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a b s t r a c t 

Accurate 3D modelling of cardiac chambers is essential for clinical assessment of cardiac volume and 

function, including structural, and motion analysis. Furthermore, to study the correlation between car- 

diac morphology and other patient information within a large population, it is necessary to automati- 

cally generate cardiac mesh models of each subject within the population. In this study, we introduce 

MCSI-Net (Multi-Cue Shape Inference Network), where we embed a statistical shape model inside a con- 

volutional neural network and leverage both phenotypic and demographic information from the cohort to 

infer subject-specific reconstructions of all four cardiac chambers in 3D. In this way, we leverage the abil- 

ity of the network to learn the appearance of cardiac chambers in cine cardiac magnetic resonance (CMR) 

images, and generate plausible 3D cardiac shapes, by constraining the prediction using a shape prior, in 

the form of the statistical modes of shape variation learned a priori from a subset of the population. 

This, in turn, enables the network to generalise to samples across the entire population. To the best of 

our knowledge, this is the first work that uses such an approach for patient-specific cardiac shape gener- 

ation. MCSI-Net is capable of producing accurate 3D shapes using just a fraction (about 23% to 46%) of the 

available image data, which is of significant importance to the community as it supports the acceleration 

of CMR scan acquisitions. Cardiac MR images from the UK Biobank were used to train and validate the 

proposed method. We also present the results from analysing 40,0 0 0 subjects of the UK Biobank at 50 

time-frames, totalling two million image volumes. Our model can generate more globally consistent heart 

shape than that of manual annotations in the presence of inter-slice motion and shows strong agreement 

with the reference ranges for cardiac structure and function across cardiac ventricles and atria. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Abbreviations: CMR, Cardiac Magnetic Resonance; CVD, Cardiovascular Disease; 

KB, UK Biobank; MLP, Multi-level perceptron; FCN, Fully Convolutional Networks; 

NN, Convolutional Neural Networks; LAX, Long axis; SAX, Short axis; LV, Left ven- 

ricle; RV, Right ventricle; LA , Left atrium; RA , Right atrium; ED, End diastole; ES, 

nd systole; HdMM, Hybrid Mixture Model; CPD, Coherent point drift; PCA, Prin- 

ipal component analysis; TSP, Thin-plate spline; gCPD, Generalised coherent point 

rift. 
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. Introduction 

According to the World Health Organisation ( WHO, 2020 ), car- 

iovascular disease (CVD) is the most prevalent cause of death 

orldwide, accounting for nearly 18 million deaths each year. Iden- 

ifying individuals at risk of CVDs and ensuring they receive appro- 

riate and timely treatment can help prevent premature deaths. 

Early quantitative assessment of cardiac structure, motion, and 

unction support preventive care and early cardiovascular treat- 

ent. Therefore, fully automated analysis and interpretation of 

arge-scale population-based cardiovascular magnetic resonance 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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CMR) imaging studies is of high importance. This analysis helps 

o identify patterns and trends across population groups, and ac- 

ordingly, provides insights into key risk factors before CVDs fully 

evelop. 

UK Biobank (UKB) is currently the world’s most extensive 

rospective population study ( Petersen et al., 2015 ), which con- 

ains questionnaire data, biological samples, physical measure- 

ents, CMR images, and so forth ( Petersen et al., 2013 ). CMR is

n essential element of multi-organ, multi-modality imaging visits 

or patients in multiple dedicated UKB imaging centres that will 

cquire and store imaging data from 10 0,0 0 0 participants by 2022. 

t this time, CMR scans of 40,0 0 0 subjects have been released and

re available for health-related research. 

We believe that 3D analysis is critical for the accurate clinical 

ssessment of cardiac function. In this work, we introduce a new 

pproach that ensures the global coherence of cardiac anatomy and 

aturally lends itself to any further analysis requiring the full 3D 

natomy; for example, in interventional treatment planning requir- 

ng precise volumetric quantification, mechanical and flow simula- 

ions, motion analysis, and modelling the associations between car- 

iac structure and patient clincial data (such as socio-demographic, 

ifestyle and environmental factors, or family history, genetic, and 

mics data). Though fully automatic 3D segmentation is required 

o facilitate such analyses, the complexity of anatomical structures, 

ntensity and morphology variation across a population cohort, and 

he sparse information available from CMR images (typically on av- 

rage around 12 image slices covering the full heart) make this 

ask challenging. 

In our previous studies, ( Attar et al., 2018 ) and ( Attar et al.,

019b ), we showed that 3D statistical shape model-based ap- 

roaches have the power and potential to automatically segment 

ardiac structures, and generate associated cardiac function in- 

exes. This success is attributed to the inclusion of prior knowl- 

dge of cardiac shape, within the segmentation method. These seg- 

entation approaches typically use simple sets of features to fit a 

hape model through an iterative process and the goal is to min- 

mise the Mahalanobis distance between an intensity profile sam- 

led at a candidate position and its corresponding intensity ap- 

earance model, by deforming the shape within its range of nor- 

al variation to match the image data. 

On the other hand, in the last decade, fully convolutional net- 

orks (FCN) have shown great potential in image-based pattern 

ecognition in a variety of tasks, including cardiac segmentation. 

owever, their output results are, by nature, 2D segmentation 

asks for every short axis (SAX) and long-axis (LAX) CMR slice. 

lthough these 2D masks are sometimes extended via a further 

tep of non-rigid registration to a 3D atlas to produce a 3D car- 

iac shape ( Duan et al., 2019 ), this is not efficient for learning

opological shape information. Furthermore, this is based on the 

trong assumption that all the 2D segmentation masks are al- 

ays correct and meaningful, however, in practice, there are of- 

en errors in pixel-wise segmentation approaches due to spu- 

ious false positives. For instance, Painchaud et al. (2020) re- 

ently proposed a generative model based on a variational au- 

oencoder to identify anatomically implausible results following 

D segmentation, and corrected these to fit the closest anatom- 

cally correct contours, based on the learned latent space. This 

rovides further evidence that, conducting CMR segmentation in 

D requires a subsequent quality control step, in order to en- 

ure that the downstream quantitative analyses are accurate. Con- 

equently, large-scale studies would benefit from an efficient ap- 

roach for reconstructing cardiac shapes in 3D, as it would remove 

he need for multiple sequential steps involving pixel-wise 2D seg- 

entation, followed by quality control, and iterative registration- 

ased 3D shape reconstruction, which can be cumbersome and 

ime-consuming. 
2 
In order to address these limitations, in a recent study 

 Attar et al., 2019a ) published at MICCAI 2019, we proposed an ap-

roach to exploit image features obtained using deep FCNs trained 

n both SAX and LAX views, along with a rich shape prior learned 

sing a statistical shape model, to directly predict the shape-space 

arameters required to reconstruct 3D cardiac shapes. Another sig- 

ificant aspect of this study was the integration of patient infor- 

ation into the process of shape prediction using a Multilayer 

erceptron (MLP). This information, which is currently ignored by 

ost cardiac segmentation or shape generation techniques, has 

een shown in different clinical studies to have an impact on car- 

iac morphology and structure ( Gilbert et al., 2019 ). To evaluate 

ur method, in addition to comparing against manual measure- 

ents, we also compared our performance against two state-of- 

he-art methods, namely, the work by Bai et al. (2018) in which 

he authors propose a 2D convolutional neural network (CNN)- 

ased segmentation method and our previous work ( Attar et al., 

019b ) where, we analysed and reported cardiac functional indexes 

f 20,0 0 0 subjects of the UKB through a fully automatic quality- 

ontrolled image parsing framework. 

In this paper, we have substantially extended our previous work 

resented at MICCAI 2019 ( Attar et al., 2019a ). The main contribu- 

ions of this paper that were not addressed in our previous work 

re as follows: 

• We extended the shape model from biventricular to a four- 

chamber cardiac mesh model. We segmented all four cardiac 

chambers; namely, left ventricle (LV), right ventricle (RV), left 

atrium (LA), and right atrium (RA). For the LV, we segmented 

both the endocardium and epicardium surfaces; while for the 

other chambers, we only segment the endocardium. This is be- 

cause the myocardium is too thin to reliably distinguish epi- 

cardium from the endocardium. Consequently, there is no label 

available to use for the training. This was achieved by first gen- 

erating a reference cohort of four-chambered cardiac meshes 

through the non-rigid registration of a four-chambered cardiac 

atlas, to a set of 3D points obtained from manual delineations. 

To ensure high accuracy when fitting the 3D shape to the stack 

of manually delineated contours, we adopted an alternating 

global-local affine and non-rigid registration approach, based 

on the generalised coherent point drift (gCPD) algorithm pro- 

posed previously by our group Ravikumar et al. (2017) , and 

thin plate spline (TPS) based mesh warping. TPS-based mesh 

warping is used to prevent mesh intersections between adja- 

cent cardiac chambers, and helps ensure shared nodes/node- 

connectivity between adjacent structures as defined in the orig- 

inal atlas mesh is preserved following registration. 
• We standardised our network in the feature extraction phase 

so that any FCNs can be used for this task. It is an innovative

end-to-end deep neural network that directly predicts 3D shape 

parameters derived from a Principal Component Analysis (PCA) 

space. The network was optimised using a loss function defined 

in the domain of shape space parameters which weights each 

PCA mode of variation independently, prioritising the more sig- 

nificant modes and leading to more accurate shape prediction. 

In addition to the shape parameters, we extended our network 

to also learn the similarity transformation parameters required 

to transform the generated shape back from the normalised 

PCA space, to the image space. We achieved this through a mul- 

titask learning approach, where the extracted features are used 

to jointly optimise a second loss function defined over the de- 

sired transformation parameters. 
• We adopted a novel approach of exploiting all the CMR image 

views (short axis and long axis two-, three- and four-chamber 

CMR images) and a wider range of patient data (almost tripled 

the quantity to cover more attributes) simultaneously, to pre- 
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Fig. 1. An example stack of manual contours represented as a hybrid point set com- 

prising spatial positions and associated surface normal vectors, extracted from SAX, 

two- (2CH) and four-chamber (4CH) LAX view slices. Contour colours denote the 

following - Blue: LV-endocardium; Red: LV-epicardium; Green: RV-endocardium; 

Orange: LA-endocardium; Purple: RA-endocardium. 
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dict 3D four-chambered cardiac shapes. The introduction of the 

patient information yielded a positive impact on shape predic- 

tion. We hope this work inspires other researchers to exploit 

such informative priors in their applications, to improve the 

performance of their models. 
• We investigated the importance of the available CMR slices to- 

wards the accuracy of the final predicted shape, and evaluated 

the performance of our approach in scenarios where only a few 

SAX and/or LAX slices are available. These experiments were 

conducted to validate the hypothesis that 3D cardiac shapes 

can be predicted accurately, given sparse CMR acquisitions. This 

is particularly relevant to applications requiring acceleration of 

CMR scan acquisitions, at minimal cost to subsequent cardiac 

quantification accuracy. 

. Method 

In the sections that follow, we describe the data and methods 

sed within each step of our framework, and our corresponding 

esign choices. These are ordered as follows — first, we describe 

he generation of reliable 3D reference shapes from the stack of 2D 

anual contours; next, the construction of the point distribution 

odel; and finally, we provide details of the input data used to 

rain and validate MCSI-Net, and describe its architecture. 

.1. Reference 3D cardiac shapes 

To generate the reference cohort of 3D cardiac shapes, we first 

onstruct the 3D stack of 2D manual delineations by combining 

ll the available contours from the three views (i.e. SAX, two- and 

our-chamber LAX slices) while exploiting the recorded orienta- 

ion and position information available in the DICOM header to be 

ligned with their actual corresponding CMR images, as shown in 

ig. 1 . The mean shape of a high-resolution atlas of the human 

eart available from a recent study by Rodero et al. (2021) was 

hen registered to the stack of manual contours using an initial 

ffine and subsequent non-rigid registration steps, to produce the 

atient-specific, four-chamber cardiac shape model. The resulting 

D mesh model comprises five structures; the Left Ventricle (LV) 

ndo- and epicardium, Right Ventricle (RV), Left Atrium (LA) and 

ight Atrium (RA). 

To generate the reference cardiac meshes, we used the gCPD al- 

orithm ( Ravikumar et al., 2017 ) for affine and non-rigid registra- 
3

ion of the atlas to each subjects’ stack of manual contour points. 

he gCPD algorithm is based on a hybrid mixture model that uses 

hapes represented as 6D hybrid point sets. Here, each point in 

ach shape is a 6D vector created by concatenating the spatial po- 

ition vector with the associated surface normal vector. An exam- 

le of the 6D-hybrid point set representation of a stack of manual 

ontours is shown in Fig. 1 . Such a hybrid representation of shape 

rovides a richer description of local variations in geometry than 

patial positions alone, providing more discriminative information 

han the latter to guide the registration of the cardiac atlas mesh 

o the stack of manual contours of each subject. For each sub- 

ect comprising manual delineations, we start with affine registra- 

ion to align the two hybrid point sets and then perform non-rigid 

egistration to deform the cardiac atlas mesh to fit the set of 6D 

oints obtained from manual delineations. Finally, using the point- 

ise correspondences established between the atlas and the stack 

f manual contours, we warp the cardiac atlas mesh to the lat- 

er using TPS interpolation. This helps ensure shared nodes/node- 

onnectivity across adjacent structures in the atlas surface mesh 

re preserved following registration. 

Here, we briefly review the gCPD algorithm and outline 

he registration steps followed to generate the reference cohort 

f subject-specific cardiac meshes. gCPD treats the problem of 

egistering a source hybrid point set X ∈ R 

n ×6 to a target hybrid 

oint set Y ∈ R 

n ×6 as one of probability density estimation. X = 

 X p , X n ] is considered to represent the centroids of a Hybrid Mix-

ure Model (HdMM), from which a transformed set of observa- 

ions Y = [ Y p , Y n ] are sampled. Here, X p & X n represent the spa-

ial positions and associated surface normal vectors of the cardiac 

tlas mesh, while Y p & Y n denote the spatial positions and associ- 

ted surface normal vectors of each subjects’ stack of manual con- 

ours from the UK Biobank cohort. Each mixture component in the 

dMM is formulated as a product of two distinct types of distri- 

utions, namely, a Student’s t-distribution and a Von-Mises-Fisher 

istribution, designed to model the joint distribution of point spa- 

ial positions and their associated unit normal vectors, respectively. 

onsequently, by fitting the HdMM to Y , in a manner analogous to 

ata clustering, the underlying spatial transformations that map X 

o Y and maximise the likelihood of the latter being sampled from 

he former, are estimated. This is achieved by maximising the log- 

ikelihood function using the expectation-maximisation (EM) algo- 

ithm, given as follows: 

p(Y | X , T ) = 

M ∑ 

j=1 

log 

N ∑ 

i =1 

πi S(y j p |T x 

i 
p , σ

2 , νi ) × F(y j n |T x 

i 
n , κi ) , (1)

here, [ x i p , x 
i 
n ] i =1 .N ∈ X denote N mixture components, 

 y 
j 
p , y 

j 
n ] i =1 .N ∈ Y are the observed data points, and subscripts p

nd n denote the spatial position and normal vector components 

f the hybrid point sets. Additionally, T are the spatial transforma- 

ion parameters to be estimated, πi =1 ... N are mixture coefficients, S
s the Student’s t-distribution function with variance σ 2 and shape 

arameter νi and F is a Von-Mises-Fisher distribution function 

ith dispersion κi , associated with each mixture component i . 

EM is necessary as no tractable solution exists for directly max- 

mising Eq. (1) . The EM algorithm iteratively alternates between 

wo steps. In the expectation (E)-step, the posterior probabili- 

ies that describe the responsibility of each mixture component 

 

i = [ x i p , x 
i 
n ] , in describing the observed data points y j = [ y 

j 
p , y 

j 
n ] ,

re estimated. In the maximisation (M)-step, the posterior prob- 

bilities estimated in the preceding E-step are used to maximise 

q. (1) with respect to the unknown spatial transformation param- 

ters T , mixture coefficients πi , the covariance σ 2 I and the shape 

arameters νi associated with each Student’s t-distribution in the 

ixture, and the dispersion parameters κi associated with each 

on-Mises-Fisher distribution (analogous to the variance of a Gaus- 
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ian distribution) in the mixture. gCPD considers an isotropic and 

hared covariance across all components’ Student’s t-distributions 

n the HdMM, however, a unique shape parameter νi is estimated 

or each component in the mixture, which controls the heaviness 

f the tails of each t-distribution and hence provides automatic, 

ocally adaptive robustness to noise/outliers that may be present 

n the data. Both affine and non-rigid registration are achieved by 

lternating between these two steps of EM, until a suitable conver- 

ence criterion is reached. 

The gCPD algorithm was chosen over the more widely used co- 

erent point drift (CPD) point set registration algorithm proposed 

y Myronenko and Song (2010) , as the former offers the following 

dvantages over the latter: (1) by utilising Student’s t-distributions 

n the HdMM, gCPD enables data-driven estimation of the con- 

tituent shape parameters of each t-distribution, thereby provid- 

ng automatic and locally adaptive robustness to noise and out- 

iers. Conversely, CPD handles noise and outliers through a lin- 

ar combination of a uniform distribution component within a 

aussian mixture model formulation, requiring manual tuning of 

 hyperparameter that controls the degree of global robustness 

o noise and outliers enforced on the registration process. Con- 

equently, it is difficult to scale up generation of a reference co- 

ort of cardiac meshes to large numbers using CPD (as required in 

his study), whilst ensuring robustness across all pair-wise regis- 

ration executions. gCPD provides an elegant solution to this prob- 

em by guaranteeing automatic robustness to noise and outliers. 

2) gCPD utilises hybrid shape representations that comprise 6D 

oints to guide the registration of the cardiac atlas to each UK 

iobank subjects’ stack of manual contours. By utilising surface 

ormals vectors as additional features alongside point spatial posi- 

ions to drive the registration, the topology and localised variations 

n geometry of each cardiac chamber is better preserved than af- 

orded by purely spatial position-based point set registration ap- 

roaches such as CPD. Using spatial positions alone to guide car- 

iac atlas to manual contour registration may result in the estima- 

ion of anatomically incorrect/implausible correspondences, lead- 

ng to errors in the warped atlas mesh such as intersections be- 

ween adjacent surfaces of cardiac chambers, for example. How- 

ver, by incorporating surface normals as additional features, more 

iscriminative information is provided to help improve estimation 

f correspondences, and thereby preserve the interfaces between 

djacent cardiac structures. Further details on the HdMM formula- 

ion of the gCPD algorithm and evidence of its superior registra- 

ion performance to CPD are presented in Ravikumar et al. (2017) ; 

avikumar (2017) . 

The following registration steps are used to warp the cardiac 

tlas mesh obtained from Rodero et al. (2021) to each subjects’ 

tack of manual contours available in the UK Biobank - (1) Con- 

ider the target hybrid point set (observed data, see Fig. 1 ) Y rep-

esents a stack of manual contours, and the source hybrid point 

et X represents centroids of a HdMM defined by vertices and as- 

ociated surface normal vectors of the cardiac atlas mesh. Initially 

 is registered to Y by estimating a global 3D affine transforma- 

ion that recovers the rotation, translation and scaling necessary 

o align the former to the latter. (2) Next, we conduct region-wise 

on-rigid registration, wherein, each chamber of the heart in X , is 

egistered independently to the corresponding region-specific con- 

ours in Y (i.e. for example, hybrid points of the LV mesh in X ,

re only registered non-rigidly to the LV hybrid contour points 

n Y ). This step is necessary as non-rigid registration using gCPD 

oes not explicitly account for multiple objects/regions and en- 

orces a global smoothing constraint on the estimated deforma- 

ion field through Tikhonov regularisation. The non-rigid transfor- 

ation in gCPD (as in the original CPD algorithm Myronenko and 

ong (2010) ) is parameterised as a linear combination of Gaus- 
4

ian radial basis functions. Two parameters control the degree of 

moothness of the deformation field, namely, λ a weight which 

ontrols the trade-off between smoothness and registration accu- 

acy, and β , which represents the width of the Gaussian kernel, 

sed to parameterise the deformation. Region-wise non-rigid reg- 

stration using gCPD, leverages the additional discriminative infor- 

ation provided by incorporating surface normal vectors as point- 

ise features to guide the estimation of valid region-wise corre- 

pondences and helps prevent gross topological changes during 

egistration. This also limits intersections between adjacent regions 

n the registered atlas mesh. (3) Finally, TPS-based mesh warp- 

ng/interpolation is used to refine the non-rigid transformations 

stimated in step (2), by using the established point-wise corre- 

pondences between the atlas and contours (from step (2)), and 

nformation regarding the shared nodes/node connectivity between 

djacent chambers (available from the original cardiac atlas mesh) 

s targets to drive the transformation of the all cardiac chamber 

eshes jointly/globally. This final global non-rigid registration step 

elps correct for any existing mesh intersections between adjacent 

ardiac chambers by preserving the shared nodes/node connectiv- 

ty between the same (as defined by the original atlas mesh). This 

n turn helps ensure that the topology of the whole heart meshes 

nd the spatial relationships between its constituent chambers are 

aintained. 

We empirically determined that registering X to Y in this man- 

er, and adopting distinct, sequential steps for region-wise and 

lobal non-rigid registration, provided better registration quality 

han using either approach alone. The values for the hyperpa- 

ameters that control the smoothness of the region-wise non- 

igid transformations estimated in step (2), namely, λ and β , were 

.5 and 1.0, respectively, for all regions. These were determined 

mpirically. Increasing the value for β increases interaction be- 

ween the points in the point cloud, and results in coherent mo- 

ion of larger neighbourhoods of points (i.e. similar displacements 

re estimated for larger proportions of points). Alternatively, de- 

reasing this value reduces interaction between the points in the 

oint cloud and conduces localised displacement of points. Sim- 

larly, increasing the value of λ produces more coherent motion 

cross all points globally. More details of the non-rigid registra- 

ion algorithm we used to achieve this effect can be found in 

avikumar et al. (2017) ; Ravikumar (2017) or in the original paper 

n the CPD algorithm Myronenko and Song (2010) . 

Finally, all the reference shapes were quality controlled to 

aintain high accuracy in the generated shapes. As a first check, 

e computed the point-to-point distance of the generated shape 

o the stack of manual contours, and if the average error was less 

han half of the in-plane pixel spacing, we used the shape for the 

DM construction. We then visually checked all the shapes overlaid 

n the stack of contours to discard any sub-optimal shapes from 

he dataset. Ultimately, 4,525 subjects were available after qual- 

ty control and were randomly split into two sets of 3,925/600 for 

raining/test, i.e. 3925 subjects for training the neural network, and 

00 subjects for evaluating performance. 

In the next section, we describe how we use the generated 3D 

eference shapes to construct the point distribution model, as illus- 

rated in Fig. 2 . We would like to highlight that the cardiac atlas 

esh used in the study (available from Rodero et al. (2021) ) in- 

ludes the base of the aorta and pulmonary artery, and all cardiac 

alve planes in addition to all four cardiac chambers. However, as 

he manual delineations available for the UK Biobank cohort do not 

nclude these structures, the deformation of these additional struc- 

ures is driven purely by the TPS-based mesh warping step, when 

enerating the subject-specific meshes. Thus the aortic vessel sur- 

ace visible in Fig. 2 for example, is inferred based on the predicted 

eformations for the adjacent cardiac chambers alone. 



Y. Xia, X. Chen, N. Ravikumar et al. Medical Image Analysis 80 (2022) 102498 

Fig. 2. The cardiac atlas mesh is registered to each stack of manual contours to 

produce subject-specific, high-resolution, smooth triangular meshes. Then all the 

new generated reference shapes are used to create the point distribution model 

(PDM). 
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Fig. 3. Representation of the mean ± 3 standard deviation (SD) of the first five 

modes of variation in the 3D shape models of four-chambered cardiac. 
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.2. Point distribution model (PDM) 

To encode the mean and variance of the 3D cardiac shapes, we 

se a PCA-based PDM. We construct the PDM by applying PCA on 

 set of generalised Procrustes aligned shapes. 

Following Procrustes analysis, for a training set of M shapes 

 i , we get M new shapes s i (representing the i -th shape of the

ataset) where all the nuisance pose parameters, i.e., translation 

 = (T x , T y , T z ) , rotation r = (R q 1 , R q 2 , R q 3 , R q 4 ) and scaling ( C) were

emoved. Here the desired 3D rotations are parameterised as quar- 

ernions due to the improved numeric stability they provide and 

heir compact nature, relative to Euler angles and 3D rotation ma- 

rices, respectively. Hence, using these 8 transformation parame- 

ers, we can transform back the Procrustes-aligned shapes to their 

riginal (image) coordinates as follows: 

 i = C i × s i × r i + t i , (2) 

here s i ∈ R 

3 N represents the i -th shape as (x i 
1 
, y i 

1 
, z i 

1 
, . . . ,

 

i 
N 
, y i 

N 
, z i 

N 
) T vector. 

The shape class mean s̄ and covariance cov of the training set 

f M shapes are calculated as follows: 

¯
 = 

1 

M 

M ∑ 

i =1 

s i (3) 

ov = 

1 

M − 1 

M ∑ 

i =1 

(s i − s̄ )(s i − s̄ ) T (4) 

The shape covariance is represented in a low-dimensional 

CA space providing l < min (M, N) eigenvectors � = [ ϕ 1 ϕ 2 . . . ϕ l ] , 

nd corresponding eigenvalues � = diag (λ , λ , . . . , λ ) computed 
1 2 l 

5 
hrough the Singular Value Decomposition of the covariance ma- 

rix. 

Thus, assuming the group of shapes follows a multi- 

imensional Gaussian distribution, we can approximate any shape 

n the group using the following linear generative model: 

 ≈ s̄ + �b (5) 

here, b ∈ R 

l are shape parameters restricted to | b i | ≤ β
√ 

λi ; to

apture 99 . 7% of shape variability, we set β = 3 . The shape param-

ters of s can then be estimated as follows: 

 = �T 
l (s − s̄ ) . (6) 

here the entries of b are the projection coefficients of mean- 

entred shapes (s − s̄ ) along the first l columns of �l . 

Fig. 3 shows the mean ± 3 standard deviation (SD) of the first 

ve PCA modes variation and illustrate the variations present in 

he training dataset. 

.3. Network architecture and loss function 

The overall architecture of MCSI-Net is shown in Fig. 4 . The 

etwork consists of two sub-networks: MMF-Net and Loc-Net. The 

MF-Net has five inputs: SAX view images, two-, three- and four- 

hamber LAX view images, and patient clinical data and outputs 

hape parameters b 

P = { b P 
j 
| j = 1 , . . . , k } . The Loc-Net takes SAX

iew images as inputs and predicts the transformation parameters 

 

P = { T x , T y , T z , R q 1 , R q 2 , R q 3 , R q 4 , C} which are shown in the bottom

ranch of the network. The two tasks are learned through these 

wo sub-networks independently. The proposed network is trained 

sing the following loss functions: 

 b = 

k ∑ 

j=1 

f (b P j (θ ) , b R j ) (7) 

nd, 

 t = 

8 ∑ 

l=1 

f (t P l (θ ) , t R l ) (8) 

here k is the number of shape parameters, θ denotes the network 

arameters, f (. ) denotes the loss functions used to minimise the 

ifference between the reference values ( b R 
j 

and t R 
l 

) and the val- 

es predicted by the network ( b P 
j 
(θ ) and t P 

l 
(θ ) ). For the term L b ,

e used a L2 loss function to minimise the difference between b R 
j 

nd b P 
j 
(θ ) . For the term L t , we employed the L2 loss for minimis-

ng the translation and scaling errors, and the geodesic distance 

oss for the rotation formulated as quaternion parameterisations. 
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Fig. 4. MCSI-Net consists of two subnets: MMF-Net and Loc-Net. The MMF-Net extracts a high-level representation of the image from SAX and LAX views using four FCNs 

and concatenates the image features together with the output of an MLP network applied to the patient data. The MMF-Net finally produces the k -dimentional parameters 

in PCA space, whereas the Loc-Net predicts the corresponding transformation parameters, with which the 3D cardiac shape can be predicted.. 
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Table 1 

Comparison of shape prediction accuracy using different FCNs in terms of D, 

M (mm) and H(mm) for LV endo-/epicardium, RV, LA and RA. The results were 

assessed at both ED and ES phases. Bold indicates the best performing method. 

Alex-Net VGG-16 DenseNet ResNet 

LV endo D 0.84 ± 0.07 0.85 ± 0.07 0.85 ± 0.07 0.88 ± 0.05 

M 2.51 ± 1.00 2.28 ± 0.94 2.02 ± 0.98 1.86 ± 0.79 

H 6.09 ± 2.26 5.63 ± 2.10 5.13 ± 2.18 4.74 ± 1.75 

LV myo D 0.69 ± 0.11 0.72 ± 0.09 0.76 ± 0.09 0.78 ± 0.08 

M 2.55 ± 1.03 2.27 ± 0.95 2.04 ± 0.91 1.86 ± 0.82 

H 6.17 ± 2.22 5.69 ± 2.05 5.36 ± 2.21 4.75 ± 1.76 

RV endo D 0.81 ± 0.07 0.82 ± 0.07 0.85 ± 0.06 0.85 ± 0.06 

M 3.05 ± 1.09 2.98 ± 1.12 2.46 ± 1.24 2.27 ± 0.95 

H 8.78 ± 2.94 8.77 ± 3.20 7.47 ± 3.55 7.06 ± 2.64 

LA 2ch D 0.82 ± 0.09 0.85 ± 0.07 0.87 ± 0.07 0.86 ± 0.07 

M 3.67 ± 1.46 3.12 ± 1.10 2.96 ± 1.68 2.87 ± 1.21 

H 8.95 ± 3.67 7.65 ± 3.48 7.11 ± 3.62 7.19 ± 2.83 

LA 4ch D 0.83 ± 0.08 0.85 ± 0.07 0.87 ± 0.08 0.88 ± 0.07 

M 3.54 ± 1.39 3.11 ± 1.35 2.89 ± 1.59 2.65 ± 1.11 

H 8.61 ± 3.05 7.89 ± 3.64 7.11 ± 3.10 6.82 ± 2.47 

RA 4ch D 0.83 ± 0.11 0.84 ± 0.10 0.86 ± 0.06 0.88 ± 0.06 

M 3.57 ± 1.58 3.42 ± 1.32 2.95 ± 1.33 2.79 ± 1.23 

H 8.57 ± 3.46 8.47 ± 3.20 7.73 ± 3.34 7.34 ± 2.99 

T

p

s

 

f

f

w

t

(

a

g

e set the weights [1, 100, 100] where the network optimises the 

ub-branches of translation, rotation and scaling. 

Ultimately, having the mean shape, eigenvectors and predicted 

hape parameters, the final shape can be reconstructed using 

q. (5) and Eq. (2) . Once the network is trained, it is capable of

egmenting all five sub-parts of the heart in different views simul- 

aneously. While other state-of-the-art approaches have been pro- 

osed to segment the heart in multi-view CMR images, to the best 

f our knowledge, none of them exploit the contextual shape in- 

ormation provided by each view, to enhance cardiac shape recon- 

truction in 3D, as done by MCSI-Net. 

As shown in Fig. 4 , we used FCNs to extract image features. 

n this study, we looked into recent deep learning networks that 

ave demonstrated the best performance in regression problems 

 Lathuilière et al., 2019 ), namely Alex-Net ( Krizhevsky et al., 2012 ),

GG-16 ( Simonyan and Zisserman, 2014 ), DenseNet ( Huang et al., 

017 ), and ResNet ( He et al., 2016 ). 

All these FCNs are available in their standard architecture, in 

 Pytorch package called torchvision , and are used here for the 

urpose of feature extraction. We added an extra convolutional 

ayer with the kernel size equal to the feature map dimensions 

o produce a vector of features. We examined the performance 

f the above mentioned FCNs in our application, and found that 

he ResNet outperforms the other architectures. We computed the 

egmentation accuracy using three key metrics: Dice Similarity Co- 

fficient ( D), Mean Contour Distance ( M ) and Hausdorff Distance 

 H). D is between 0 and 1, with a higher D indicating a better 

atch between the two shapes. M and H measure the mean and 

aximum distance, respectively, between the manual and auto- 

atic results, with a lower value indicating a better the agreement. 

hese metrics are defined in Eqs. (10), (11) and (12) , respectively, 

n Section 3.4 . Table 1 summarises the performance of each archi- 

ecture investigated within our framework. This indicates that the 

est performing FCN is ResNet, which appears at the right-most 

olumn of the table. It consistently achieves the largest overlap and 

owest point-to-point distance, across all sub-parts of the heart. 
6 
hus, we used ResNet as the deep feature extractor within our ap- 

roach, for all subsequent experiments conducted throughout the 

tudy. 

As shown in Fig. 4 , we also used an MLP to learn features

rom patient data and integrate it with the extracted image-based 

eatures. The MLP is a two-hidden-layer function denoted g( η) , 

here, η is the input (patient data feature vector). It comprises 

wo hidden layers (with 64 and 128 neurons), and an output layer 

with 256 neurons). ReLU is used in the hidden and output layers 

s an activation function, such that: 

( η) = ReLu 
(
c (2) + w 

(2) 
(
ReLu 

(
c (1) + . . . w 

(1) 
(
R eLu 

(
c (0) + w 

(0) η
)))))

(9) 
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here { c (0) , c (1) , c (2) } and { w 

(0) , w 

(1) , w 

(2) } denote biases and 

eights for the input and two hidden layers, respectively. 

In the MMF-Net, the outputs of the five sub-networks are con- 

atenated to construct one feature vector that contains the be- 

avioural, phenotypic, and demographic information derived from 

he patient data in addition to appearance information from the 

maging data. This information is fed into a fully connected layer, 

ith ReLU activation functions, so that, by minimising Eq. (7) , they 

roduce the first k parameters in PCA space, which describe the 

D shape of the cardiac chambers. To capture 99.7% of shape vari- 

bility in the training dataset, we set k = 70 and regress only those

arameters from randomly initialised weights. Similarly, in the Loc- 

et, three different fully connected layers are applied to predict 

he scale ( C), rotation ( R q 1 , R q 2 , R q 3 , R q 4 ) and translation ( T x , T y , T z )

arameters, respectively. 

. Experiments and results 

.1. Data and annotations 

We collected the UKB data under access applications num- 

er 2964 and 11350. This study complies with the Declaration of 

elsinki. The study was covered by the ethical approval for UKB 

tudies from the National Health Service National Research Ethics 

ervice on 17th June 2011 (Ref 11/NW/0382) and extended on 10th 

ay 2016 (Ref 16/NW/0274) with informed consent obtained from 

ll participants. The full CMR protocol in the UKB has been de- 

cribed in detail elsewhere ( Petersen et al., 2015 ). Researchers can 

pply to use the UKB resource for health-related research that is in 

he public interest 2 . 

We performed train/test experiments on CMR images of 4.525 

ubjects from the UKB using both end-diastolic (ED) and end- 

ystolic (ES) time points. In terms of population sample size, ex- 

erimental setup, and quality control, the most reliable reference 

nnotations of cardiovascular structure and function found in the 

iterature are those reported by Petersen et al. (2017a) , in which 

MR scans were manually delineated and analysed by a team of 

ight expert observers. These delineations were used to generate 

he reference 3D shapes, as explained in Section 2.1 . 

Regarding the image data, each slice (SAX and LAX views) was 

ntensity- and spatially-normalised similar to our previous work 

 Attar et al., 2019a ). After the pre-processing, every slice has a size

f 128 x 128 px and intensity values ranging between 0 and 1. As 

he number of SAX slices in CMR images varies typically from 7 to 

5 slices, the SAX image volumes were resampled to a fixed vol- 

me size of 15 slices, using cubic B-spline interpolation. Data aug- 

entation with the random rotation and translation on the SAX 

nd LAX images was applied when training the MMF-Net as it aims 

o produce the normalised and centralised shape models. In the 

raining stage, we constructed the training set using the subject- 

pecific reference whole heart shapes at two cardiac phases, i.e., 

rom both ED and ES phases. Once the model was trained at ED 

nd ES phases, we can infer not only the heart shape at the ED 

nd ES phases but also any time point in the cardiac cycle. 

With respect to the patient data, based on available literature 

nd advice from our clinical collaborators, we selected a list of at- 

ributes that might directly/indirectly contribute to variations in 

ardiac morphology. Table 2 shows the summary of the patient 

ata available for every subject in the UKB. All variables were 

caled to the range [0, 1], including categorical variables, which 

ere first indexed by grouping variables and then scaled (viz. sex 

 (0 , 1) , or smoking status ∈ (0 , 0 . 5 , 1) ). 
2 https://www.ukbiobank.ac.uk/register-apply . 

w

0

m

7 
.2. Competing methods 

In addition to manual delineations and our previous work 

 Attar et al., 2019b ), we compare the performance of MCSI-Net 

gainst the fully automated CNN-based method by Bai et al. (2018) . 

n Table 3 , we present the data we used for training, testing and

valuating different methods. Here, the proposed method MCSI- 

et is labelled as C, our previous work ( Attar et al., 2019b ) is la-

elled as A, and the method by Bai et al. (2018) is labelled as B. As

n additional assessment, we conducted a quantitative evaluation 

f human performance by measuring the inter-observer variability 

mong the segmentations performed manually by three different 

linical experts. Here, we randomly selected 50 subjects, where, 

ach subject was analysed independently by three expert observers 

abelled O1, O2 and O3. 

.3. Implementation and training 

The method was implemented using Python and Pytorch. The 

MF-Net was trained using Adam for optimising the loss function 

 Eq. (7) ) through 100 epochs with a learning rate of 0.0 0 0 07 and

atch size of 8 subjects. The Loc-Net was trained using Adam for 

ptimising the loss function ( Eq. (8) ) through 300 epochs with a 

earning rate of 0.0 0 01 and batch size of 32 subjects. Training took 

24 hours on Nvidia Tesla V100 GPUs hosted by Amazon Web Ser- 

ice and accessed using the MULTI-X platform ( de Vila et al., 2018 ).

t test time, it took about 5 seconds to predict the shape parame- 

ers of the full cardiac cycle. 

.4. Accuracy of predicted shapes 

Fig. 5 shows several samples of our 3D cardiac shape results, 

t ED and ES phases, representing as corresponding 2D contours 

verlaid with the SAX and LAX images. It confirms that the sys- 

em is capable of producing accurate shape parameters to generate 

hapes very similar to the reference contours. 

We evaluated the performance of our approach using standard 

etrics for assessing segmentation accuracy. These include, the 

ice index ( D), and the mean ( M ) and Hausdorff distance ( H)

etween reference and predicted contours. Note that the manual 

nnotation was performed for each slice independently so the con- 

ours are not globally consistent across slices in the presence of 

nter-slice motion (see Fig. 6 ). Thus, to better quantify the segmen- 

ation results, we used the target meshes, i.e., the reference 3D 

ardiac shapes used for the training of MCSI-Net, as the reference. 

evaluates the overlap between automated segmentation A and 

anual segmentation M ; we define D as follows: 

 = 

2 | A ∩ M | 
| A | + | M | (10) 

The M and H metrics evaluate the mean and maximum dis- 

ance, respectively, between segmentation contours ∂A and ∂M . 

hese measures are defined as follows: 

 = 

1 

2 | ∂A | 
∑ 

p∈ ∂A 

d(p, ∂ M ) + 

1 

2 | ∂ M | 
∑ 

q ∈ ∂M 

d(q, ∂ A ) (11) 

 = max ( max 
p∈ ∂A 

d(p, ∂M ) , max 
q ∈ ∂M 

d(q, ∂A )) (12) 

here d(p, ∂) denotes the minimal distance from point p to con- 

our ∂ . The lower the distance metric, the stronger the agreement. 

Table 4 presents D, M and H measures that compare auto- 

ated segmentation results and reference. The mean and standard 

eviations of D for the LV endo , LV myo , RV endo , LA 2ch , LA 4ch and RA 4ch 

ith n = 600 are 0.88 ± 0.05, 0.78 ± 0.09, 0.85 ± 0.06, 0.86 ± 0.07, 

.88 ± 0.08 and 0.88 ± 0.06 respectively, indicating good agree- 

ent between the target mesh and automated segmentation with 

https://www.ukbiobank.ac.uk/register-apply
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Table 2 

Summary of the patient data of 40,0 0 0 subjects used in this study. According to the nature of the data, we have 

grouped them into four categories, i.e. (1) demographics, (2) blood pressure, (3) biological samples, and (4) lifestyle. 

Continuous values indicate mean ± standard deviation. 

Type Patient data Range 

Demographics Sex Male / Female 

Age (years) 57 ± 8 

Height (cm) 170 ± 9 

Body mass index (kg/m2) 27 ± 4 

Weight (kg) 78 ± 16 

Body surface area (m2) 1.8 ± 0.2 

Ethnic background White / Mixed / Other 

Blood pressure Systolic blood pressure (mmHg) 139 ± 19 

Diastolic blood pressure (mmHg) 82 ± 11 

Diastolic brachial blood pressure (mmHg) 69 ± 12 

Systolic brachial blood pressure (mmHg) 137 ± 22 

Pulse rate (bpm) 69 ± 12 

Central systolic blood pressure during PWA (mmHg) 134 ± 21 

End systolic pressure during PWA (mmHg) 113 ± 19 

Mean arterial pressure during PWA (mmHg) 96 ± 14 

Biological samples HbA1c (mmol/mol) 36.1 ± 6.7 

Cholesterol (mmol/L) 5.7 ± 1.1 

C-reactive protein (mg/L) 2.5 ± 4.3 

Glucose (mmol/L) 5.1 ± 1.2 

HDL Cholesterol (mmol/L) 1.4 ± 0.3 

IGF-1 (nmol/L) 21.3 ± 5.6 

LDL direct Cholesterol (mmol/L) 3.5 ± 0.8 

Triglycerides (mmol/L) 1.7 ± 1.0 

Lifestyle Smoking status Never / Previous / Current 

Number of cigarettes smoked daily 15 ± 8 

Sleep duration (hours/day) 7 ± 1 

Duration of moderate activity (minutes/day) 66 ± 75 

Duration of vigorous activity (minutes/day) 44 ± 47 

Duration of walks (minutes/day) 61 ± 77 

Alcohol drinker status Never / Previous / Current 

Alcohol intake frequency - Never 

- Daily or almost daily 

- Three or four times a week 

- Once or twice a week 

- One to three times a month 

- Special occasions only 

Table 3 

Specific UKB datasets used for training and testing the methods proposed and presented in this paper. 

Label Method Training/Tuning Data Test Data 

A Attar et al. (2019b) 4275 subjects from SAX view 600 subjects 

B Bai et al. (2018) Trained separately on: 4,275 subjects from SAX view 4,123 subjects from 

LAX 2CH view 4,082 subjects from LAX 4CH view 

600 subjects 

C MCSI-Net Trained jointly on: 3,925 subjects from SAX and LAX views 50 subjects 600 subjects 

O1-O3 Three expert readers Manual contours 50 subjects 

Table 4 

Segmentation results based on the different test sets (n = 50 and 600), where we compare the target mesh with auto- 

mated segmentation by our proposed MCSI-Net. LV endo represents LV endocardium, LV myo represents LV myocardium, 

RV endo represents RV endocardium, LA 2ch represents LA in two chamber LAX view, LA 4ch represents RA in four chamber 

LAX view, and RA 4ch represents represents RA in four chamber LAX view. Table values are shown as mean ± standard 

deviation. The results were assessed at both ED and ES phases.. 

(a) D (b) M (mm ) (c) H (mm ) 

Pred vs Target Pred vs Target Pred vs Target Pred vs Target Pred vs Target Pred vs Target 

Test-set (n = 50) (n = 600) (n = 50) (n = 600) (n = 50) (n = 600) 

LV endo 0.88 ± 0.05 0.88 ± 0.05 1.90 ± 0.86 1.86 ± 0.87 4.84 ± 1.89 4.74 ± 1.75 

LV myo 0.76 ± 0.08 0.78 ± 0.09 1.92 ± 0.81 1.86 ± 0.82 4.79 ± 1.69 4.75 ± 1.76 

RV endo 0.85 ± 0.06 0.85 ± 0.06 2.29 ± 0.95 2.27 ± 0.95 7.05 ± 2.57 7.06 ± 2.64 

LA 2ch 0.86 ± 0.07 0.86 ± 0.07 2.77 ± 1.18 2.87 ± 1.21 7.32 ± 2.93 7.19 ± 2.83 

LA 4ch 0.87 ± 0.05 0.88 ± 0.08 2.70 ± 1.21 2.65 ± 1.11 6.87 ± 2.51 6.82 ± 2.47 

RA 4ch 0.88 ± 0.06 0.88 ± 0.06 2.76 ± 1.22 2.79 ± 1.23 7.12 ± 2.61 7.34 ± 2.99 

8 
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Fig. 5. Example segmentation results for short-axis and long-axis slices at the ED and ES phases illustrating the quality for automated segmentation contours versus the 

reference. The automated method segments all the time frames. However, only ED and ES frames are shown, as GTs are only available at the ED and ES frames. The CMR 

images were reproduced with the permission of UK Biobank.. 
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he average D of 0.85. Due to the annular shape of LV myo which 

as a larger perimeter (i.e. endo and epicardial boundary) and 

auses some overlap shifts, its D value is less than that of the other 

ases. 

In addition, we observe that the M is 1.86 ± 0.87 mm for the 

V endo , 1.86 ± 0.82 mm for the LV myo , 2.27 ± 0.95 mm for the

V endo , 2.87 ± 1.21 mm for the LA 2ch , 2.65 ± 1.11 mm for the LA 4ch ,

nd 2.79 ± 1.23 mm for the RA 4ch , all of which are close to the in-

lane pixel spacing range of 1.8 to 2.3 mm. The H measures are 

.74 ± 1.75 mm, 4.75 ± 1.76 mm, 7.06 ± 2.64 mm, 7.19 ± 2.83 

m, 6.82 ± 2.47 mm and 7.34 ± 2.99 mm for the LV endo , LV myo ,

V endo , LA 2ch , LA 4ch , RA 4ch , respectively. 

.5. Accuracy of cardiac function indexes 

Here, we report clinical cardiac functional indexes derived from 

anual and automated segmentation such as atrial and ventricu- 

ar EDV and ESV. To reproduce the reference ranges reported by 

etersen et al. (2017a) , we first extract contours corresponding to 

he intersection between our 3D triangular meshes and CMR image 

lices. For the ventricular indexes calculated on SAX slices, we use 

he method of disks, whereby a cardiac 3D volume can be approx- 

mated by summing the areas within 2D segmentation contours 
9

nd multiplying by the inter-slice spacing. For the atrial indexes, 

e calculated the volume according to the area-length method on 

AX slices. Specifically, the LA volume was calculated using the 

iplane area–length method as V = 

8 
3 π

A 
2ch 

·A 
4ch 

L , where A 2ch 

and 

 4ch 

represent the atrial area on the 2 chamber and 4 chamber 

iews, respectively, and L is the longitudinal diameter averaged 

cross two views. Similarly, the RA volume was calculated using 

 = 

8 
3 π

A 2 
4ch 

L . 

We processed and quantified all the available 40,0 0 0 subjects 

f the UKB; each imaged at 50 time points, i.e. in total two million 

mage volumes. Fig. 7 illustrates the mean and standard deviation 

f LV mass and the ventricular and atrial volumes of all subjects at 

ach time point. The volumes trend matches well with the physi- 

logy of the heart where ventricles have the highest blood volume 

t ED, and lowest at ES phase. At the same time, the atria have the

pposite behaviour where, it contains the lowest blood volume at 

D and highest at ES phase. LV mass remains consistent over the 

ardiac cycle, which is apparent in the diagram. 

Having quantified cardiac chamber volumes across all 50 time 

oints, we report the following sets of indexes: the LV end- 

iastolic volume (LVEDV) and end-systolic volume (LVESV), LV 

troke volume (LVSV), LV ejection fraction (LVEF), LV myocardial 
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Fig. 6. Example segmentation results for short-axis slices overlayed on the long-axis views illustrating the quality of our automated segmentation contours versus manual 

contours. Note that the manual annotation was performed for each slice independently so the contours are not globally consistent in the presence of inter-slice motion, 

whereas our approach can generate globally consistent and plausible shapes and contours of heart. The CMR images were reproduced with the permission of UK Biobank. . 

Fig. 7. Quantification results of 2 million CMR image volumes. Illustrating the mean (solid lines) and standard deviation (shaded area) of the ventricular and atrial volume 

(ml), LV mass (g) of 40k subjects of the UKB over the 50 time points. 
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ass (LVM), RV end-diastolic volume (RVEDV) and end-systolic 

olume (RVESV), RV stroke volume (RVSV), RV ejection fraction 

RVEF), LA end-diastolic volume (LAEDV) and end-systolic volume 

LAESV), LA stroke volume (LASV), LA ejection fraction (LAEF), RA 

nd-diastolic volume (RAEDV) and end-systolic volume (RAESV), 

A stroke volume (RASV), and RA ejection fraction (RAEF). Table 5 

hows the main aforementioned cardiac functional indexes, with 
10 
he first column representing the indexes derived from all the 

vailable manual segmentation. We observe here that there is ex- 

ellent agreement between the clinical indexes of our proposed 

ethod and the ground truth values for all the indexes listed in 

he table. 

Table 6 presents the relative differences between the automated 

nd manual measurements, as well as between the automated and 
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Table 5 

Summarising the differences in clinical measures derived from our proposed 

method and manual segmentation. Here, GT represents the ground-truth val- 

ues provided by manual segmentation from ( Petersen et al., 2017a ). A, B, and 

C represents the quantification results derived from automated segmentation by 

Attar et al. (2019b) , Bai et al. (2018) , and our proposed MCSI-Net, respectively. Val- 

ues indicate mean ± standard deviation. 

GT GT A B C 

Indexes (n = 4,875) (n = 600) (n = 600) (n = 600) (n = 600) 

LVEDV (ml) 144 ± 34 143 ± 34 144 ± 32 148 ± 35 145 ± 32 

LVESV (ml) 59 ± 20 58 ± 19 57 ± 18 62 ± 20 59 ± 17 

LVSV (ml) 85 ± 19 85 ± 20 87 ± 20 86 ± 20 86 ± 19 

LVEF (%) 59 ± 6 60 ± 6 61 ± 7 58 ± 6 59 ± 5 

LVM (g) 90 ± 25 88 ± 25 89 ± 25 91 ± 24 89 ± 20 

RVEDV (ml) 153 ± 37 150 ± 39 153 ± 36 156 ± 39 152 ± 36 

RVESV (ml) 67 ± 22 65 ± 23 63 ± 20 68 ± 21 62 ± 20 

RVSV (ml) 85 ± 19 85 ± 20 90 ± 23 88 ± 22 90 ± 20 

RVEF (%) 56 ± 6 57 ± 7 59 ± 8 57 ± 6 59 ± 6 

LAEDV (ml) 29 ± 14 29 ± 14 NA 29 ± 16 29 ± 11 

LAESV (ml) 67 ± 21 67 ± 21 NA 67 ± 23 67 ± 19 

LASV (ml) 39 ± 11 40 ± 11 NA 39 ± 11 38 ± 11 

LAEF (%) 59 ± 9 59 ± 8 NA 58 ± 10 58 ± 10 

RAEDV (ml) 46 ± 19 46 ± 18 NA 49 ± 21 45 ± 15 

RAESV (ml) 79 ± 26 79 ± 26 NA 82 ± 28 74 ± 19 

RASV (ml) 33 ± 11 33 ± 13 NA 34 ± 13 31 ± 11 

RAEF (%) 42 ± 11 42 ± 10 NA 41 ± 11 41 ± 10 
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Table 7 

Example comparison of cardiac function on large-scale 

datasets using automatically derived clinical indexes of 

1600 subjects. Illustration of cardiac remodelling on 

healthy subjects vs subjects with myocardial infarction 

(MI). 

Healthy MI p -value 

LVEDV (ml) 143 ± 31 157 ± 32 < 0.001 

LVESV (ml) 59 ± 17 67 ± 22 < 0.001 

LVM (g) 89 ± 21 102 ± 21 < 0.001 

RVEDV (ml) 150 ± 35 163 ± 32 < 0.001 

RVESV (ml) 62 ± 20 67 ± 18 < 0.001 

LAEDV (ml) 29 ± 12 38 ± 16 < 0.001 

LAESV (ml) 67 ± 20 82 ± 24 < 0.001 

RAEDV (ml) 46 ± 13 49 ± 17 < 0.001 

RAESV (ml) 76 ± 20 79 ± 25 = 0.108 
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anual measurements computed by different expert human ob- 

ervers. We observe here that the relative differences for the two 

ubsets of 50 and 600 subjects matched well, and the difference 

ange was either very close or slightly larger, to the difference 

anges obtained by the different expert observers. Due to large 

ariations in the right ventricle appearance near the basal slices at 

he ES phase, the ventricular contours are more complex and thus 

ead to more ambiguous, inconsistent manual annotations amongst 

he human observers and consequently more difficult to segment 

ith automated segmentation methods. We also looked into the 

utomated values from a built-in automated segmentation soft- 

are of the scanner device (i.e. inlineVF D13A ), which was only 

vailable for the LV. Overall, A, B, and C performed substantially 

etter than inlineVF , achieving an improvement of nearly 45% for 

ll metrics. Note that these data were retrieved for every subject 

rom the central UKB database. 

Next, in Fig. 8 and 9 , we present Bland-Altman plots and 

orrelation plots of the main ventricular and atrial parameters 

omputed using our approach and the manual reference cover- 

ng 600 test subjects. The Bland-Altman plot is commonly used 

or analysing agreement and bias between two measurements. In 

ig. 8 , we have reported the mean difference (i.e. bias) and limits 

f agreement (LoA), i.e. ± 1.96 standard deviations from the mean. 
Table 6 

The difference in clinical measures between the automatic and manual segme

M: ground truth provided by manual segmentation ( Petersen et al., 2017a ). A

segmentation by Attar et al. (2019b) , Bai et al. (2018) , and our proposed MCS

Relative difference (%) 

O1 vs O2 O2 vs O3 O3 vs O1 A vs M B vs 

(n = 50) (n = 50) (n = 50) (n = 50) (n = 5

LVEDV 4.2 ± 3.1 6.3 ± 3.3 3.4 ± 2.2 4.2 ± 3.0 2.9 ±
LVESV 6.8 ± 7.5 12.5 ± 8.5 11.7 ± 5.1 10.2 ± 8.1 12.5 

LVM 4.4 ± 3.3 6.0 ± 3.7 6.7 ± 4.6 6.5 ± 4.1 8.0 ±
RVEDV 8.0 ± 5.0 4.2 ± 3.1 5.7 ± 3.6 7.3 ± 4.2 5.7 ±
RVESV 30.6 ± 15.5 10.9 ± 8.3 16.9 ± 9.2 22.0 ± 8.4 29.8 

LAEDV 13.3 ± 9.8 11.0 ± 7.8 7.8 ± 5.3 NA 13.1 

LAESV 6.6 ± 5.4 7.3 ± 5.6 6.0 ± 5.0 NA 7.1 ±
RAEDV 6.5 ± 7.6 8.0 ± 4.9 8.4 ± 5.7 NA 12.1 

RAESV 4.7 ± 6.4 5.2 ± 6.4 4.9 ± 4.3 NA 7.7 ±

11 
he Bland-Altman plots show strong agreement and a mean differ- 

nce line at nearly zero, suggesting that the clinical indexes esti- 

ated using our approach have little bias. 

Fig. 9 presents correlation plots comparing the manual and au- 

omated methods, for different cardiac function indexes. The cor- 

elation coefficient (corr) measures the strength of the relationship 

etween two sets of observations. The strength and direction of the 

elationship indicate the predictive power of our framework. Coef- 

cients for ventricle measurements, such as LVEDV, LVESV, LVM, 

VEDV, RVESV ranged between 0.87 and 0.93, indicating a strong 

elationship between our approach and the manual delineations. 

he atrium measurements were slightly worse, ranged between 

.76 and 0.86. 

Furthermore, Fig. 10 , illustrates the Q-Q plots of the same in- 

exes on the test of 600 subjects, confirming the agreement on 

ifferent quantiles over all the indexes, where we see the quan- 

iles points roughly forming a straight line. 

.6. Sub-Cohort analysis 

The proposed approach enables us to perform large-scale 

opulation-wide analysis of CMR images, demonstrated thus far on 

ata from the UKB, with statistics on the most commonly used 

linical indexes derived from CMR exams. We believe, however, 

hat the power of population studies lies in the opportunity to de- 

ne and characterise human sub-populations, and investigate the 

atterns and trends across different sub-populations. 

Table 7 compares the ventricular and atrial volume and LV 

ass, derived from our approach, between two groups of sub- 

ects, namely, healthy subjects (n = 800), and subjects with myocar- 

ial infarction (MI) (n = 800). The table shows that MI is associated 

ith increased ventricular and atrial volume and LV mass with 
ntations, as well between measurements by different human observers. 

, B, and C represents the clinical indexes derived from the automated 

I-Net, respectively. Values indicate mean ± standard deviation. . 

M C vs M A vs M B vs M C vs M 

0) (n = 50) (n = 600) (n = 600) (n = 600) 

3.6 5.7 ± 4.5 4.7 ± 3.3 4.1 ± 3.5 7.4 ± 5.9 

± 11.2 12.1 ± 11.1 9.3 ± 9.4 9.5 ± 9.5 11.8 ± 10.1 

4.8 9.3 ± 7.1 8.3 ± 7.7 8.3 ± 7.6 11.3 ± 9.3 

4.3 11.3 ± 10.6 5.4 ± 4.7 5.6 ± 4.6 8.1 ± 6.4 

± 22.1 17.0 ± 6.9 12.4 ± 9.0 11.8 ± 12.2 12.5 ± 10.3 

± 10.0 6.1 ± 4.2 NA 13.1 ± 10.3 6.8 ± 6.9 

6.9 10.7 ± 8.6 NA 7.5 ± 6.8 11.6 ± 10.5 

± 14.3 8.4 ± 5.3 NA 10.0 ± 18.7 8.6 ± 7.3 

6.6 9.8 ± 10.1 NA 7.4 ± 6.9 11.8 ± 11.3 
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Fig. 8. Illustrating the repeatability of various cardiac functional indexes comparing the manual and automated analysis of 600 subjects from the UKB cohort; Bland-Altman 

plots for various cardiac functional indexes computed both manually and automatically in which manual segmentation was available. The solid horizontal lines denote the 

bias or the mean difference (Automatic - Manual), whereas the two dashed lines denote limits of agreement (LoA) i.e. ± 1.96 standard deviations from the mean.. 

12 
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Fig. 9. Illustrating the repeatability of various cardiac functional indexes comparing the manual and automated analysis of 600 subjects from the UKB cohort; Correlation 

plots for various cardiac functional indexes computed both manually and automatically in which manual segmentation was available. . 

13
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Fig. 10. Q-Q plots for various cardiac functional indexes computed both manually and automatically of 600 subjects.. 
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Table 8 

Comparison of shape prediction accuracy using 

only images (IMG) or images with different type 

of patient data (IMG+MD) in terms of D, M (mm) 

and H(mm) for LV endo-/epicardium and RV, LA, 

and RA on 600 UKB subjects. Bold indicates the 

best performing method.. 

IMG IMG + MD 

LV endo D 0.87 ± 0.05 0.88 ±0.05 

M 1.90 ± 0.81 1.86 ±0.79 

H 4.77 ± 1.77 4.74 ±1.75 

LV myo D 0.77 ± 0.09 0.78 ±0.08 

M 1.89 ± 0.85 1.86 ±0.82 

H 4.79 ± 1.78 4.75 ±1.76 

RV endo D 0.85 ± 0.06 0.85 ±0.06 

M 2.29 ± 0.95 2.27 ±0.95 

H 7.03 ±2.54 7.06 ± 2.64 

LA 2ch D 0.86 ± 0.08 0.86 ±0.07 

M 2.86 ± 1.21 2.87 ±1.21 

H 7.24 ± 2.95 7.19 ±2.83 

LA 4ch D 0.87 ± 0.07 0.88 ±0.07 

M 2.65 ± 1.12 2.65 ±1.11 

H 6.87 ± 2.53 6.82 ±2.47 

RA 4ch D 0.87 ± 0.06 0.88 ±0.06 

M 2.78 ±1.21 2.79 ± 1.23 

H 7.43 ± 3.06 7.34 ±2.99 
tatistical significance ( p-value < 0 . 001 ). This is consistent with 

revious findings, from manual analysis of a few dozens of sub- 

ects, where cardiac remodelling and enlargement happens in pa- 

ients with MI. Now we can confirm similar findings and per- 

orm similar studies, with the advantage of reliable automated 

nalysis on really large-scale datasets such as UKB, where, there 

s tons of data available to discover different associations and 

atterns. 

.7. Impact of patient data on shape accuracy 

Several studies ( Petersen et al. (2017b) , Gilbert et al. (2019) and 

ensen et al. (2019) , just to name a few) have shown the correla-

ion between baseline features (such as lifestyle and demograph- 

cs) and cardiac morphology and structure. 

In this subsection, we report the effect of including patient data 

as shown in Table 2 ) as additional information in our network. 

s expected, the use of patient data alongside image information 

mproves the network, leading to more accurate prediction in all 

ardiac substructures. 

Table 8 summarises the effect of including patient data on our 

ethod. The first column shows the accuracy metrics of D, M and 

when we only used the image data (labelled as IMG). The sec- 
14 
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Table 9 

Comparison of shape prediction accuracy using different set of images i.e. only SAX images, only LAX images, only three 

main SAX images (BMA: base, mid, and apex) or combination of SAX and LAX images in terms of D, M (mm) and H(mm) 

for LV endo-/epicardium and RV, LA, and RA on 600 UKB subjects. 

BMA SAX LAX BMA + LAX SAX + LAX 

LV endo D 0.85 ± 0.07 0.87 ± 0.05 0.78 ± 0.10 0.85 ± 0.07 0.88 ± 0.05 

M 2.62 ± 1.21 1.93 ± 0.83 3.45 ± 1.59 2.34 ± 1.11 1.86 ± 0.79 

H 5.83 ± 2.55 5.13 ± 1.97 7.98 ± 3.34 5.77 ± 2.42 4.74 ± 1.75 

LV myo D 0.72 ± 0.12 0.76 ± 0.09 0.59 ± 0.14 0.72 ± 0.11 0.78 ± 0.08 

M 2.45 ± 1.28 1.97 ± 0.95 3.56 ± 1.76 2.38 ± 1.21 1.86 ± 0.82 

H 6.01 ± 2.59 5.31 ± 1.98 8.25 ± 3.54 5.91 ± 2.57 4.75 ± 1.76 

RV endo D 0.83 ± 0.06 0.85 ± 0.06 0.72 ± 0.12 0.83 ± 0.07 0.85 ± 0.06 

M 2.77 ± 1.25 2.34 ± 0.98 4.53 ± 1.76 2.63 ± 1.06 2.27 ± 0.95 

H 8.01 ± 3.03 7.11 ± 2.78 12.5 ± 4.65 7.94 ± 2.98 7.06 ± 2.64 

LA 2ch D 0.82 ± 0.08 0.84 ± 0.08 0.78 ± 0.11 0.83 ± 0.08 0.86 ± 0.07 

M 3.62 ± 1.54 3.26 ± 1.47 4.42 ± 1.96 3.46 ± 1.53 2.87 ± 1.21 

H 8.96 ± 3.79 8.21 ± 3.81 10.3 ± 3.98 8.09 ± 3.39 7.19 ± 2.83 

LA 4ch D 0.83 ± 0.10 0.86 ± 0.08 0.80 ± 0.10 0.85 ± 0.08 0.88 ± 0.07 

M 3.43 ± 1.55 3.26 ± 1.47 4.30 ± 1.93 3.12 ± 1.29 2.65 ± 1.11 

H 8.48 ± 3.78 7.20 ± 2.51 10.4 ± 2.14 7.49 ± 2.60 6.82 ± 2.47 

RA 4ch D 0.84 ± 0.08 0.86 ± 0.08 0.80 ± 0.10 0.85 ± 0.09 0.88 ± 0.06 

M 3.57 ± 1.73 2.92 ± 1.44 4.78 ± 2.16 3.19 ± 1.61 2.79 ± 1.23 

H 9.09 ± 4.08 7.81 ± 3.58 11.2 ± 4.55 8.03 ± 3.96 7.34 ± 2.99 
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nd column report the accuracy of the predicted shapes using pa- 

ient data. We observe that using the patient data alongside the 

mage data had a positive impact on the shape accuracy, achieving 

mprovement compared with the first column ( p-value < 0 . 001 ), 

here we only use the image data. This can be attributed to the 

ombined use of image and patient data within a single network 

o directly predict shape parameters. It is intuitive that patient 

ata provides subject-specific prior information on the heart shape 

nd including this information is helpful particularly for shape pa- 

ameter estimation (B-value) that approximates the patient’ s nor- 

alised and centralised cardiac shape. 

.8. Contribution of slices on shape accuracy 

We further investigated generating accurate 3D cardiac shapes 

hen only a fraction of the image data is available. This was 

onsidered highly relevant to this study for the following rea- 

ons: (1) Despite all the advantages of CMR scans, there is an 

xplicit limitation of acquisition time. A routine CMR scan takes 

0–60 minutes, which is time-consuming and expensive, especially 

n environments where resources are strained and availability of 

can time is limited. Additionally, such long scan times may be 

nfeasible entirely, for certain niche groups of patients. Besides, 

MR often requires breath-holds, which could be not easy for 

any patients. Accordingly, it is essential to decrease the acqui- 

ition time, while maintaining the quality of subsequent quanti- 

ative analyses. Consequently, accurate cardiac quantification us- 

ng fewer CMR slices, would help facilitate the acceleration of 

MR scan acquisitions, improving patient comfort and reducing 

xpenses. (2) Typical artefacts found during CMR image acquisi- 

ions are missing slices, which result in missing contours from 

D segmentation methods (such as the previously mentioned by 

ai et al. (2018) ) across the heart and, as a result, sub-optimal es-

imation of volumetric indexes. Consequently, a 3D cardiac shape 

eneration framework that is robust to the presence of such varia- 

ions would be of significant clinical value as it would enable accu- 

ate quantification of cardiac functional indexes, despite the pres- 

nce of such artefacts. 

To address these issues, in addition to the default image data 

et where we use all the available SAX and LAX image slices, 

e used incomplete samples to train our network, and sub- 

equently, predicted complete cardiac shapes. We extended our 
15 
raining dataset by adding new cases where the image data in SAX 

nd LAX are not all present, i.e. retaining only 

• the three Basal, Mid and Apical slices (labelled as BMA) without 

any LAX slices, 
• SAX slices (on average ten SAX slices without any LAX slices), 

and 

• the three LAX view slices (two-, three and four-chamber view) 

without any SAX slices. 

Using this process, we generated three new samples, from every 

ample in the original dataset. To keep the network architecture, 

nput format, and structure consistent across all experiments, slices 

ere excluded during training by replacing them with an empty 

lice, i.e. with zero values for all pixels. 

Table 9 summarises the shape prediction accuracy of our ap- 

roach for all cardiac structures, compared with the manual de- 

ineations, where, we do not use all the available image data. As 

xpected, we observe that the most accurate results are obtained 

hen we use all the available image data, reported in the right- 

ost column of the table. 

The first column shows the accuracy metrics of different cardiac 

tructures when we only use Basal, Mid and Apical slices (BMA). 

e see the accuracy of our approach is satisfactory (average D of 

.85, 0.72, 0.83 for LV endo, LV myo and RV endo, and 0.83, 0.84 

or LA 4ch and RA 4ch) using three SAX slices that do not cover 

he atria. It is encouraging to see that the network can still predict 

he atrial shapes to a reasonable degree of accuracy based on the 

inimal cues available in the three SAX slices. 

The second column presents the results associated with the 

AX slices only. We see that the results become better in terms 

f both ventricles and atria segmentation accuracy when the net- 

ork has access to more image data. Note, on average the number 

f slices is at least three times higher than the BMA case, but the 

mprovement is about 2% on average. The third column shows the 

esults of segmentation when three LAX images are used, and we 

et much worse results for the ventricles and atria. 

We see the addition of the three LAX slices to the three BMA 

lices (labelled as BMA+LAX), results in higher accuracy compared 

ith BMA and LAX, as the visual cues exist to describe both ven- 

ricles and atria regions, covering the sagittal and transverse rep- 

esentation of the heart. 

Overall, we see the potential strength of this method to pro- 

uce accurate and high-resolution 3D meshes of cardiac shape us- 

ng only a fraction (about 23% to 46%) of image data. 
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. Discussion and conclusions 

In this study, we presented a fully automatic method capable 

f performing high-throughput end-to-end 3D cardiac MR image 

nalysis via the simultaneous use of images and patient data. We 

alidated our workflow on a reference cohort of 600 subjects for 

hich both manual delineations and reference functional indexes 

xist, and the full dataset with 40,0 0 0 subjects. We also presented 

he positive impact of the inclusion of patient data on the accu- 

acy of the predicted shapes. Furthermore, we showed that the 

roposed method achieves comparable results using just a fraction 

f image data, which supports the idea of accelerating the CMR 

can acquisition by capturing significantly fewer image slices. Note 

hat, although we also investigated the results of discarding the 

AX images as input and observed that the network can still pre- 

ict the atrial shapes to a reasonable degree of accuracy, presum- 

bly by scaling them with the ventricles, it may yield less satisfac- 

ory results for the patients who might have relative enlargement 

f their atria. As future work, we would like to increase the ro- 

ustness of our method to handle severe morphological variations 

ue to pathology and variable image quality, and extend its gen- 

ralisability to cope with other CMR sequences and image modal- 

ties. Specifically, to tackle inaccurate segmentation results on ex- 

eptional cases, the following directions can be considered. First, 

n adversarial discriminator can be introduced into the framework 

o classify whether the predicted shape masks are generated or 

eal and encourages the network to capture object structure im- 

licitly, which could be particularly beneficial for realistic shape re- 

onstruction. In addition, adversarial discriminator provides a pow- 

rful 3D shape descriptor, which learned without supervision, can 

e used to criticize the reconstruction quality (e.g., 3D heart shape 

eing plausible or not). Second, slice-wise quantification of cardiac 

orphological indices such as myocardial thickness could identify 

hether there is a smooth transition in the reconstructed shape 

asks from the adjacent slices. Large changes in these values in 

he segmentation results might indicate incorrect prediction. We 

oresee including 3D+t quality control methods to assess the 3D 

hape accuracy over the full cardiac cycle. In addition to increasing 

he robustness of our system, we would like to extend our analy- 

es to establish reference ranges for different sub-populations. Fur- 

hermore, future work could also look at modelling the relation- 

hip between cardiac morphology and function, and other avail- 

ble demographics, genetic, and omics data, which would help im- 

rove our understanding of disease progression, potentially leading 

o improved treatment planning and delivery. 
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