̃

BFxy
(ηxy), (13)

Lm(N ) := min
C

∑

(x,y)∈C̃

LFxy
(ηxy, n̄xy), (14)

which upper-bound the multi-path network capacity,

Cm(N ) ≤ Lm(N ) ≤ Bm(N ). (15)

Once more, for pure-loss based networks the flooding
capacity Bm(N ) is achievable, and equates to solving
the classical maximum-flow minimum-cut problem ac-
cording to a network of capacity achieving links. For
general quantum networks with an arbitrary architec-
tures, this problem requires a numerical treatment and
can be solved efficiently [43–45]. Once more, since the
thermal-loss upper bound is not guaranteed to be achiev-
able Lm(N ) is instead a tight upper-bound.

C. Free-Space Quantum Communication

Consider two remote parties Alice and Bob who are
separated by a distance z, and employ quantum com-
munications based upon a quasi-monochromatic optical
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mode (∆λ-nm large and ∆t-sec long). This may be char-
acterized by a Gaussian beam with wavelength λ, initial
field spot-size w0 and curvature R0. Communication con-
sists of transmitting a directed beam towards a receiver
with circular aperture of radius aR. Here we assume that
the initial spot-size w0 is sufficiently small with respect
to the transmitter aperture of radius aT so that there is
no relevant diffraction caused by the transmitter.
The atmospheric effects which characterize free-space

channels are variable with respect to altitude, due to
changes in atmospheric density. Therefore specifying the
trajectory of a Gaussian beam through free-space is piv-
otal in capturing channel quality. To this end, for any
point-to-point communications task we may assume a
general beam trajectory L and introduce the following
altitude/propagation functions respectively, hL(z) and
zL(h). Using these functions we can retain a geometry
independent framework for our study until we wish to
specify to a particular setting.

1. Free-Space Transmissivity

Free-space diffraction is a universal contributor to loss.
As a beam propagates in free-space its waist will widen
as a function of the distance it travels,

w2
d(z) = w2

0

[(

1−

(

z

R0

)2
)

+

(

z

zR

)2
]

(16)

where zR := πw2
0/λ is the Rayleigh range. A target re-

ceiver will then only detect a portion of the spread beam
since its aperture is finite in size, inducing a diffraction-
limited transmissivity,

ηd(z) = 1− exp

[

−
2a2R
w2

d

]

. (17)

It is also useful to define a diffraction induced transmis-
sivity in the far-field regime, z ≫ zR, making the approx-
imation ηd ≈ ηfard := 2a2R/w

2
d. This loss quantity exists

regardless of the specific environmental setting consid-
ered, from ground-based links to intersatellite connec-
tions.
Propagation through the atmosphere incurs further

loss due to aerosol absorption and Rayleigh/Mie scat-
tering; an effect known as atmospheric extinction. At a
fixed altitude h, this loss can be accurately described via
the Beer-Lambert equation [27]. Since beam trajectories
may be variable in altitude, we can generally define the
extinction-induced transmissivity as

ηatm(z) = exp

[

−

ˆ z

0

dz α[hL(z)]

]

, (18)

where α(h) = α0e
−h/h̃ is the extinction factor, h̃ =

6600 m, and α0 is the extinction factor at sea-level. For
λ = 800 nm it follows that α0 ≈ 5× 10−6 m−1

Finally, there exist inevitable internal losses associ-
ated with the detector setup, due to imperfect fiber-
couplings, sub-optimal quantum detector efficiency, and
more. This inefficiency-induced transmissivity can be as
low as ηeff ≈ 0.4 and must be considered to capture re-
alistic performance. All of these effects can be used to
describe a fixed, maximum transmissivity of a free-space
connection,

η(z) := ηeff ηatm(z) ηd(z). (19)

Importantly, η can be readily modified to consider vari-
able altitude beam trajectories and written as a function
of a chosen spatial geometry to account for different ex-
tinction properties throughout the atmosphere.

2. Atmospheric Fading

It is remarkably optimistic to assume that a free-
space transmission deterministically undergoes a pure-
loss channel characterized by Eq. (19) only. The chaotic
behavior of air-flow, temperature and pressure through-
out the atmosphere invites further complications for free-
space transmissions, causing inaccuracies in the point-to-
point trajectory known as beam wandering. As a result,
we must incorporate fading for a more accurate charac-
terization.
Turbulence is used to describe how a free-space prop-

agating beam is perturbed by fluctuations in the atmo-
spheric refractive index, caused by spatial variations in
pressure and temperature. Propagating beams interact
with small turbulent air-flows on a fast time-scale, too
fast for communicators to monitor or resolve. This causes
the beam waist to broaden and forces us to define a short-
term spot-size wst which is larger than the diffraction-
induced spot size, wd < wst. On a slower time-scale,
the beam will undergo deflections by significantly larger
eddies in the atmosphere. This slower time-scale may
be reconcilable by the communicators, and manifests as
a wandering of the beam centroid. This wandering can
be described by a Gaussian random walk of the centroid
with variance σ2

t which is a functional of the beam tra-
jectory, operational setup, conditions, and more.
Wandering is not exclusively caused by turbulence, and

one must also consider pointing errors caused by jitter
and imperfect targeting. These effects also occur on a
reasonably slow time-scale of order 0.1− 1 s, and may be
resolved by the receiver. This introduces an additional
wandering variance σ2

p, e.g. a 1 µrad pointing error at

the transmitter causes a variance σ2
p ≈ (10−6z)2 (where

z is in meters). Overall, these effects combine to induce
Gaussian centroid wandering with variance σ2 = σ2

t +σ2
p.

The ability for communicators to resolve these wan-
dering dynamics is dependent on their time-scale. The
behavior of turbulence is variable, with regimes rang-
ing from weak to strong turbulence. Increasing turbu-
lent strength can be modeled as an increasingly faster
fading process, such that a receiver loses the ability to
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reconcile the wandering dynamics. For stronger levels
of turbulence, it is possible to define a long-term spot-
size wlt which averages over the wandering caused by
both small turbulent eddies and larger eddy deflections,
wd < wst < wlt. Indeed, the turbulence-induced variance
is defined with respect to the long-term and short-term
quantities σ2

t = w2
lt − w2

st. However, rigorous studies of
strong turbulence will require further considerations, for
which work is currently underway [46].
In this work, we focus on the regime of weak turbu-

lence and the concept of short-term beam spot sizes.
These can be used to provide precise descriptions of free-
space quantum channels on the ground at short-range,
and for ground-to-satellite communication along trajec-
tories with small zenith angles [32, 47, 48].

3. Weak Turbulence

For communications undergoing weak turbulence, the
beam wandering acts on a time scale of 10 − 100 ms
and can be fully resolved with a sufficiently fast detec-
tor. In this case, analytical expressions can be found
for the short-term spot size wst and the centroid wan-
dering variance σ2. Consider a beam with wavenumber
k = 2π/λ following a free-space trajectory L (and its
associated altitude function hL(z)). Then the spherical-
wave coherence length is given by,

ρ0(L) =

[

1.46k2
ˆ z

0

dζ

(

1−
ζ

z

)
5
3

C2
n [hL(ζ)]

]− 3
5

, (20)

where C2
n denotes the refractive index structure con-

stant, used to measure the strength of fluctuations in
the atmospheric refractive index. This quantity has
an explicit dependence on the beam’s trajectory, since
this may be variable in altitude, and is typically de-
scribed via the Hufnagel-Valley model (See Appendix C
of Ref. [32]). Provided that Yura’s condition is satisfied

φ := 0.33(ρ0/w0)
1
3 ≪ 1 [49] then we can write [32],

w2
st ≈ w2

d + 2

(

λz

πρ0

)2

(1− φ)2, (21)

σ2
t ≈ 2

(

λz

πρ0

)2
[

1− (1− φ)2
]

. (22)

The short-term spot size can be used to update the
diffraction induced transmissivity to account for fast
beam interaction with small turbulent eddies in the at-
mosphere. That is,

ηst := 1− exp

[

−
2a2R
w2

st

]

≈
z≫zR

ηfarst :=
2a2R
w2

st

. (23)

where we have simultaneously introduced a far-field ap-
proximation, ηfarst when the propagation distance is very
large z ≫ zR.

Updating the diffraction-induced transmissivity in
Eq. (19), we may write a new maximum transmissivity
incorporating weakly turbulent effects, η = ηeff ηatm ηst.
This represents the optimal transmissivity parameter
that can be achieved when the beam centroid ~xC is per-
fectly aligned with the receiver centroid ~xR, i.e. the cen-
troid deflection is r := ‖~xC − ~xR‖ = 0. However, due to
turbulence and pointing errors, the beam centroid now
undergoes a Gaussian random walk with variance σ2, in-
voking a fading channel. We can then connect the non-
zero centroid deflection r ≥ 0 to an instantaneous trans-
missivity τ(r) to precisely capture the fading process.
Gaussian wandering induces a Weibull distribution for
the centroid deflection, which results in an instantaneous
transmissivity probability density function Fσ[τ(r)] [32].
Defining the functions,

f0(x) := [1− exp(−2x)I0(2x)]
−1, (24)

f1(x) := exp(−2x)I1(2x), (25)

where In is the modified Bessel function of the first kind
for n = 0, 1, we can introduce the following shape and
scale parameters,

γ =
4ηfarst f0(η

far
st )f1(η

far
st )

ln
[

2ηstf0(ηfarst )
] , r0 =

aR

ln
[

2ηstf0(ηfarst )
]

1
γ

. (26)

With these, we can now write the instantaneous trans-
missivity probability density function,

Fσ(τ) =
r20

γσ2τ
ln
(η

τ

)
2
γ −1

exp

[

−
r20
2σ2

ln
(η

τ

)
2
γ

]

. (27)

Consequently, we are left with a free-space, lossy fad-
ing channel EFσ

(η) = {Fσ(τ); Eτ}. Using the tools from
Section II, we can study the capacities of free-space con-
nections.
Hence, the capacities for free-space quantum commu-

nications (entanglement distribution or secret-key distri-
bution) are upper bounded according to [32]

C ≤ BFσ
(η) = −∆(η, σ) log (1− η) , (28)

where ∆ represents a correction factor to the PLOB
bound due to imperfect alignment,

∆(η, σ) = 1 +
η

ln(1− η)

ˆ ∞

0

dx
exp

[

−r20
2σ2 x

2
γ

]

ex − η
. (29)

Through specification to a free-space trajectory, one can
easily determine geometry dependent expressions for this
ultimate limit. Importantly, for channels which are accu-
rately described as ensembles of pure-loss channels (ther-
mal noise is negligible), then Eq. (28) is in fact an achiev-
able and optimal rate, C = BFσ

(η). For all other scenar-
ios where thermal noise is non-negligible, it remains an
effective upper-bound.
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4. Thermal Noise

As discussed previously, pure-loss based bounds re-
main ultimate bounds in the presence of thermal noise.
Yet, it is still possible to construct tighter performance
bounds by considering fading channels which are ensem-
bles of thermal-loss channels. Let n̄T be the mean num-
ber of input photons transmitted towards a receiver via
a single free-space mode. For an instantaneous transmis-
sivity τ the mean photon number collected at the receiver
will be n̄R = τ n̄T + n̄, where n̄ describes the total envi-
ronmental thermal noise added to the signal. It is useful
to define contributions to this environmental noise via

n̄ := ηeff n̄B + n̄ex (30)

where the receiver collected n̄B mean background pho-
tons with detector efficiency ηeff, and n̄ex accounts for
excess setup noise. In the study of ultimate limits, n̄ex

can be considered to be approximately zero, or can be
attributed to trusted noise.
For free-space links, the primary source of thermal

noise is attributed to natural brightness within the field
of view of the transmission, i.e. the sky, Sun, Moon, etc.
Using a receiver of aperture aR, angular field of view Ωfov,
a detector with time window ∆t and frequency filter ∆λ
around λ, then the number of background thermal pho-
tons per mode is

n̄B = HλΓR, where ΓR := ∆t∆λΩfova
2
R. (31)

Here, Hλ describes the spectral irradiance of the envi-
ronment in units of photons m−2 s−1 nm−1 sr−1, and is
unique to the operational setting and trajectory. Using
the general bound from Eq. (6) and specifying to free-
space beam wandering dynamics with variance σ2, we
can write the free-space thermal upper-bound,

C ≤ LFσ
(η, n̄) = BFσ

(η)− TFσ
(η, n̄), (32)

where the thermal correction is given explicitly by,

TFσ (η, n̄) :=

[

1− exp

(

−r20
2σ2

ln
[ η

n̄

]
2
γ

)]

×

[

n̄ log2(n̄)

1− n̄
+ h(n̄)

]

− BFσ
(n̄).

(33)

This result applies to settings of weak and intermediate
turbulence, such that one can substitute the appropriate
reconcilable wandering variance and maximum transmis-
sivity into this result.

5. Noise Suppression and Frequency Filters

As seen in Eq. (31), the number of background ther-
mal photons per mode has a strong dependence on the
frequency filter, ∆λ. The frequency filter assists in block-
ing out noise, and thus the use of ultra-narrow filters is

highly desirable. In discrete-variable quantum communi-
cations, physical frequency filters are typically limited to
around ∆λ = 1 nm. However, using CV quantum sys-
tems and appropriate interferometric measurements it is
possible to achieve much narrower effective filters.
Many CV-based protocols rely on the use of a local-

oscillator (or phase reference) in order to perform homo-
dyne or heterodyne measurements at the output. This
phase reference may be co-propagated with signal pulses,
or alternatively reconstructed at the receiver. This recon-
struction method involves interleaving the signal pulses
with strong reference pulses that carry information about
the local-oscillator [8]. Since the output of a homodyne
measurements is proportional to the mean photon num-
ber in the local-oscillator modes, the ability to utilize
bright references pulses over free-space channels intro-
duces an effective homodyne filter. Thermal noise mode-
matching with the local-oscillator and the signal will be
detected, but all other noise will be filtered out. This
allows for the implementation of ultra-narrow effective
filters on the order of ∆λ = 0.1 pm with practical CV
protocols, and can dramatically reduce the magnitude
of the thermal background noise (see Ref. [32] for more
details).

D. Important Free-Space Channels

1. Ground-Based Channels

Wireless classical communication networks are ubiq-
uitous and fundamental to everyday modern life. Thus
the desire for a free-space quantum analogue is obvious,
enabling access to future wireless quantum technologies.
Nonetheless, it is intuitive that such communication will
be limited to short-range thanks to prominent decoher-
ence obtained at ground-level. At a fixed altitude, beam
trajectories are horizontal paths with the simple alti-
tude/propagation functions hL(z) = h, zL(h) = z. The
absence of a variable altitude in the beam path simplifies
a number of key quantities such as the extinction-induced
transmissivity

ηatm(z) = exp [−α(h)z] , (34)

and the spherical-wave coherence length

ρ0 =
[

0.548k2C2
n(h)z

]− 3
5 , (35)

which can be used to accurately describe decoherence
and fading dynamics on the ground. Here, turbulence
is a major factor and must be stringently considered. A
useful parameter for assessing the validity of turbulent
regimes on the ground is the Rytov variance,

σ2
Ry = 1.23 k

7
6 z

11
6 C2

n(h). (36)

In particular, weak turbulence requires that σ2
Ry . 1. Us-

ing a Gaussian beam with λ = 800 nm and altitudes close
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to sea-level during typical day-time conditions, weak tur-
bulence is only guaranteed for distances of z . 1 km.
Beyond this, as in the intermediate (σ2

Ry & 1) and strong

(σ2
Ry ≫ 1) turbulent regimes, the long-term spot size

must be adopted, leading to poorer ultimate channel ca-
pacities [46].

Fig. 1(a) illustrates the behavior of transmissivity in
ground-based free-space channels with respect to prop-
agation length. Within the weak-turbulence regime the
loss properties of free-space channels limited to ∼ 4 dB
for communications over 1 km, encouraging the utility of
short-range, optical free-space quantum communications.
For the assessment of thermal bounds, the primary

source of thermal-noise at ground-level is attributed to
the brightness of the sky. This provides a spectral irra-
diance ranging from

Hsky
λ ≈

{

1.9× 1013, full-Moon, clear night,

1.9× 1018, cloudy day time.
(37)

in units of photons m−2 s−1 nm−1 sr−1. Using this in-
formation, the expressions in Eqs. (34) and (35), and
the general capacity bounds developed in the previous
sections, we can accurately assess the ultimate limits of
free-space quantum communications on the ground (see
Ref. [32] for further details and derivations).

2. Ground-Satellite Channels

For communication between ground/satellite stations,
there are two unique configurations that must be consid-
ered: Transmissions directed from the ground towards a
satellite (uplink) or from a satellite towards the ground
(downlink). The quantum channel descriptions of these
configurations are very different.
Consider a Gaussian beam propagated in uplink. The

beam immediately undergoes turbulence upon generation
at low altitude, and thus has a large decohering impact
which must be carefully considered. However, pointing
errors are less critical σ2

p ≪ σ2
t thanks to the availability

of adaptive optics to optimize the beam trajectory from
the ground station. Therefore we must model uplink as
a fading channel predominantly due to turbulent effects.
Meanwhile, a Gaussian beam in downlink experiences the
opposite; the beam does not undergo serious levels of tur-
bulence until it reaches lower altitudes. But by this point,
its spot-size has already been spread by diffraction, hence
turbulence does not present a serious factor and σ2

t ≈ 0.
Yet, in this setting pointing errors become much more rel-
evant due to the lack of onboard access and optimization
ability. Hence, atmospheric decoherence associated with
uplink and downlink is physically asymmetric, invoking
two unique fading channels.
We specify the trajectory of ground-satellite communi-

cation according to a target satellite altitude h and zenith
angle θ, which describes the angle formed between the
zenith point at the ground station and the direction of

observation towards the satellite. The zenith angle takes
values θ ∈ [−π

2 ,
π
2 ], such that when θ = 0 the satellite

is at the zenith. The distance that the beam physically
travels from its point of generation z (known as its slant
distance) can then be expressed with respect to this ge-
ometry. Defining the functions,

hθ(z) =
√

R2
E + z2 + 2zRE cos θ −RE ,

zθ(h) =
√

h2 + 2hRE +R2
E cos2 θ −RE cos θ.

(38)

we may then introduce the altitude/propagation func-
tions with respect to uplink and downlink communica-
tions [33],

zupθ (h) = zθ(h), zdown
θ (h) = zθ(hmax)− zθ(h), (39)

hup
θ (z) = hθ(z), hdown

θ (z) = hθ

[

zθ(hmax)− z
]

. (40)

Fig. 1(b) illustrates the behavior of transmissivity in
ground-satellite channels with respect to uplink, down-
link and satellite altitude. Here we plot both the the ex-
pected transmissivity when averaged over the respective
fading processes and maximum transmissivity (a best-
case loss in the absence of fading). Crucially, it can be
shown that for beam trajectories with relatively small
zenith angles θ ≤ 1 radiant, we can assume the regime
of weak turbulence for the ground-satellite fading chan-
nel (see Appendix C of [32]). Within this angular window
we can accurately resolve the fading dynamics, and by in-
serting the beam trajectory expressions into the machin-
ery of Section IIC 2, it is possible to derive loss-based ul-
timate limits for both uplink and downlink quantum com-
munications using the Eq. (28), and thermal-loss-based
limits using Eq. (32).
The sources of environmental thermal-noise are also

unique to both uplink and downlink configurations, and
operational settings such as the time of day and weather.
In uplink during the day, the primary source of thermal-
noise is sunlight being reflected from the Earth to the
satellite detector. Meanwhile, at night, this noise is di-
minished but there still exists sunlight being reflected
from the Moon to the Earth, and back towards the satel-
lite. For uplink, we may write

n̄up
B = κHsun

λ ΓR. (41)

Here κ is a parameter that accounts for the Earth/Moon
albedos and ranges from κnight = 7.36× 10−7 for a clear
night with a full Moon, to κday = 0.3 during clear day-
time. Meanwhile, for the optical wavelength λ = 800 nm,
we can approximate that in uplink the solar spectral irra-
diance isHsun

λ = 4.61×1018 photons m−2 s−1 nm−1 sr−1.
For downlink, the receiver is now a detector on the

ground and the main source of noise is more simply at-
tributed to the sky (as it was in the ground-based sce-
nario). In this setting, and for λ = 800 nm, the spectral
irradiance of the sky follows Eq. (37). For a much more
detailed analysis, see Appendix D, Ref. [33].
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Figure 1. Free-space transmissivity associated with (a)
ground-based, (b) ground-satellite and (c) intersatellite com-
munication links. In each plot, solid lines depict the average
transmissivity (attenuation averaged over fading dynamics),
while dotted lines describe the best-case transmissivity (ab-
sence of fading). The dashed lines in Panel (b) describe a
ground-satellite free-space link with zenith angle θ = 1 radi-
ant, while the others consider θ = 0. The operational setup
in (a) is consistent with the parameters in Table II while (b)
and (c) are consistent with Setup (#1) in Table I.

3. interSatellite Channels

Finally, we can consider free-space quantum commu-
nication between satellites in orbit. This represents a
high quality free-space quantum channel which is free
from atmospheric decoherence, and thus will not experi-
ence losses due to extinction nor undergo turbulence. In-
deed, these intersatellite link losses are characterized by
free-space diffraction only. Assuming negligible pointing
errors, then the intersatellite channel is simply a lossy
channel with transmissivity given by ηd(z) as a function
of the propagation distance between satellites, z. This
lets us write an ideal upper-bound on the intersatellite
channel capacity,

C ≤ B(ηd) =
2a2R

w2
d(z) ln 2

. (42)

Due to the lack of onboard access and adaptive optics,
it is possible that pointing errors become important and
must be considered. If pointing errors are non-negligible,
σ2
p > 0, then we instead must consider a lossy fading

channel EFσp
= {Fσp

; Eτ} with maximum transmissivity

ηd(z). As discussed in earlier sections, pointing errors
occur on a sufficiently slow time-scale such that they are

reconcilable by the receiver. Hence, the capacity for this
channel can be accessed via Eq. (28), such that

C ≤ BFσp
(ηd) =

2a2R
w2

d(z) ln 2
∆(ηd(z), σp), (43)

where ∆ acts as a correction factor to the PLOB bound.
It is clear that when σ2

p = 0 we retrieve Eq. (42). In
Fig. 1(c) the loss properties of an optical intersatellite
channel are illustrated with respect to distance between
communicating satellites. This depicts similar trans-
missivity behavior to ground-satellite downlink channels
with zenith angle θ = 0 without the additional degrada-
tion associated with atmospheric interactions.
We have some important considerations to note. First

of all, intersatellite channels can only be formed between
satellites that fall within each other’s line-of-sight. This
naturally implies a limit to the maximum distance over
which an intersatellite channel can be physically estab-
lished. For any two satellites in circular orbits, at some
point the Earth blocks the free-space between them, pro-
hibiting transmittance. If two satellites orbit at altitudes
h1 and h2, then we find this limit to be

zmax
sight :=

h1(h1 + 2RE)

h1 +RE
+

h2(h2 + 2RE)

h2 +RE
. (44)

This is derived through basic geometric considerations
(see the Supplementary Material for a derivation).
Secondly, let us justify the modeling of intersatellite

channels as pure-loss channels. The number of thermal
photons impinging upon a satellite detector is determined
by the orientation and field of view of the detector. For
communication between satellites, the transmitters and
detectors do not occupy fixed orientations with respect to
the main sources of brightness. Indeed, there will exist
best case and worst case orientations: In the best-case
scenario, the satellite detector will face completely away
from the Earth or Moon, so that their albedos are not
within the detector’s field of view whatsoever. In a worst
case scenario, the detector will be oriented directly facing
the Earth (as in uplink).
However, point-to-point quantum communication can

always be optimized by choosing the physically directed
channel which results in less thermal background pho-
tons at the detector; irrespective of the logical direction
of communication. That is, each intersatellite channel
can exchange quantum systems in the direction which
achieves the best detector orientation with respect to
background noise. By optimizing the physical orienta-
tion of an intersatellite quantum network, each receiver
will only ever experience a fraction of the worst back-
ground noise experienced by satellite uplink channels for
which thermal corrections are minimal for link lengths of
z . 10000 km [33]. We leave more formal treatments of
these channel properties to future works, with the confi-
dence that pure-loss channels accurately model such free-
space links.
Hence, we can reliably model intersatellite free-space

links as pure-loss channels. As such, we treat the



10

upper-bound in Eq. (43) as an achievable rate so that
C = BFσp

(ηd) can be accomplished by an optimal point-
to-point protocol.

III. MODULAR QUANTUM NETWORKS

A. Network Model

In this work, we construct a simple model for the study
of modular quantum networks. Namely, we consider a
global network N = (P,E) which consists of a collec-
tion of sub-networks called communities, where the ith

community is denoted by the undirected sub-graph

Nci = (Pci , Eci), Pci ⊂ P, Eci ⊂ E. (45)

Here, Pci defines a subset of all network nodes that com-
pose the ith community, while Eci denotes the subset of
all network edges that connect them. For now, we con-
sider each community network to be completely general,
and can adopt an arbitrary topology. Here, we focus
on quantum networks which observe spatial-modularity
[53], such that communities are spatially separated. This
means that each community is completely disconnected
from every other community, i.e. the community node
sets are all pairwise disjoint Pci ∩ Pcj = ∅, for all i, j.

In order to mediate communication between dif-
ferent communities, we introduce a backbone network
Nb = (Pb, Eb). This is a large-scale network for which
none of its nodes x ∈ Pb are user nodes, used purely to
facilitate end-to-end communications between users con-
tained in different communities. Crucially, we assume
that each community possesses a set of undirected edges
which connect a set of community nodes to backbone net-
work nodes. We refer to these as intercommunity edges,
such that the set of intercommunity edges

Eci:b := {(x,y) ∈ E | x ∈ Pci ,y ∈ Pb}, (46)

gives each community access to the backbone.
More precisely, we can define an intercommunity sub-

network Nci:b = (Pci:b, Eci:b), which describe the undi-
rected graph that emerges between the ith community
and the backbone. The set Pci:b defines the complete col-
lection of nodes that are interconnected between the com-
munity and the backbone. However, the nodes x ∈ Pci:b

are already contained within Nci or Nb; hence, it is im-
portant to distinguish between the community nodes and
the backbone nodes which comprise this sub-network.
For this, we introduce the notation

Pci|b := Pci:b ∩ Pci ⊆ Pci , (47)

Pb|ci := Pci:b ∩ Pb ⊆ Pb. (48)

Intuitively, Pci|b can be thought of as the subset of nodes
from the community Pci conditioned on being connected
to Nb (and vice versa for Pb|ci).

This modular structure takes a very intuitive form and
is remarkably useful for modeling realistic, hybrid quan-
tum networks. When an equivalence relation is enforced
between nodes in similar communities, the network quo-
tient graph can be viewed as a star-network [50]. It allows
us to completely separate communities and the backbone
from one another. This makes it easier to compartmen-
talize different sub-network structures which may operate
in completely different physical domains. Furthermore,
it helps to derive independent network conditions on each
of the sub-networks in accordance with some global ob-
jective. We summarize this architecture in the following
definition which has also been illustrated in Fig. 2(a).

Definition 1 (Modular Network): A modular network
N = (P,E) is a network architecture constituent of n
community sub-networks {Nci}

n
i=1, and a backbone sub-

network Nb. Each community sub-network is connected
to the backbone via a set of edges Eci:b, described by the
intercommunity sub-networks {Nci:b}

n
i=1, and there are

no direct links between communities.

B. Modular Network Capacities

As discussed in Section II, the optimal end-to-end per-
formance within a quantum network is quantified by its
multi-path or flooding capacity Cm(N ), which describes
the optimal number of target bits that can be transmit-
ted between end-users per use of a flooding protocol. Any
quantum network N = (P,E), including the modular de-
signs introduced, can be represented by a global distri-
bution of channels {Exy}(x,y)∈E and a corresponding dis-
tribution of single-edge channel capacities {Cxy}(x,y)∈E ,
where Cxy := C(Exy). For general fading networks, it is
always possible to use these distributions and the general
expressions from Eqs. (13) and (14) in order to determine
the flooding capacity.
However, the translation into a modular architecture

means that there exist particular classes of network cuts
which are performed on different sub-networks. It be-
comes very useful to formally define a number of the
important multi-edge capacities associated with these
classes of cuts. In each of the following settings, we
consider a pair of end-users {α,β} contained within re-
mote communities of a generic, global modular network
i.e. α ∈ Pcα and β ∈ Pcβ such that cα 6= cβ. It is now
useful to denote community sub-networks with respect to
the end-user that they contain, i.e. we may write cα and
cβ respectively. We assume each sub-network to adopt
arbitrary topologies and capacity distributions.

1. Local-Community Capacities

We define a local-community cut Ccj as that which par-
titions two end-users within the network by exclusively
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Figure 2. (a) A modular quantum network architecture, constituted from community sub-networks Ncα , Ncβ and a backbone
network Nb. Each community is connected to the backbone via the sub-networks Ncα:b and Ncβ :b. Nodes from the community
cj which are directly connected to the backbone are contained in Pcj |b, while the nodes in the backbone which are connected

to the community are contained in Pb|cj . (b) We may idealize this modular structure by placing ideal connectivity constraints
on the each of the sub-networks.

collecting edges within one of the user communities cj ,
for either j ∈ {α,β}. That is, a local-community cut-

set takes the form C̃cj = {(x,y) ∈ Ecj | x ∈ A,y ∈ B}.
This restricted form of network cut will generate an
associated multi-edge capacity, which we label a local-
community capacity,

Cm
cj

:= min
Ccj

∑

(x,y)∈C̃cj

Cxy. (49)

For end-user nodes j which do not share a direct connec-
tion with the backbone (i.e. j /∈ Pcj |b) then this form of
restricted cut always exist.
However, if an end-user node does share a direc-

tion connection with the backbone, then a valid local-
community cut will not exist. In this case it is never
sufficient to remove edges solely from the community net-
works, and one must cut at least one edge from the set
of intercommunity edges Ecj :b. To this end, we must
slightly modify the local-community cut so that it re-
moves any direct connections from the user node to the
backbone, and then to identify the optimal set of edges to
be removed from the community. Hence, a valid cut-set
becomes C̃ ′

cj
= {(j,y) ∈ E | y ∈ Pb} ∪ C̃cj . We can then

define an analogous local-community capacity according
to this class of network cut.

2. Backbone Capacities

A backbone cut Cb is a network cut that exclusively col-
lect edges on the backbone network in order to partition
the two end-users. This kind of cut-set takes the form
C̃b = {(x,y) ∈ Eb | x ∈ A,y ∈ B}, which generates an
associated multi-edge backbone capacity,

Cm
b := min

Cb

∑

(x,y)∈C̃b

Cxy. (50)

In the modular network architecture we are investigating,
when considering end-users contained in unique commu-
nities, these kinds of cuts always exist. It is always suffi-
cient to perform a cut on the backbone since there does
not exist any other collection of edges that can be used
to form a valid path between communities.

3. Global-Community Capacities

Finally, we can formalize a multi-edge capacity asso-
ciated with exclusively collecting intercommunity edges.
The end-user communities Ncα and Ncβ are connected to
the backbone via the sets of intercommunity edges Ecα:b

and Ecβ:b respectively. If we removed either of these sets
of edges, then the two remote users would be automat-
ically partitioned. Hence, the edge sets Ecα:b and Ecβ :b

both correspond to valid cuts on the network and each
generate a multi-edge capacity

Cm
cj :b

:=
∑

(x,y)∈Ecj :b

Cxy, (51)

for j ∈ {α,β}. We can then minimize over the end-users
to define a multi-edge capacity,

Cm
c:b := min

j∈{α,β}
Cm
cj :b

. (52)

Clearly, this form of network cut always exists. We re-
fer to this kind of partitioning as community isolation,
since it isolates a community sub-network entirely from
the rest of the network. Furthermore, we name Cm

c:b the
global-community capacity, as it refers to globally isolat-
ing the entire community sub-network [51].
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C. Idealized Modular Networks

Arbitrary architectures can always be treated using the
capacity expressions from Section II for general fading
networks. However, the generality of these arguments
make it difficult to present rigorous analytical statements
about specific features or tangible network properties. In
order to understand the ultimate potential of quantum
networks, we need to simultaneously optimize the point-
to-point channels and the network architecture in which
they are arranged. Hence, it is desirable to strike a bal-
ance between realism and ideality in such a way that al-
lows us to derive informative results about quantum net-
works and end-to-end performance. In the following we
propose sub-network connectivity constraints that strike
this balance.

1. Backbone Regularity

Firstly, we can impose regularity on the network back-
bone, demanding that the degree of each node is con-
stant. This leads to a highly-connected network struc-
ture which is ideal for multi-path routing strategies. Let
the function deg(x) compute the degree of the node x.
Then we impose

deg(x) = kb, ∀x ∈ Pb, (53)

which defines the regularity parameter of the backbone.
It is important to make clear that these constraints only
apply to intra-network connections. Indeed, a node on
the backbone can have kb connections to neighbors on the
backbone network, but also possess additional intercom-
munity connections via the sub-network Ncj :b, without
any further constraint. It is useful to quantify the num-
ber of intercommunity connections permitted between
the backbone and communities using the notation,

kcj :b = |Ecj :b|, j ∈ {α,β}. (54)

While regularity is an idealized property of realistic net-
works, in the context of a non-user repeater network such
as the backbone it is very much feasible and extremely
useful in order to understand the limits of quantum net-
works.

2. Community Connectivity

Community sub-networks are likely to be smaller scale
and less predictable structures than the backbone, partly
due to the presence of user-nodes. Thus flexibility in their
design is important. Here, we do not impose regularity
but instead define classes of communities in accordance
with the smallest local-community cut that they contain.

Definition 2 (kc-connectivity): Consider a community
sub-network Nc. We say the community is kc-connected

if kc is the smallest number of edges that must be removed
in order to disconnect a pair of community nodes, min-
imized over all possible node pairs x 6= y ∈ Pc. More
precisely,

kc := min
x 6=y∈Pc

|C̃c|. (55)

where C̃c denotes a community cut-set between the nodes
x and y.

Hence, kc defines the minimum local community cut-
set cardinality, given some network topology and choice
of end-users. This is a completely general property which
is unique for all community networks, using the most eas-
ily disconnected pair of nodes in the network as a metric
for how well it is connected. Regular networks are an ex-
ample of an architecture for which their kc-connectivity
is simply equal to the network regularity. Hence, we
can consider community sub-networks to be kc-connected
while encompassing a very large set of architectures.

3. Idealized Modular Network

Combining the constraints of regularity on the back-
bone and kc-connectivity on the community sub-
networks, it is possible to define an ideal modular quan-
tum network architecture in terms of these parameters.
This generates a structure that can be investigated ana-
lytically in the following sections.

Definition 3 (Ideal Modular Network): An ideal mod-
ular network N ∗ = (P,E) is a network architecture con-
stituent of n community sub-networks {Nci}

n
i=1 each of

which are kci-connected, and a backbone sub-network Nb

which is kb-regular. Each community sub-network is con-
nected to the backbone via kci:b edges, described by the in-
tercommunity sub-networks {Nci:b}

n
i=1, and there are no

direct links between communities.

An illustration of this architecture can be found in
Fig. 2(b). When focusing on a particular pair of end-
user nodes {α,β} from two remote communities in the
global network, we can then specify their kcj -connectivity
properties.

D. Minimum-Cut as Community Isolation

Care must be taken when constructing this form of
modular network so to ensure not only high-rate com-
munication within each community, but also high-rate
communication between different communities mediated
by the backbone. If the backbone network is poorly con-
nected, or possesses weak links, it will not effectively
assist long-distance communication. Meanwhile, even if
communities are connected to a high quality backbone,
insufficiently strong capacities in a local-community can
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compromise its use. Hence, there exists a careful balance
between all of the sub-networks in the modular model,
and their connectivity/capacity properties throughout.
It is therefore highly desirable to identify a relationship
between the quality of channels within the backbone and
the quality of channels within the communities.
In order to better grasp these relationships, we can in-

vestigate the ideal modular networks N ∗ defined in Def-
inition 3. Regular networks (such as that on the back-
bone) possess very convenient qualities which allow for
useful insight into minimum network cuts. As such, they
can be analytically studied as highly connected, ideal net-
work structures and used to reveal fundamental limita-
tions for end-to-end communication.
Our mission becomes the following: To derive condi-

tions on each of the sub-networks such that the flooding
capacity between the remote users is always their global-
community capacity. In this way, the minimum cut is
always achieved by community isolation on either of the
end-user communities. Equivalently, it means that the
minimum cut can always be found on a simplified quo-
tient graph of the modular network, vastly simplifying
its analysis [40]. When this is the case, the end-to-end
capacities between any two unique communities are al-
ways distance-independent, i.e. the ultimate rate between
two end-user communities does not change with respect
to the physical separation of those communities. This is
an extremely desirable property of a quantum network,
particularly on large-scales.
If a modular network satisfies this property, it means

that (i) the backbone network is of sufficiently high qual-
ity that it never impedes the network performance over
(potentially very) long distances, and (ii) that the local-
communities are of sufficiently high quality that neither
compromises local or network-wide communication. Fur-
thermore, by imposing that the minimum cut be the in-
tercommunity edges, it allows us to reveal unique con-
straints on each sub-network, which are summarized in
the following theorem.

Theorem 1 Consider an ideal modular network of the
form N ∗ introduced in Definition 3. Select any pair
of end-users {α,β} contained in remote communities
α ∈ Pcα and β ∈ Pcβ . For all j ∈ {α,β}, there ex-
ist single-edge threshold capacities on the communities
Cmin
cj

and backbone Cmin
b sub-networks for which the net-

work flooding capacity is given by the global-community
capacity,

Cxy ≥ Cmin
cj

, ∀(x,y) ∈ Ecj ,

Cxy ≥ Cmin
b , ∀(x,y) ∈ Eb,

}

=⇒ Cm(N ) = Cm
c:b. (56)

The threshold capacities are given by,

Cmin
cj

:=
Cm
c:b

kcj
, Cmin

b :=
Cm
c:b

H∗
min

, (57)

where H∗
min is the minimum cut-set cardinality on the

backbone network. If these threshold capacities are vi-

olated, then the global-community capacity becomes an
upper-bound on the end-to-end capacity, Cm(N ) ≤ Cm

c:b.

A detailed proof can be found in Section I of the Sup-
plementary Material. Thanks to backbone regularity and
community connectivity, the minimum cut-set cardinal-
ities that occur within each sub-network can be easily
identified. Then, it is straightforward to enforce single-
edge capacity constraints which ensure that the local-
community/backbone capacities are always larger than
the global-community capacity.
In this theorem, we have used the fact that the cardi-

nality of the smallest backbone cut-set between two end-
users in remote communities can be analytically derived,
thanks to network regularity. This minimum cardinality
takes the form

H∗
min := min

j∈{α,β}
Hmin(kb, Pb|cj ), (58)

where Hmin(kb, Pb|cj ) is a function that computes the
minimum number of edges that must be cut to isolate
all the nodes Pb|cj on the backbone which are also con-
nected to the community cj . The explicit form of this
expression in found in the Supplementary Material, and
depends on the precise spatial arrangement of connec-
tions from the community to the backbone. However, we
can generally bound this quantity using

kb ≤ Hmin(kb, Pb|cj ) ≤ kb|Pb|cj |. (59)

The lower-bound kb corresponds to a worst-case spa-
tial distribution of community-to-backbone connections,
when all the community nodes are connected to the same
node on the backbone, i.e. |Pb|cj | = 1. Then it is sufficient
to isolate just one backbone node to perform a valid end-
user cut, collecting only kb edges (since the backbone is
kb-regular). The upper-bound corresponds to a best-case
scenario; when all the community nodes are connected
to backbone nodes which don’t share any neighbors or
edges. In this case, the smallest cut-set restricted to the
backbone is found by isolating all nodes individually. As
a result, this cut collects exactly kb|Pb|cj | edges.

Fig. 3 depicts a number of examples of minimum back-
bone cut-sets for remote communities connected to a
Manhattan backbone (kb = 4). In these figures we dis-
play only one end-user community and assume that the
other end-user community is sufficiently distant that it
does not share intercommunity connected nodes on the
backbone.

As a result, we can always present a best and worst-
case single-edge threshold capacity for the backbone net-
work, Cmin

b . That is, we can sandwich the backbone
threshold capacity according to

Cm
c:b

kb|Pb|cj |
≤ Cmin

b ≤
Cm
c:b

kb
, j ∈ {α,β}. (60)

The more effectively that the intercommunity connec-
tions are dispersed across the backbone, the weaker the
single-edge constraint that must be forced upon it.
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(a) Hmin = 16, (b) Hmin = 12, (c) Hmin = 4.

Figure 3. Examples of minimum cardinality intercommunity
cut-sets for connections from an arbitrary community to a
Manhattan backbone network (kb = 4). These are valid cuts
which isolate remote communities (only one community is il-
lustrated here), and are performed exclusively on the back-
bone. Panel (a) captures the best-case spatial distribution
of the largest potential cut-set when no target-nodes share
any edges or neighbors, (b) illustrates an example in which
neighbor sharing can diminish the overall cut-set size, and (c)
describes the worst-case spatial distribution that minimizes
the cut-set size.

IV. HYBRID FREE-SPACE NETWORKS

In this final section we combine results and theory
from Section II and III in order to investigate hybrid
fiber/free-space modular quantum networks. Here we
study two pertinent cases in an effort to reveal tangible
resource requirements for future quantum networks: A
fiber/satellite modular configuration and a ground-based
free-space/fiber model.

A. fiber/Satellite Configuration

1. Motivation

An interesting modular configuration consists of fiber-
based community networks which are interconnected via
a backbone satellite network. This model captures a re-
alistic satellite-based model of the quantum internet, in
which dynamic intersatellite links are used to facilitate
long distance quantum communication at high-rates. In
this scenario, the weakest links are typically the ground-
to-satellite free-space connections, due to the impact of
atmospheric decoherence and turbulence on a transmit-
ted beam. Therefore, the constraints revealed in Theo-
rem 2 are very realistic, as community isolation is likely
to be the minimum cut in many settings.
In Theorem 2 we devise single-edge capacity lower

bounds on the community networks which guarantee
the network flooding capacity is equal to the global-
community capacity. For fiber-based networks, these
single-edge lower bounds can be used to identify a maxi-
mum tolerable fiber-length, dmax

cj
that is permitted within

the fiber-network. In the context of a satellite-based
backbone network, the single-edge capacity lower bound
can be translated into a maximum intersatellite separa-
tion, zmax

b which describes the maximum propagation dis-
tance that is permitted for free-space channels between

satellites in the backbone. These are critical quantities
which directly motivate the construction of ground-based
and satellite-based networks for global quantum commu-
nication.

2. Optimal Performance

We wish to enforce that the minimum cut is always
achieved by community isolation, generating the global-
community capacity Cm(N ) = Cm

c:b. In this physical set-
ting, each intercommunity edge is described by ground-
to-satellite channel which may be an uplink or downlink
channel. Thanks to teleportation, a network protocol can
always choose the physical channel direction that maxi-
mizes its point-to-point capacity independently from the
desired logical direction of community. Downlink chan-
nels are always superior to uplink, and therefore we can
simply model the global community capacity as the sum
of a downlink capacities. This multi-edge capacity will
be bounded by

Cm
c:b ≤ min

j∈{α,β}

∑

(x,y)∈Ecj :b

LFxy
(ηxy, n̄j), (61)

≤ min
j∈{α,β}

∑

(x,y)∈Ecj :b

BFxy
(ηxy). (62)

where Fxy and ηxy capture the fading dynamics and
maximum transmissivity of each downlink channel that
connect cj to the backbone, and depend on beam tra-
jectory. Meanwhile, n̄j infers community-wide thermal-
noise conditions. Since all of the intercommunity edges
in Ecj :b are connected to a relatively small area, we can
assume identical operational conditions for all downlink
edges. However, these operational conditions will not
be consistent for both end-users; when communicating
on a global scale, one user may be in night-time while
the other is in day-time with independent weather con-
ditions.
We can derive single-link distance constraints which

guarantee Cm
c:b to be the optimal network capacity. These

conditions follow directly from Theorem 2 and are sum-
marized in the following corollary:

Corollary 1 Consider an ideal modular network of the
form N ∗ introduced in Definition 3, and assume optical-
fiber communities networks Ncα , Ncβ and a satellite-
based backbone Nb. Select any pair of end-users {α,β}
located in remote communities α ∈ Pcα and β ∈ Pcβ .
There exists a maximum fiber-length in each community

dmax
cj

:= −
1

γ
log10

(

1− 2−Cm
c:b/kcj

)

, (63)

and a maximum intersatellite separation in the backbone

zmax
b := argmin

z

∣

∣

∣

∣

∣

log

(

H∗
minBFσp

(η)

Cm
c:b

)∣

∣

∣

∣

∣

. (64)
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Figure 4. Optimal end-to-end performance for an ideal modular network consisting of fiber communities interconnected to
a satellite-based backbone. In order to guarantee an optimal flooding rate along the x-axis then the maximum internodal
separations in each sub-network on the y-axis must be less than or equal to the plotted bounds. We consider operational
settings in Setup (#1) for (a), (c) and Setup (#2) for (b), (d) which are described in Table I. The weather/time conditions are
those experienced by the worst-case end-user community. Given an optimal flooding capacity C

m(N ), we plot the maximum
intersatellite separation zmax

b for different backbone connectivity parameters, and the maximum fiber-length in each community
dmax
cj

for different community connectivity parameters. The dashed lines in Figs (a) and (c) plot an upper bound the maximum

intersatellite separation based on the optimal spatial distribution of (a finite number of) community connected satellite nodes
Pb|cj at a maximum altitude hmax = 1500 km, while the solid lines plot the lower bound based on the worst spatial distribution

(for any altitude). The red line indicates the maximum achievable channel length that can be achieved for two satellites at
altitude 1500 km, such that zmax

sight ≈ 5428 km.

for which the network flooding capacity is equal to the
global-community capacity,

Cm(N ) = Cm
c:b. (65)

Otherwise, if any intersatellite links violate this condition
∃ zxy > zmax

b , (x,y) ∈ Eb or the local community links
are in violation, ∃ dxy > dmax

cj
, (x,y) ∈ Ecj , for either

j ∈ {α,β}, then this becomes an upper-bound on the
network flooding capacity, Cm(N ) ≤ Cm

c:b.

The analytical simplicity of the maximum fiber-length
follows from the remarkably compact PLOB bound for
bosonic lossy channels. However, the maximum inter-
satellite separation in Eq. (55) must be computed nu-
merically due to the more complex PLOB bound which
accounts for fading due to pointing errors. The lack of
onboard access makes it difficult to perfectly optimize
beam trajectory, and thus pointing errors cannot be ig-
nored. However, it is possible to analytically upper and
lower bound the quantity zmax

b .
An upper-bound is found by considering a lack of

pointing errors, which means the channel is no longer
a fading channel but is instead a fixed lossy channel with
the maximum possible transmissivity. This idealizes the
intersatellite channel by removing the potential for beam

wandering, resulting in an upper-bound for the maximum
separation. Meanwhile, we can find a lower-bound on the
maximum intersatellite separation by considering the use
of slow detectors. A slow detector at the receiver will
not be able to resolve pointing errors, resulting in a lossy
channel with fixed transmissivity averaged over the entire
fading process. Interestingly, the rate in bits per channel
use via slow detection can in some instances be higher
than that for fast detectors which resolve the fading dy-
namics. However, the slower detection time severely lim-
its the operational rate at which the channel can be used
(or clock rate). As a result, the point-to-point communi-
cation rate via slow detection will be orders of magnitude
smaller than those with fading-resolving setups. This in-
formation can be used to write a lower-bound on zmax

b .
For explicit details on these bounds, see the Supplemen-
tary Material.

The maximum intersatellite separation zmax
b describes

a maximum tolerable channel length permitted within the
backbone network. Yet, it is not always true that such
a channel length is achievable due to line-of-sight limi-
tations associated with orbital geometry. This is quanti-
fied by the maximum line-of-sight distance from Eq. (44),
a function of the altitudes of the communicating satel-
lites. Crucially, if we find that zmax

b ≥ zmax
sight for some



16

Parameter Symbol Value

Beam Curvature R0 ∞

Wavelength λ 800 nm

Initial spot-size ω0
40 cm - Setup (#1)

20 cm - Setup (#2)

Receiver Aperture aR
1 m - Setup (#1)

40 cm - Setup (#2)

Detector Efficiency ηeff 0.4

Detector Noise n̄ex ≈ 0

Pointing error σ2
p 1 µrad ≈ (10−6z)2

Pulse Duration ∆t 10 ns

Field of View Ωfov 10−10 sr

Frequency Filter ∆λ
0.1 pm - Setup (#1)

1 nm - Setup (#2)

interCommunity Link ICL Downlink

fiber Loss-Rate γ 0.02 per km

Table I. Parameter table for the fiber/satellite modular net-
work configuration. Here we consider two similar setups using
a collimated Gaussian beam at 800 nm wavelength, but dif-
fer in initial spot-size w0, receiver aperture aR and frequency
filter ∆λ.

network configuration and desirable rate, this means that
the satellites within the backbone can reliably communi-
cate with any other satellite that fall within its line-of-
sight, without compromising performance. This is an ex-
tremely useful property, providing significant flexibility
for satellite backbone networks.

3. Discussion

Fig. 4 offers insight into the constraints proposed by
Corollary 3 for satellite-fiber modular networks corre-
sponding to a number of different physical settings and
network properties. Here we consider two free-space com-
munication setups described in Table I: Setup (#1) in
Figs. (a) and (c) and Setup (#2) in Figs. (b) and (d).
Consider a flooding capacity Cm(N ) that is desired

between the two end-users who are located in remote,
fiber communities. The actual ground distance between
the users or unique communities is irrelevant, and can
be arbitrarily situated at any location across the Earth.
If that flooding capacity is to be achieved, then for a
given modular architecture there exists a maximum fiber-
length dmax

cj
permitted within the user community cj ,

and a maximum intersatellite separation zmax
b permitted

throughout the backbone network.
In Figs. 4(a) and (b) we plot the behavior of the max-

imum intersatellite separation with respect to desired
flooding capacity. In the solid lines, we plot the worst-
case zmax

b , which corresponds to the situation where all
the downlink channels are connected to the same node
on the backbone, allocating a single satellite to connect

to a community. This is a worst-case situation because
it means that the minimum cut on the backbone is very
small, H∗

min = kb. Yet, even in this scenario, thanks to
the lack of atmospheric decoherence we find that very
large distances are permitted between satellites, such
that zmax

b ∼ 103 − 104 km can still ensure high flooding
rates between the end-users communities on the Earth.

Meanwhile, the dashed lines plot zmax
b for the best-

case spatial distribution of downlink connections on
the backbone when the maximum satellite altitude is
hmax = 1500 km and all downlink beam trajectories are
within a 1 steradian angular window. This means that
the smallest backbone cut-set has the total number of
edges

H∗
min = kb|Pb|cj |. (66)

In this case, the minimum cut-set cardinality on the back-
bone is very large, as the number of downlink channels
must be increased in order to obtain the chosen flooding
capacity. In this best-case scenario, as Cm(N ) increases
zmax
b begins to plateau, permitting large intersatellite
separations even at large flooding capacities. This con-
firms a strong dependence between the distribution of
intercommunity edges and the single-edge capacity prop-
erties of a backbone network. For all other distribu-
tions of intercommunity connections Pb|cj , the behavior
of the maximum intersatellite separation falls between
these bounds.

We also display the maximum line-of-sight distance
zmax
sight ≈ 5428 km between any pair of satellites orbiting
at an altitude hmax = 1500 km. This is the longest
intersatellite channel that can be established due to
orbital geometry. Interestingly, even in the worst-
case backbone configuration (each community possesses
many connections to a single satellite) the line-of-sight
limit is exceeded by zmax

b at relatively good rates such
that Cm(N ) ∈ [10−2, 10−1] bits per network use. When
zmax
b ≥ zmax

sight is true, satellites in the backbone may con-
nect to any other satellite within its line-of-sight; hence
this promises achievable and flexible constraints for in-
tersatellite networks.

Figs. 4(c) and (d) depict the maximum fiber-lengths
permitted within kcj -connected community networks to
ensure a desired end-to-end flooding capacity. Of course,
the quality of the bosonic lossy channels do not change
with respect to Setups (#1) and (#2) and therefore
Figs. (c) and (d) are identical. As one would ex-
pect, the permissible channel lengths for strong end-to-
end rates depend upon the community channels being
dmax
cj

. 100 km, even in a highly connected network set-
ting. But thanks to the modular network configuration,
this is not problematic. In this configuration, the com-
munity fiber-networks are designed to cover small areas
(relative to the satellite backbone) and facilitate local
communication. Quantum communication over global
distances is then appropriately mediated by the satellite
backbone.
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As an example, let us focus on Setup (#1) and con-
sider a satellite backbone network with regularity kb = 4
used to mediate long-distance quantum communication
between two end-users {α,β} contained within fiber-
networks which are kcα = 4 and kcβ = 8 connected.
What are the network constraints required to ensure that
their flooding capacity is Cm(N ) = 1 bit per network use?
Provided that zmax

b . 1000 km, that dmax
cα . 30 km and

dmax
cβ

. 50 km, then it is guaranteed that this flooding
rate is achievable. This provides extremely valuable in-
formation for future quantum network designs; if an ideal
modular network cannot exceed these constraints, then
less ideal structures should take even stronger heed of
them.

B. Ground-Based Free-Space/fiber Configuration

1. Motivation

It is also interesting to investigate the limits of ground-
based quantum networks which are composed from a
mixture of fiber channels and free-space channels. For
this purpose, modular network architectures offer an ap-
propriate and physically relevant model. One may con-
sider a metropolitan network area which is spanned by a
collection of free-space quantum networks, or “hotspots”.
These are short-range communities within which reliable
free-space quantum communications can take place. In
order to communicate over a larger area and between
free-space communities we can use an underlying optical-
fiber backbone which mediates longer distance commu-
nication.
Utilizing the recently derived ultimate limits of

ground-based, free-space quantum communication [32]
we wish to determine whether free-space links are reliable
enough to enable high-rate quantum communication in
this setting. Furthermore, it is important to understand
the requirements of the optical-fiber backbone required
to facilitate wireless quantum networking.

2. Optimal Performance

It is possible to once more translate Theorem 2 to
establish conditions for which the flooding capacity is
given by the global-community capacity, ensuring opti-
mal end-to-end performance. Now, each community is
a ground-based free-space community located at an al-
titude of h = 30 m, and we consider the intercommu-
nity edges connecting each community to the backbone
to also be free-space links. Furthermore, since our rig-
orous free-space capacities are restricted to the regime
of weak-turbulence, then we must investigate free-space
channels Exy which are no longer than zxy ≈ 1066 m
[32].
While this may at first appear restrictive, we remind

the reader of the physical context; free-space communi-

Parameter Symbol Value

Beam Curvature R0 ∞

Wavelength λ 800 nm

Initial spot-size ω0 5 cm

Receiver Aperture aR 5 cm

Detector Efficiency ηeff 0.5

Detector Noise n̄ex 0.05

Pointing error σ2
p 1 µrad ≈ (10−6z)2

Pulse Duration ∆t 10 ns

Field of View Ωfov 10−10 sr

Frequency Filter ∆λ 1 nm

Altitude h 30 m

fiber Loss-Rate γ 0.02 per km

interCommunity Link ICL
Free-Space

(Clear day-time)

Table II. Parameter table for the free-space/fiber modular
network configuration.

ties are inherently designed for short-range networks with
mobile users. Indeed, with network nodes that are lim-
ited to line-of-sight connections in a potentially urban
area, focusing on the weakly turbulent range is natu-
ral. This leaves us with the remaining questions: Are
free-space quantum channels resilient enough within this
range to offer high-rate communication, and what are the
resource requirements of the fiber backbone? We provide
insight in the following corollary.

Corollary 2 Consider an ideal modular network of the
form N ∗ introduced in Definition 3, and assume free-
space community networks Ncα , Ncβ and an optical-fiber
backbone Nb. Select any pair of end-users {α,β} located
in unique communities α ∈ Pcα and β ∈ Pcβ . There ex-
ists a maximum free-space link length in each community

zmax
cj

≤ argmin
z

∣

∣

∣

∣

log

(

kcjLFσ
(η, n̄j)

Cm
c:b

)∣

∣

∣

∣

, (67)

and a maximum fiber length in the backbone

dmax
b := −

1

γ
log10

(

1− 2−Cm
c:b/H

∗
min

)

, (68)

for which the network flooding capacity is equal to the
global-community capacity,

Cm(N ) = Cm
c:b. (69)

Otherwise, if any fiber links violate this condition
∃ dxy > dmax

b , (x,y) ∈ Eb or the local community links
are in violation, ∃ zxy > zmax

cj
, (x,y) ∈ Ecj , for either

j ∈ {α,β}, then this becomes an upper-bound on the
network flooding capacity, Cm(N ) ≤ Cm

c:b.

Notice that we now obtain an upper-bound on the
maximum free-space link length, as it is not known
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Figure 5. Optimal end-to-end performance for an ideal mod-
ular network consisting of free-space communities intercon-
nected to a fiber-based backbone. In order to guarantee an
optimal flooding rate along the x-axis then the maximum in-
ternodal separations in each sub-network depicted on the y-
axis must be less than or equal to the plotted bounds. We
use the operational settings in Table II during clear day-time.
Given an optimal flooding capacity C

m(N ), we plot the max-
imum fiber-length dmax

b for different backbone connectivity
parameters, and the maximum free-space link-length in each
community zmax

cj
for different community connectivity param-

eters. The dashed lines plot an upper bound on the maximum
fiber-length based on the optimal spatial distribution of com-
munity connected backbone nodes Pb|cj , while the solid lines
plot a lower bound based on the worst-case spatial distribu-
tion.

whether the single-edge quantity LFσ
(η, n̄j) is achievable

or not. However, this bound has been shown to be tight
and thus offers an accurate bound on zmax

cj
[32]. Fur-

thermore, this maximum free-space link length must be
computed numerically due to the complex nature of the
free-space PLOB bound which accounts for fading and
thermal effects. Yet, the maximum fiber length within
the backbone can be readily determined for an arbitrary
distribution of intercommunity connections.

3. Discussion

Fig. 5 provides example network constraints using
Corollary 4 for ideal modular networks and a variety of
community and backbone connectivity properties. Op-
erational parameters are found in Table II for this mod-
ular architecture. Given a desired end-to-end flooding
capacity, we generate a maximum fiber length in the
backbone dmax

b and maximum free-space link length in
each community zmax

cj
in Figs. (a) and (b) respectively,

such that this flooding capacity is achieved by the global-
community capacity.
Immediately we notice that the flooding capacities

plotted are large. This is because, as seen in Fig. 5(b),
the free-space links are sufficiently capable in the weakly
turbulent regime so that zmax

cj
> 1 km for flooding capac-

ities as high as Cm(N ) ≈ 2 bits/network use, even when
the community connectivity is low e.g. kcj = 4. As the
community connectivity gets larger, the free-space ca-
pacities become increasingly reliable within this distance
range, and do not compromise the minimum cut until the
flooding capacity becomes very large.
Yet, these large end-to-end capacities simultaneously

place greater demands on the backbone network, de-
manding shorter links as the global-community capacity
increases. The solid lines in Fig. 5(b) plot the maximum
fiber-length corresponding to the worst-case spatial dis-
tribution of free-space connections from the communi-
ties to the backbone, i.e. all intercommunity links are fo-
cussed on a single backbone node. Meanwhile, the dashed
lines consider a best-case scenario in which all the inter-
community links are of maximum length zc:b = 1 km,
and are oriented such that they maximize the backbone
cut-set cardinality H∗

min = kb|Pb|cj |.
We find that this free-space/fiber modular architec-

ture reports very feasible constraints on the free-space
hotspots and fiber-backbone in order to guarantee a high
end-to-end performance. For a regular fiber-based back-
bone with kb = 4, and end-user communities which are
kcj > 4 connected, then one can guarantee an achiev-
able flooding capacity of Cm(N ) = 2 bits/network use
given that the free-space links all fall within the weakly
turbulent range, and at worst dmax

b . 25 km. Within
a metropolitan setting, such constraints can be satisfied
with realistic resources, supporting the development of
wireless quantum networks. Furthermore, confidence in
the use of free-space links within this setting reduces the
need for wired fiber connections in small areas.

V. CONCLUSION

In this work we have investigated the end-to-end ca-
pacities of free-space and hybrid quantum networks, com-
bining recently developed results in quantum information
theory and well established theories of free-space optical
communication. After collecting and reviewing these re-
cent results, we introduced a modular network architec-
ture for the purposes of constructing hybrid quantum
networks using both free-space and fiber links. With
these tools in hand, we specified our analysis to ideal
modular networks which utilize an underlying regular
backbone. Through this ideality it was possible to study
ultimate limits for highly relevant modular architectures,
revealing critical network properties that assure optimal
performance.
For the first time we have performed a detailed analysis

of the ultimate limits of a satellite-based quantum inter-
net; leveraging the properties of fiber-networks on the
ground, ground-satellite connective structures and inter-
satellite networks in space. This theoretically demon-
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strates that high-rate global quantum communication
can be efficiently mediated by a satellite quantum net-
work with realistic connectivities and tolerable intersatel-
lite separations on the order of ∼ 103 − 104 km. Such
designs allow for effective quantum communication be-
tween arbitrarily distant end-users on the Earth. These
analyses also indicate that careful consideration of the
spatial distribution of ground-satellite connections can
more effectively alleviate separation constraints, rather
than increasing the nodal degree.
Furthermore, we studied the ultimate limits of a free-

space/fiber modular network configuration, discussing
the efficacy of free-space sub-networks within metropoli-
tan areas. We have shown that within the weakly-
turbulent regime (where free-space links are limited to
∼ 1 km) high-rate intercommunity communication can
be readily achieved, using a fiber-backbone with realistic
resources.
These results offer promising first steps in the direction

of understanding the ultimate limits of free-space and
hybrid quantum networks; motivating its future study
both theoretically and experimentally. Our analyses of-

fer a rigorous demonstration of the efficacy of free-space
quantum links in a network setting, emphasizing that the
integration of free-space and fiber can be reliably per-
formed within future quantum networks. Hybrid archi-
tectures can and should be designed to take advantage
of the strengths of different modes of quantum commu-
nication. This work may serve as a platform for future
investigations that account for full technical details of
the nodes; exploiting these tools to study more realistic,
random architectures of hybrid networks which can be
benchmarked against the ideal designs studied here.
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Supplementary Material: End-to-End Capacities of Hybrid Quantum Networks

In the main-text, we considered a specific modular network structure, using the idea of disjoint communities
connected to a backbone quantum network. Here, using basic notions from graph theory and network theory [1–4], we
aim to generalize the concept of modular quantum networks, outlining a framework from which the ideal architecture in
Definitions 1 and 3 emerge. In doing so, we derive general constraints which guarantee specific end-to-end performance
bounds, for communication between local community users and remote community users.

I. GENERAL ASPECTS OF QUANTUM NETWORKS WITH COMMUNITY STRUCTURE

A. General Structure

Let us first consider general networks which display community structure. Consider a completely general architec-
ture N = (P,E) such that P is the collection of all nodes, and E the set of all undirected edges. As discussed in the
main text, it is possible to divide P into sub-collections of communities,

P =
⋃

i

Pci , Pci ⊂ P. (1)

In general, the community structure on a given network is not unique, and the sets of community nodes can overlap,
i.e. the subsets of nodes Pci are not necessarily pairwise disjoint, i.e. Pci ∩ Pcj 6= ∅, for all i, j. However, as we are
physically motivated by separate communities connected via a backbone, we restrict our attention to the case in which
each node can be uniquely assigned to a single community,

P =
⋃

i

Pci , s.t Pci ∩ Pcj = ∅, ∀i, j. (2)

This assumption is appropriate for large-scale communication networks, and applies for spatially modular networks
[53], e.g. each community represents a separate metropolitan area. We make no further assumptions on the topology
of the underlying communities.
The community structure additionally partitions the edges into distinct sets. The ith community ci has its own set

of intra-community edges,

Eci = {(x,y) ∈ E | x,y ∈ Pci}, (3)

while any two communities ci and cj are connected by a set of intercommunity edges

Eci:cj = {(x,y) ∈ E | x ∈ Pci ,y ∈ Pcj}. (4)

Hence, for a network comprised of n communities we may define two global classes of edges: Intra-community edges
and intercommunity edges respectively,

Ec :=

n
⋃

i=1

Eci , Ec:c′ :=

n
⋃

i 6=j=1

Eci:cj . (5)

Using these notions we may introduce two related networks which will simplify our analysis. A community sub-
network Nci = (Pci , Eci) is defined as the graph consisting of all the nodes in the community ci connected by the
intra-community edges Eci .

B. Simplified Quotient Network

Let N be a network with an n-community structure. Since we consider only non-overlapping communities, we may
define an equivalence relation R on the nodes of the network in the following way.

x ∼ y iff x,y ∈ Pci , ∀i ∈ [1, n]. (6)
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Figure 1. (a) A network N displaying community structure. Each community is labelled and shown in red and red edges depict
intercommunity channels. Black circles represent individual nodes and black edges represent intra-community channels. (b)
The quotient network NQ = N/R. All the nodes in the same community collapse to a community single node in the quotient
network. The quotient network remains a simple graph even when multiple edges exist between communities. The single-edge
capacity Cc3c5 on the quotient network is given by the sum of the capacities of the intercommunity edges between c3 and c5
on the original network, defined in Eq. (11). (c) The community sub-network for community c3. Note also that the community
sub-network Nc4 = NS7 is a star network with seven child nodes, and Nc5 = NK8 is a fully connected network with eight nodes.

That is two nodes are equivalent if they are contained within the same community. This equivalence relation is a means
partitioning the network into a simplified form, such that nodes contained within equivalent classes (communities)
are pooled and redefined as a unified, collective node. Then, R permits us to define a quotient network,

NQ := N/R = (PQ, EQ), (7)

where PQ is a set of quotient nodes, and EQ is a set of quotient edges. The set of quotient nodes is given by

PQ := P/R = {ciQ}
n
i=1, where ciQ = Pci , (8)

where by the equivalence relation R we have reduced the set of community nodes Pci into a single quotient node ciQ.

Meanwhile, there exists a quotient edge between the two community nodes ciQ and c
j
Q if there exists at least one

intercommunity edge between a node x ∈ Pci and a node y ∈ Pcj . Therefore the set of edges on the quotient network
EQ is given by,

EQ := E/R =
{(

ciQ, c
j
Q

)

| ∃ (x,y) ∈ Eci:cj

}n

i 6=j=1
. (9)

It is important to note that there may be more than one intercommunity edge between two given communities;
yet our definition of the quotient network is still a simple graph. To account for this, the single-edge capacity of an
edge in the quotient graph is actually defined as a multi-edge capacity from the original network. More precisely, the
single-edge capacity of each quotient edge is equal to the sum of the capacities of the intercommunity edges,

{Cxy}(x,y)∈EQ
= {Cm

ci:cj}
n
i 6=j=1, (10)
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where we have defined the multi-edge capacity between communities

Cm
ci:cj

:=
∑

(x,y)∈Eci:cj

Cxy. (11)

These notions are depicted for a modular network in Fig 1. This community structure is extremely useful for sim-
plifying investigations of end-to-end capacities. With this established, we can differentiate between two key scenarios
for the end-to-end capacity: end-to-end communication in the same community, or between distinct communities.

C. Intra-Community Capacities

Let us focus on a pair of end-users i = {α,β} which are located within the same community, α,β ∈ Pci . While
it may be intuitive to assume that the flooding capacity for communication between these nodes is determined by
a min-cut performed exclusively on Nci , this is not always the case. Indeed, it is possible that a minimum cut will
collect edges not only within the community Nci , but also intercommunity edges, and edges from other communities.
In general, we can write the following lemma:

Lemma 1 Consider two end-user nodes i = {α,β} which are located within the same community Nci = (Pci , Eci),
such that α,β ∈ Pci . Let Cm

ci be the end-to-end flooding capacity computed exclusively on the sub-network Nci . Then
the intra-community flooding capacity Cm(i,N ) is bounded by

Cm
ci ≤ Cm(i,N ) ≤ Cm

ci + Cm
E\ci

, (12)

where Cm
E\ci

is an additional capacity contribution associated with non-local community edges.

Proof. Consider the two end-user nodes i = {α,β}. We may exclusively investigate the flooding capacity of this
induced sub-network, Nci by ignoring all intercommunity edges. In this way, we can identify a minimum cut restricted
on the community by minimizing over all the local-community cuts,

Cm
ci = min

Cci

Cm(Cci) = min
Cci

∑

(x,y)∈C̃ci

Cxy. (13)

Here a local-community cut Cci is a cut performed exclusively on the community network, and C̃ci is its cut-set.
Now consider the addition of intercommunity edges {Eci:cj}j 6=i which provide access to other remote communities.

It is possible that these intercommunity edges will compromise the validity of a community cut Cci , since there may
exist an end-to-end route that traverses the global network. In this scenario, it is necessary to cut additional edges
from the rest of the network in order to consolidate the cut. We collect these additional edges within the following
set C̃E\ci ⊂ E \ Eci . More precisely, given a valid network cut C, we can always separate its cut-set into community
edges, and non-community edges

C̃ = {(x,y) ∈ E | x ∈ A,y ∈ B}, (14)

= C̃ci ∪ C̃E\ci . (15)

We can then say that the community cut-set C̃ci is generated via a community cut Cci , while C̃E\ci is generated via
an additional non-community cut CE\ci . The network flooding capacity is thus generally given by

Cm(i,N ) = min
C

Cm(C), (16)

= min
C

[

Cm(Cci) + Cm(CE\ci)
]

. (17)

The cut Cci always forms a valid partition of the user pair when we are restricted to the sub-networkNci . Meanwhile,

on its own, C̃E\ci is never a valid network cut between local end-users. Crucially, the addition of the non-community
edges into the cut-set can never decrease the total flooding capacity between users, only increase it. Therefore we can
separate the minimization in Eq. (17) and write

Cm(i,N ) = min
C

[

Cm(Cci) + Cm(CE\ci)
]

, (18)

≤ min
Cci

Cm(Cci) + min
CE\ci

Cm(CE\ci), (19)

= Cm
ci + Cm

E\ci
, (20)
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where Cm
E\ci

denotes the multi-edge capacity of the minimized non-community cut that validates the end-user partition.

It is then clear that we can write the following bounds on the global network flooding capacity,

Cm
ci ≤ Cm(i,N ) ≤ Cm

ci + Cm
E\ci

. (21)

Here, the lower bound refers to the situation when non-community cuts are not required (Cm
E\ci

= 0), and the upper

bound refers to when they are (Cm
E\ci

> 0).

Hence, the intra-community capacity is always lower-bounded by the local-community capacity of a local network.
The saturation of either the upper or lower bounds is completely determined via the network structure.

D. interCommunity Capacities

We now turn our attention to the case in which the two end-users lie in distinct communities. This is the setting
focussed on in the main text, and is of most interest for (relatively) long-distance communication within large-scale,
hybrid networks. Indeed, the intercommunity capacity depends more strongly on the interplay between sub-network
properties, rendering its characterization more difficult than the intra-community capacity. Nonetheless, through the
community structure developed in this appendix, and the simplifications offered by the quotient graph representation,
it is possible to glean conditions for which the end-to-end intercommunity capacity is analytically obtainable.
To achieve this, we must develop a number of helpful lemmas. We shall first show that any cut which collects an

intra-community edge automatically invokes a valid cut between the two nodes connected by that edge on a community
sub-network.

Lemma 2 Consider two end-user nodes contained in remote communities α ∈ Pcα and β ∈ Pcβ , and a cut C between

them with a corresponding cut-set C̃. If C̃ contains at least one intra-community edge (x,y) ∈ Eci from an arbitrary

community ci, then C̃ contains a subset C̃ ′ which is a valid cut between x and y on the induced sub-network Nci .

Proof. Consider a cut C such that the corresponding cutset C̃ contains an intra-community edge (x,y) ∈ Eci .
Without loss of generality, the cut partitions the network nodes into two sets A = {α,x, ...} and B = {β,y, ...}. We
can therefore identify two subsets A′ ⊆ A and B′ ⊆ B that consist solely of nodes that lie in the same community,

A′ = {x | x ∈ A ∩ Pci}, B′ = {y | y ∈ B ∩ Pci}. (22)

It can clearly be seen that this forms a bi-partition for the nodes in Pci and thus forms a valid cut between the

arbitrary nodes x and y on the community network Nci . The corresponding cut-set C̃ ′ may be formed as usual from
these sets,

C̃ ′ = {(x,y) ∈ E | x ∈ A′, y ∈ B′}, (23)

Comparing this to the original cut-set

C̃ = {(x,y) ∈ E | x ∈ A, y ∈ B}, (24)

it can clearly be seen that C̃ ′ ⊆ C̃ since A′ ⊆ A and B′ ⊆ B.

This is actually a very useful result. It tells us that a hybrid cut between two remote user-nodes α and β which
collects edges from a network community will necessarily invoke a local-community cut between some arbitrary pair
of nodes. Let us now make the following definition which will simplify our notation.

Definition 4 (Min-Local Community Capacity): Consider a community sub-network given by Nci . We define the
minimum local-community capacity as the smallest flooding capacity that can be generated between any two nodes on
community network,

C∗m
ci

:= min
x 6=y∈Pci

Cm({x,y},Nci). (25)

As a result of the previous lemmas, we can present the following result which can be used to relate the intra-
community capacity with the minimum cut on the quotient network.
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Lemma 3 Consider a quantum network N with a disjoint community structure, and a pair of remote end-users
i = {α,β} which are located in distinct communities α ∈ Pcα and β ∈ Pcβ . On the quotient graph NQ, we can equiv-

alently consider the end-user-community pair iQ = {cαQ, c
β
Q}. It follows that if all of the minimum local-community

capacities are greater than the flooding capacity on the quotient network,

min
ci

C∗m
ci ≥ Cm(iQ,NQ), (26)

then the end-to-end flooding capacity between α and β is equal to

Cm(i,N ) = Cm(iQ,NQ). (27)

Otherwise, the flooding capacity on the quotient network is an upper-bound on the true flooding capacity, Cm(i,N ) ≤
Cm(iQ,NQ).

Proof. Since α and β lie in two different communities it is always possible to form cuts with cut-sets only containing
intercommunity edges. These are exactly the same cuts as are possible on the quotient graph NQ = N/R where R is
the equivalence relation partitioning the nodes into their communities. Hence, we can call these cuts quotient cuts,
CQ. Therefore we can obtain an initial bound for the multi-path capacity.

Cm(i,N ) ≤ Cm(iQ,NQ) = min
C

Cm (iQ, CQ) , (28)

where Cm (iQ, CQ) is the multi-edge capacity associated with a quotient cut partitioning the two communities in iQ.
This is an upper bound since the cut taken on the quotient graph may not be a minimum cut.

Now consider an arbitrary cut C0 between α and β, containing at least one intra-community edge. From Lemma
2 we have that the intra-community edges form at least one valid cut between arbitrary nodes on an induced sub-
network Nci . Note that the corresponding cut-set will generally not correspond to a valid cut between α and β on
N . It is clear we can lower bound the capacity across C0 by the minimum flooding capacity between any two nodes
on Pci , that is

Cm(i, C0) ≥ C∗m
ci . (29)

Comparing this to the initial bound obtained on the quotient graph, we see that whenever the minimum flooding
capacity between any two nodes on the community Nci satisfies

C∗m
ci ≥ Cm(iQ,NQ), (30)

then C0 cannot be a minimum cut. Now since the intra-community edge that C0 collects is arbitrary, the left hand
side must be minimized over all communities to ensure that no hybrid cut can ever be a minimum cut. Therefore,
whenever

min
ci

C∗m
ci ≥ Cm(iQ,NQ), (31)

the minimum-cut must contain only intercommunity edges and Cm(i,N ) = Cm(iQ,NQ).

In general the condition given in Eq. (26) is fairly restrictive, as it places requirements on the minimum capacities
between any two users in the same community. However, we shall see that in the case of communities connected to
backbones, in which the quotient graph is simply a star network, the condition applies only to the two end-users’
community networks Ncα and Ncβ .

E. Modular Networks with Backbone Structure

We can now turn our discussion to the modular networks as defined in Definition 1 and 3 of the main text, which
are specific architectures with community structure. These are modular networks where all of the communities are
disjoint and disconnected, but are all connected to a municipal backbone network. By imposing regularity (and thus
high connectivity) on the backbone, we are able to study ideal modular networks. It is clear to see that the quotient
network of this kind of modular architecture produces a star network. Let us denote a star network with m-children
nodes and a central node by NSm

. Each community becomes a child node of the central backbone node, and we
gather a very simple network structure. This is illustrated in Fig. 2.
We find that when our modular network adopts this simple (yet very general) structure, then Lemma 3 also simplifies

significantly. It can be shown that the conditions which require enforcing in Lemma 3 reduce to simple constraints
only on community networks involved with the end-user pair; not on any other community sub-network. This result
is captured in the following.
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Reduced quotient graph for an end-user pair, N ′

(b)

Global quotient graph for m-communities, NSm

(a)

Figure 2. (a) Quotient graph of a modular backbone network under the community equivalence relation for m-communities,
resulting in a star network. (b) When considering the multi-path capacity between end-users α and β, the quotient graph can
be simplified to a linear chain.

Lemma 4 Consider a pair of end-users i = {α,β} and their associated pair of end-user communities iQ = {cαQ, c
β
Q}.

The quotient graph NQ of the network under the community equivalence relation R is a star network. It then follows
that if

min
x∈{cα,cβ,b}

C∗m
x ≥ min{Cm

cα:b, C
m
cβ:b}, (32)

then the end-to-end flooding capacity between α and β is equal to

Cm(i,N ) = min{Cm
cα:b, C

m
cβ:b}. (33)

Otherwise, the flooding capacity on the quotient network is an upper-bound on the true flooding capacity Cm(i,N ) ≤
min{Cm

cα:b, C
m
cβ:b}.

Proof. It is known that we can always perform a valid cut by community isolation, i.e. exclusively cutting the
intercommunity edges between the backbone and either of the end-user communities. This type of cut equates to a
cut on the quotient network, so that in general we can write the global-community capacity as an upper-bound on
the flooding capacity

Cm(i,N ) ≤ Cm(iQ,NQ) = min{Cm
cα:b, C

m
cβ:b}. (34)

Now let us impose the condition in Eq. (32). This condition is similar to that which is proven in Lemma 3 for more
general networks. However in this setting, it is not necessary to consider communities which don’t contain end-users.
When Eq. (32) holds, this means that any cut which collects an edge from the sub-networks x ∈ {cα, cβ, b} will not
be a minimum cut. More precisely, by Lemma 2, any cut which collects an edge from any of these sub-networks
will automatically invoke a valid intra-community cut between a pair of arbitrary local nodes. But per Eq. (32), the
minimum local-community capacity is always larger than the global-community capacity, therefore this form of cut
will never be the minimum cut.

We are now left to check that any cut which collects edges from other communities ci /∈ {cα, cβ, b} will never be the
minimum cut under these conditions. Consider a sub-graph of the original network N ′ = (P ′, E′) ⊂ N which consists
solely of the communities cα, cβ and cb, each of the communities intra-community edges and the corresponding
intercommunity edges. Therefore the sets of sub-graph nodes and edges are

P ′ = Pcα ∪ Pcβ ∪ Pb, (35)

E′ = (Ecα ∪ Ecβ ∪ Eb) ∪ (Ecα:b ∪ Ecβ:b). (36)

In general, the flooding capacity computed on the sub-network N ′ will always be smaller than that computed on N .
The addition of extra communities can only ever increase the number of end-to-end multi-path routes. As a result,
we can write the lower-bound

Cm(i,N ) ≥ Cm(i,N ′). (37)
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It is very important to note that Cm(i,N ′) is not necessarily a valid, end-to-end capacity. This is because the minimum
cut which generates Cm(i,N ′) may not be a valid end-user partition on the global network N . When the minimum
cut which generates Cm(i,N ′) is also a valid cut on Cm(i,N ), then the above lower-bound saturates.
The quotient network of the sub-graph N ′ can then be reduced to a simple linear chain, as shown in Fig. 2(b).

Now, thanks to the condition in Eq. (34), we can equate the flooding capacity on N ′ to that computed on its quotient
network,

Cm(i,N ′) = Cm(iQ,N
′
Q) = min{Cm

cα:b, C
m
cβ:b}. (38)

Crucially, the minimum cut which generates this capacity is a valid cut on the global network N , since it is always
possible to partition the end-users via community isolation. As a result, when we combine this lower-bound with the
upper-bound in Eq. (34), we gather that the end-to-end flooding capacity is given by

Cm(i,N ) = min{Cm
cα:b, C

m
cβ:b}, (39)

as required. If the condition Eq. (32) is violated, we re-gather the upper-bound in Eq. (34) since there may exist a
cut that uses local community edges in x ∈ {cα, cβ, b} to reduce the end-to-end capacity. This new cut may also be
a valid cut on N ′, but it will not be achieved by community isolation, i.e. the lower-bound in Eq. (37) will still hold,
but it will not be attributed to Eq. (38).

The technique used in the proof is actually rather more powerful than it may first appear. The key is to select
a sub-graph whose quotient graph has exactly the same possible minimum cuts as the quotient graph of the overall
network. When the condition in Eq. (26) on the sub-graph holds, this guarantees that the lower bound, found by
asserting that the end-to-end capacity on the overall network must be greater than on the sub-graph, can be saturated
on the overall network. This in turn allows the lower bound to match the upper and reduce the restrictiveness of the
condition given in Eq. (26) to just minimizing C∗m

ci over the communities that exist in the sub-graph. This highlights
that the degree of simplification provided by Lemma 3 depends on the underlying topology of the quotient network.
Indeed it is clear that similar techniques can be applied to loosen the restrictions of Eq. (26) for other quotient network
topologies, although we leave the exploration of these to future works.

F. Threshold Capacities of Modular Networks with Backbone Structure

Using the developments throughout this section, we can provide a concise proof of the main theorem in the text.
This allows us to identify single-edge capacity thresholds for each of the end-user community networks and the
backbone network, such that the end-to-end capacity is equal to the global-community capacity. As a result, we can
identify unique physical constraints which can be used to motivate the construction of particular sub-networks, as
was done in the main text. Here we restate the theorem for clarity:

Theorem 2 Consider an ideal modular network of the form N ∗ introduced in Definition 3. Select any pair of end-
users i = {α,β} contained in remote communities α ∈ Pcα and β ∈ Pcβ . There exist single-edge threshold capacities

on the communities Cmin
cj

and backbone Cmin
b sub-networks for which the network flooding capacity is given by the

global-community capacity,

Cxy ≥ Cmin
cj

, ∀(x,y) ∈ Ecj ,

Cxy ≥ Cmin
b , ∀(x,y) ∈ Eb,

}

=⇒ Cm(N ) = Cm
c:b, (40)

for all j ∈ {α,β}. The threshold capacities are given by,

Cmin
cj

:=
Cm
c:b

kcj
, Cmin

b :=
Cm
c:b

H∗
min

, (41)

where H∗
min is the minimum cut-set cardinality on the backbone network. If these threshold capacities are violated,

then the global-community capacity becomes an upper-bound on the end-to-end capacity, Cm(N ) ≤ Cm
c:b.

Proof. Any modular network following the form of Definition 3 admits a star network as its quotient graph. In order
to assert that the global-community capacity between any two end-users located in remote communities i = {α,β}
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is indeed the flooding capacity, we must reveal conditions for which all other possible cuts generate larger flooding
capacities. Thanks to Lemma 4 we know this condition is,

min
c∈{cα,cβ,b}

C∗m
c ≥ min{Cm

cα:b, C
m
cβ:b} = Cm

c:b, (42)

where Cm
c:b is the global community capacity which implicitly performs the minimization. To satisfy the condition in

Eq. (42), it is sufficient to satisfy the set of equations,

C∗m
x ≥ Cm

c:b, ∀ x ∈ {cα, cβ, b}. (43)

Using this set of conditions, we are able to derive threshold capacities for each of the sub-networks of the modular
structure to ensure the global community capacity is equal to the end-to-end capacity.

Let us first focus on satisfying this condition for the end-user communities, cα and cβ. By definition, each of the
communities in our idealized modular architecture adopt kcj -connectivity, j ∈ {α,β}. This means that the smallest
possible cut between any two nodes on either of the community networks (which contain end-users) collects exactly
kcj edges. Let us also assume that there exists a single-edge threshold capacity for each community Cmin

cj
. Therefore,

we can always say that the min-local community capacity C∗m
cj

will never be smaller than that which is generated by

cutting kcj edges each of which have a minimum threshold capacity Cmin
cj

. That is, we can write

C∗m
cj

≥ kcjC
min
cj

, j ∈ {α,β}, (44)

This lower-bound on the min-local capacity is achievable, since it is based on a valid cut on the communities. In order
to satisfy Eq. (43) for each of communities, we must then demand

C∗m
cj

≥ kcjC
min
cj

≥ Cm
c:b, j ∈ {α,β}. (45)

As a result, we derive a single-edge threshold capacity for edges within the local communities,

Cmin
cj

=
Cm
c:b

kcj
, j ∈ {α,β}. (46)

With this condition, we ensure that any valid cut performed exclusively on the local communities will always generate
a larger multi-edge capacity than Cm

c:b, and will not be the minimum cut.

We are now left to identify the single-edge constraint for the regular backbone network. While Eq. (42) will supply
a sufficient condition for the backbone network to ensure it does not compromise the global community capacity, the
property of regularity lets us determine a more specific constraint. The backbone may possess many connections from
the communities, meaning that the minimum number of edges in a cut-set performed exclusively on the backbone as
potentially very large. The minimum cut-set size of a backbone cut depends totally on the network regularity, and the
distribution of intercommunity connections, i.e. the set of nodes Pb|cj which tell us where the community cj is directly
connected to the backbone (for j ∈ {α,β}). For regular networks, it is always possible to determine this minimum
cut-set size via collective node isolation (see Section III). Hence, the minimum cardinality can be summarized by the
function

|C̃b| ≥ H∗
min := min

j∈{α,β}
Hmin(kb, Pb|cj ) (47)

which chooses the minimum cut-set cardinality associated with either set of intercommunity connections. It then
follows that, given some minimum single-edge capacity on the backbone network Cmin

b , the minimum possible multi-
edge backbone capacity is given by

Cm
b ≥ |C̃b| C

min
b ≥ H∗

min Cmin
b . (48)

In order the global-community capacity to remain a minimum cut, it must always be smaller than this lower-bound.
Hence, we assert that,

Cm
c:b ≤ H∗

min Cmin
b (49)

which leads to the required condition.
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It is important to note that these conditions hold for any end-user pair in remote communities; even when the user
nodes possesses direct connections to the backbone. When this is the case, there will never exist a valid end-user
cut that is exclusively made up of local community edges, since it is now necessary to also cut the direct connections
to the backbone. Let Ex := {(x,y) ∈ E | y ∈ P} be the set of all edges in the neighborhood of a node x. We
can identify the intercommunity edges which provide direct connections from a node x to the backbone via the edge
set Ex \ Ecx , i.e. all the directly connected edges to x minus those which are community edges. Hence, we can
never eliminate community-wide communication by means of a local community cut. If we impose the condition in
Theorem 2 anyway, then this is sufficient to guarantee the global community capacity. Collecting kcj local community
edges will automatically generate a multi-edge capacity which is at least as large as Cm

c:b; hence the additional edges
that one now needs to collect to consolidate the cut can only increase this multi-edge capacity.

More precisely, the modification which minimizes the number of extra edges collected is achieved by additionally
collecting the edges which connect the user-node directly to the backbone. We can denote the multi-edge capacity
associated with cutting the user-connected intercommunity edges as

Cm
j:b :=

∑

(x,y)∈Ej\Ecj

Cxy. (50)

The necessity of cutting additional intercommunity edges means that the min-local community capacity can never be
the flooding capacity; it can never be a valid minimum cut on its own, since the direct backbone connection means
there will remain a route to the backbone (and thus to the other end-user). Instead, we perform a cut of kcj edges
on the local community and cut these direct backbone connections Ex \Ecx . This results in a multi-edge capacity of

C∗m
cj

+ Cm
j:b ≥ kcj C

min
cj

+ Cm
j:b, ∀j ∈ {α,β}, (51)

To ensure that this cut is never the minimum cut, we ask that

kcj C
min
cj

+ Cm
j:b ≥ Cm

c:b, ∀j ∈ {α,β}, (52)

is always true. Hence the necessity of cutting additional intercommunity edges leads to the modified condition on the
local community threshold capacities,

kcj C
min
cj

≥ Cm
c:b − Cm

j:b, ∀j ∈ {α,β}, (53)

which is clearly a looser condition than that in Theorem 1. Therefore, Theorem 1 holds regardless of if the end-users
are directly connected to the backbone or not.

II. APPLICATION TO HYBRID QUANTUM NETWORKS

With the main theorem from the main text now proven, it is possible to elucidate the emergence of Corollaries 1
and 2. These are simply applications of Theorem 1 in the context of fiber/satellite modular quantum networks, and
ground-based free-space/fiber architectures. To assist the reader, we restate each corollary before providing their
proofs.

A. fiber/Satellite Configuration

Corollary 3 Consider an ideal modular network of the form N ∗ introduced in Definition 3 in the main text, and
assume optical-fiber communities networks Ncα , Ncβ and a satellite-based backbone Nb. Select any pair of end-users
{α,β} located in remote communities α ∈ Pcα and β ∈ Pcβ . There exists a maximum fiber-length in each community

dmax
cj

:= −
1

γ
log10

(

1− 2−Cm
c:b/kcj

)

, (54)

and a maximum intersatellite separation in the backbone

zmax
b := argmin

z

∣

∣

∣

∣

∣

log

(

H∗
minBFσp

(η)

Cm
c:b

)∣

∣

∣

∣

∣

. (55)
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for which the network flooding capacity is equal to the global-community capacity,

Cm(N ) = Cm
c:b. (56)

Otherwise, if any intersatellite links violate this condition ∃ zxy > zmax
b , (x,y) ∈ Eb or the local community links

are in violation, ∃ dxy > dmax
cj

, (x,y) ∈ Ecj , for either j ∈ {α,β}, then this becomes an upper-bound on the network

flooding capacity, Cm(N ) ≤ Cm
c:b.

Proof. The proof follows directly from the use of Theorem 1 and the direct substitution of single-edge capacity
formulae into its results. As gathered from Theorem 1, for an ideal modular network of this form we can ensure that
the end-to-end capacity between the end-users is equal to the global-community capacity if the following single-edge
threshold capacities are satisfied: Cmin

cj
:= Cm

c:b/kcj and Cmin
b := Cm

c:b/H
∗
min.

Since the community sub-networks are consistent of fiber channels, we can equate the single-edge community
threshold capacity to the precise expression of a bosonic pure-loss channel capacity (the PLOB bound). For fiber-
channels, a minimum capacity threshold corresponds to a maximum fiber-length threshold, such that

Cmin
cj

= − log2(1− 10
−γdmax

cj ). (57)

This can be then be rearranged to determine the maximum permitted fiber-length within the community,

dmax
cj

= −
1

γ
log10

(

1− 2
−Cmin

cj

)

= −
1

γ
log10

(

1− 2−Cm
c:b/kcj

)

. (58)

We may perform a similar procedure for the backbone network, which is constructed from intersatellite channels.
Assuming negligible thermal contributions (see Section IV) but non-negligible pointing errors, then we can relate the
threshold capacity Cmin

b to the single-edge capacity expression from Eq. (43) in the main text,

Cmin
b =

Cm
c:b

H∗
min

≤ BFσp
[ηd(z)] =

2a2R∆(ηd(z), σp)

w2
d(z) ln 2

. (59)

In general settings this is an upper-bound, as it is an extension of the PLOB bound to an ensemble of lossy channels
where the convexity properties of the relative entropy of entanglement (REE) are exploited [32, 33, 39]. However,
we reliably assume the intersatellite channels to be modeled as pure-loss channels, and thus can admit equality
Cmin
b = BFσp

[ηd(z)]. We are now in a position to compute the maximum tolerable intersatellite separation zmax
b . This

is the same as asking: For what channel length z does the following equality hold

Cm
c:b = H∗

minBFσp
[ηd(z)]. (60)

Due to the complicated nature of the capacity function BFσp
[ηd(z)] this is not expedient analytically. However it is

easy to compute numerically. Indeed, finding the maximum intersatellite separation equates to finding the minimum
argument of

zmax
b = argmin

z

∣

∣

∣

∣

∣

log

(

H∗
minBFσp

(η)

Cm
c:b

)
∣

∣

∣

∣

∣

. (61)

Here we use the absolute log-ratio to compare the right and left hand-side of Eq. (60) and determine for what
channel length zmax

b they are equivalent. This provides a more sensitive measure than the absolute difference
|H∗

minBFσp
(η)− Cm

c:b| since this can become very small at longer channel lengths, and is thus more suitable for deter-
mining the maximum intersatellite separation numerically.

B. Ground-Based Free-Space fiber Configuration

Corollary 4 Consider an ideal modular network of the form N ∗ introduced in Definition 3 in the main text, and
assume free-space community networks Ncα , Ncβ and an optical-fiber backbone Nb. Select any pair of end-users
{α,β} located in remote communities α ∈ Pcα and β ∈ Pcβ . There exists a maximum free-space link length in each
community

zmax
cj

≤ argmin
z

∣

∣

∣

∣

log

(

kcjLFσ (η, n̄j)

Cm
c:b

)
∣

∣

∣

∣

, (62)
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and a maximum fiber length in the backbone

dmax
b := −

1

γ
log10

(

1− 2−Cm
c:b/H

∗
min

)

, (63)

for which the network flooding capacity is equal to the global-community capacity,

Cm(N ) = Cm
c:b. (64)

Otherwise, if any fiber links violate this condition ∃ dxy > dmax
b , (x,y) ∈ Eb or the local community links are in

violation, ∃ zxy > zmax
cj

, (x,y) ∈ Ecj , for either j ∈ {α,β}, then this becomes an upper-bound on the network flooding

capacity, Cm(N ) ≤ Cm
c:b.

Proof. Once again, a proof follows directly from Theorem 1 and the techniques used to prove the previous Corollary.
For an ideal modular network of this form we can ensure that the end-to-end capacity between the end-users is equal
to the global-community capacity if the following single-edge threshold capacities are satisfied: Cmin

cj
= Cm

c:b/kcj and

Cmin
b = Cm

c:b/H
∗
min.

In this setting, the community sub-networks are consistent of ground-based free-space quantum channels. We focus
on the regime of weak turbulence, such that channel lengths are limited to z . 1 km. For a community containing an
end-user j ∈ {α,β} we can write

Cmin
cj

=
Cm
c:b

kcj
≤ LFσ [η(z), n̄j ], (65)

where LFσ
[η(z), n̄j ] is the single-edge capacity upper-bound associated with a ground-based free-space link, discussed

in Eq. (32) and Section IID 1 of the main text. This incorporates atmospheric fading dynamics, and free-space
background noise n̄j which may be present in the community cj . Hence, determining the maximum free-space link
permitted in an end-user community is equivalent to finding the smallest channel length z for which the equality

Cm
c:b = kcjLFσ [η(z), n̄j ], (66)

is satisfied. As before, this can be carried out numerically by finding the minimum argument

zmax
cj

≤ argmin
z

∣

∣

∣

∣

log

(

kcjLFσ (η, n̄j)

Cm
c:b

)
∣

∣

∣

∣

. (67)

This is an upper-bound on zmax
cj

, since it is not known whether LFσ (η, n̄j) is an achievable rate or not. Nonetheless,
this single-edge upper bound has been shown to be tight, and therefore we can accurately utilize it in order to gain
insight into the reliability of free-space links in a metropolitan network setting.

For the fiber-backbone, we possess exact expressions for single-edge capacities. Therefore, to find the maximum
fiber-length we can simply compare the backbone threshold capacity to the PLOB bound and arrive at the result

dmax
b = −

1

γ
log10

(

1− 2−Cm
c:b/H

∗
min

)

. (68)

This completes the proof.

III. COLLECTIVE NODE ISOLATION

A. Definition and Motivation

Consider a network based on an underlying undirected graph N = (P,E), and some collection of n-network nodes
I = {i1, i2, . . . in} ⊂ P within it. Here, we will define I as a set of target-nodes that we are interested in. We define

the task of Collective Node Isolation as that of determining the smallest cut-set of edges C̃min ⊂ E that need to be
removed from the network in order to form a sub-graph NI = (PI, EI) within which all the target nodes are contained,
i.e. I ⊆ PI. Importantly, this sub-graph need not be exclusively consistent of target nodes, but can also possess
additional nodes. This question is relevant as it emerges within an unweighted minimum-cut problem for distant
collections of nodes on a highly-connected network. That is, given some disjoint collections of sender nodes A and
receiver nodes B, what is the minimum cut-set cardinality required to partition these collections of end-users?
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Clearly, for a completely general network it is by no means obvious what this cut-set is. However, by asserting some
form of connectivity constraints it is possible to gain some useful analytical insight. In particular we are interested
in k-regular networks, relevant for the regular backbone networks studied within the main-text. The high level of
connectivity guaranteed by regularity ensures that for given a pair of individual end-user nodes, the cut-set with the
smallest cardinality (neglecting boundary effects) will always be found via nodal isolation. This is because regularity
guarantees a high growth rate for cut-set sizes as one moves further away from either end-user; hence the closer
one remains to either end-user, the smaller the cut-set will be. Regular networks with this property are defined as
super-connected.
Hence, collective node isolation can be used to identify minimum-cut set sizes on a super-connected graph when it

is necessary to isolate a number of particular nodes, I. This is a generalization of the work in Ref. [14] in which the
focus is nodal isolation on weakly-regular graphs. In a modular network setting, collective node isolation is important
for identifying minimum cut-set cardinalities when restricted to a particular sub-network of the global model. This
is made clear via its application in the main text. In the following, we devise the general result for the cut-set size of
collective node isolation on regular networks.

B. Minimum Cut-Set Cardinality

Consider a k-regular network N = (P,E) and two specific disjoint collections of target nodes labelled {A,B} ⊂ P .
These collections are used to represented end-user connected nodes on an intermediate sub-network within a modular
structure. We wish to derive an expression for the minimum-cut set size required to completely partition the collections.

Let us define two Kronecker-delta like functions which are useful in this context. First, we define a function which
specifies whether a generic node x ∈ P is actually a target node from one of the collections,

δI(x) :=

{

1, if x ∈ I,

0, otherwise,
where I ∈ {A,B}. (69)

Then, we define the following neighbor-sharing counting function. For a given non-target node x ∈ P \ {A,B}, this
counts the total number of connections that x has to target-nodes,

FI(x) =
∑

y∈Nx

δI(y) (70)

where Nx := {y ∈ P | (x,y) ∈ E} defines the neighborhood nodes of the node x.
Consider either collection of target-connected nodes, I ∈ {A,B}. A regular network is super-connected, hence the

minimum cut-set cardinality is always achieved by neighborhood isolation. In this way, the largest set generated by
neighborhood isolation occurs when all the users are sufficiently separated so that they do not share any edges or
any neighbors. Then the cut-set has cardinality |C̃| = k|I|. This is always an upper-bound on the minimum cut-set
size. However, the potential for target-nodes sharing edges and sharing neighbors can diminish this cut-set size, since
redundant edges may emerge. Therefore, we can introduce corrective terms which remove redundant edges from the
cut-set (dependent on the distribution of target-nodes).
The first corrective factor removes all copies of edges that are directly shared between target-nodes, since they do

not facilitate information flow outside of the partition,

SE(I) =
∑

i∈I;x∈Ni

δI(x). (71)

The second corrective term accounts for the effect of non-target-nodes which are connected to multiple target-nodes.
Let us define the set of all non-user nodes in the network as P ′ = P \ {A,B}. Then, we further define the set of
non-target nodes that are also neighbors of target-nodes, given by

P ′
I
:= P ′

⋂

i∈I

Ni. (72)

When non-target nodes are connected to multiple targets, sometimes it is better to cut its external edges rather than
the internal edges connected to the targets. This is because there may be less external edges which when removed
are still capable of partitioning the target nodes (this detail is illustrated in Fig. 2 in the main-text). Overall, the
correction is found by iterating over all the nodes in x ∈ P ′

I
and deciding whether a superior cut can be found,

SN(k, I) =
∑

x∈P ′
I

max{0, 2FI(x)− k}. (73)
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Piecing these corrections together, we arrive at a completely general function that computes the minimum cut-set
size for a target-node distribution I on a regular network,

Hmin(k, I) := k|I| − SE(I)− SN(k, I). (74)

Hence, in the context of a minimum cut between two collections of target-nodes A,B, we can then simply choose
the set which minimizes the cut-set size, minI∈{A,B} Hmin(k, I).

C. Weakly-Regular Neighborhood Isolation

We can use the example of weakly-regular networks from Ref. [14] to show the generality of the previous expression.
In that work, it was important to determine the minimum cut-set cardinality that could be achieved when one is not
permitted to cut neighborhood edges of some potential end-users, α and β. In doing so, it was possible to derive
conditions on the weakly-regular network for which the flooding capacity was always the minimum neighborhood
capacity between the users. Interestingly, this is equivalent to asking: What is the minimum cut-set size related to
collectively isolating a user neighborhood A = Nα or B = Nβ on a weakly regular network? We can show that the
result in Eq. (74) can reproduce the result found from this investigation.
A weakly-regular network is a network architecture based on an undirected graph NWR = (P,E) which has the

specific connectivity properties. In a (k,Λ)-weakly-regular network, for any node x, there is a multiset of values λx

which collects the number of of common neighbors shared between x and each y ∈ Nx. That is,

λx := {|Nx ∩Ny| | y ∈ Nx}. (75)

This is known as the adjacent commonality multiset A network is (k,Λ)-weakly-regular if each node is connected to
exactly k other nodes, and each adjacent commonality multiset belongs to the superset Λ such that λx ∈ Λ for all
x ∈ P . For more details on these kinds of network, please see Ref. [14].

Here, we focus on a scenario in which there is only one non-degenerate adjacent commonality multiset, i.e. Λ = {λ},
with the implicit understand that this can be extended. Hence, each node has k-neighbors, and the distribution of
adjacent commonalities always follows λ = {λ1, . . . , λk}. As a result, every node i has k-neighbors, and shares a
unique number of common neighbors with each of them λj ∈ λ. Consider performing collective isolation of the
k-element neighborhood of some node i in this network. The maximum cut-set size is of course

k|I| = k|Ni| = k2, (76)

but this must be reduced due to edge-sharing and neighbor-sharing corrective factors. Indeed, the jth neighbor is
connected to exactly λj other neighbors of i, leading to the edge-sharing correction

SE(Ni) =
k
∑

j=1

λj . (77)

Meanwhile, clearly the entire neighborhood shares a single non-target node (the original user node i), meaning that
P ′
I
= {i}. This leads to the neighbor-sharing correction

SN(k,Ni) = max{0, 2FI − k} = k. (78)

As a result, the cut-set size is given by,

Hmin(k,Ni) = k|Ni| −
k
∑

j=1

λj − k =
k
∑

j=1

(k − λj − 1). (79)

This is the result reported in Ref. [14] where it was derived in a more direct fashion.

D. Bounds on Collective Node Isolation for Backbone Cuts

The function Hmin(k, I) can be used for any general distribution of target-nodes. However, in the modular setting
it is very easy to write bounds on the minimum cut-set size for network cuts performed exclusively on the backbone.
Given a k-regular backbone network, we can write the following bounds

k ≤ Hmin(k, I) ≤ k|I|. (80)
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Figure 3. The longest possible intersatellite quantum channel is limited by the line-of-sight separation of two satellites.

The lower bound corresponds to a situation where all the intercommunity edges are connected to a single node on the
backbone. In this case it is sufficient to simply isolate the connected node on the backbone. The upper-bound refers
to a situation where the intercommunity edges are connected to the backbone in such a way that the target-nodes
do not share any edges or neighbors. The cut-set size for all other distributions I fall within these bounds. Examples
are illustrated for a Manhattan backbone network in Fig. 2 in the main text

IV. CONSIDERATIONS FOR INTERSATELLITE NETWORKS

A. Line-of-Sight Distance Limits for interSatellite Channels

Consider two satellites in circular orbits arounds the Earth at altitudes. Satellites can only communicate with one
another of they are within each other’s line of sight. Hence, it’s easy to identify a geometric upper bound on the
intersatellite separation between two satellites.

First, consider the two satellites at positions A and B to be at equivalent altitudes h. By drawing a chord AB
tangential to the Earth’s surface from one satellite to the other, we can identify the maximum line-of-sight separation,
zmax
sight (see Fig. 3 for a geometrical insight). Label the centre of the Earth E, its radius RE and the point at which the
chord touches the Earth’s surface S. Denoting the angle ∠EAS as α, this will satisfy

sinα =
RE

RE + h
(81)

With this in hand, we find that the distance AB = 2AS, since the triangle EBA is clearly isosceles. That is,

zmax
sight = 2(h+RE) cosα =

2h(h+ 2RE)

h+RE
. (82)

For two satellites which are at different altitudes h1 ≤ h2, this maximum distance is extended to

zmax
sight =

h1(h1 + 2RE)

h1 +RE
+

h2(h2 + 2RE)

h2 +RE
, (83)

which follows intuitively from the previous geometrical considerations.
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B. Analytical Bounds for the Maximum interSatellite Separation

It is possible to analytically upper and lower bound the maximum intersatellite separation within the backbone
zmax
b from Corollary 1 in the main text. An upper-bound is found by considering a lack of pointing errors, which
means the channel is no longer a fading channel but is instead the a fixed lossy channel with the maximum possible
transmissivity. Therefore we can always write the upper-bound,

zmax
b ≤ zR

√

√

√

√

2a2R

w2
0 ln

[

ηeff

ηeff−1+2−Cm
c:b

/H∗
min

] − 1. (84)

This is easily derived using the ideal pure-loss single-edge capacity upper-bound from Theorem 1.
Meanwhile, we can find a lower-bound on the maximum intersatellite separation by considering the use of slow

detectors. A slow detector at the receiver will not be able to resolve pointing errors, resulting in a lossy channel with
fixed transmissivity averaged over the entire fading process. For intersatellite channels this is considered through
the long-term spot size, by replacing the ideal diffraction limited spot size w2

d with w2
lt = w2

d + σ2
p into the capacity

formula,

C ≤ Bslow(ηlt) =
2a2R
w2

ltln2
. (85)

Interestingly, the rate in bits per channel use via slow detection can be higher than that for fast detectors which actually
resolve the fading dynamics. But do not be mistaken; the slower detection time severely limits the operational rate at
which the channel can actually be used (or clock rate). As a result, the point-to-point communication rate via slow
detection will be orders of magnitude smaller than those with fading-resolving setups. Therefore, it is essential to
explicitly consider the clock rate α (channel uses/second) when comparing fast and slow detector protocols [32, 33].
In any case, the maximum intersatellite separation will be lower-bounded by

zmax
b ≥

√

√

√

√

2a2R
(w2

0

z2
R
+ ǫ2p

)

ln
[

ηeff

ηeff−1+2−α̃Cm
c:b

/H∗
min

] − w2
0, (86)

where ǫp = 10−6 comes from the point error variance σ2
p = (ǫpz)

2, and α̃ = αc:b/αb is the ratio between the clocks
used by the intercommunity sub-network and the backbone network.
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