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Validating the assumptions of population adjustment:

application of multilevel networkmeta-regression to a

network of treatments for plaque psoriasis

Abstract

Background: Network meta-analysis (NMA) and indirect comparisons combine aggregate data
(AgD) from multiple studies on treatments of interest, but may give biased estimates if study
populations differ. Population adjustment methods such as multilevel network meta-regression
(ML-NMR) aim to reduce bias by adjusting for differences in study populations using individual
patient data (IPD) from one or more studies under the conditional constancy assumption. A
shared effect modifier assumption may also be necessary for identifiability. This paper aims
to demonstrate how the assumptions made by ML-NMR can be assessed in practice to obtain
reliable treatment effect estimates in a target population.
Methods: We apply ML-NMR to a network of evidence on treatments for plaque psoriasis with
a mix of IPD AgD trials reporting ordered categorical outcomes. Relative treatment effects are
estimated for each trial population and for three external target populations represented by
a registry and two cohort studies. We examine residual heterogeneity and inconsistency, and
relax the shared effect modifier assumption for each covariate in turn.
Results: Estimated population-average treatment effects were similar across study populations,
as differences in the distributions of effect modifiers were small. Better fit was achieved with
ML-NMR than NMA, and uncertainty was reduced by explaining within- and between-study
variation. We found little evidence that the conditional constancy or shared effect modifier
assumptions were invalid.
Conclusions: ML-NMR extends the NMA framework and addresses issues with previous
population adjustment approaches. It coherently synthesises evidence from IPD and AgD
studies in networks of any size whilst avoiding aggregation bias and non-collapsibility bias,
allows for key assumptions to be assessed or relaxed, and can produce estimates relevant to a
target population for decision-making.

Highlights

• Multilevel network meta-regression (ML-NMR) extends the network meta-analysis frame-
work to synthesise evidence from networks of studies providing individual patient data
or aggregate data whilst adjusting for differences in effect modifiers between studies
(population adjustment). We apply ML-NMR to a network of treatments for plaque
psoriasis with ordered categorical outcomes.

• We demonstrate for the first time how ML-NMR allows key assumptions to be assessed.
We check for violations of conditional constancy of relative effects (such as unobserved
effect modifiers) through residual heterogeneity and inconsistency, and the shared effect
modifier assumption by relaxing this for each covariate in turn.

• Crucially for decision-making, population-adjusted treatment effects can be produced
in any relevant target population. We produce population-average estimates for three
external target populations, represented by the PsoBest registry and the PROSPECT and
Chiricozzi 2019 cohort studies.



Introduction

Healthcare decision-making requires reliable estimates of relative treatment effects based, ideally,

on high-quality randomised controlled trials (RCTs) comparing the treatments of interest, in a

relevant target population. However, head-to-head RCTs between all relevant treatments are

seldom available. Instead, comparisons are conducted using standard indirect comparison or

network meta-analysis (NMA) methods using published aggregate data (AgD) from each study

[1–4]. These methods assume that any variables that interact with treatment (effect modifiers)

are balanced between study populations and that the study populations are representative

of the target population of interest, which may not always be the case. Recently, population

adjustment methods have been proposed that allow this assumption to be relaxed by adjusting

for differences in effect modifiers using available individual patient data (IPD) from one or more

studies [5–14].

We use the motivating example of a network of six active treatments plus placebo for

moderate-to-severe plaque psoriasis from a previous systematic review [15], shown in Figure 1.

IPD on outcomes and baseline covariates are available from four studies, and AgD consisting

of summary outcomes and baseline covariate summaries are available for the remaining five

studies (Table A.1). Outcomes of interest include success/failure to achieve at least 75%, 90%, or

100% improvement on the psoriasis area and severity index (PASI) scale at 12 weeks compared

to baseline, denoted PASI 75, PASI 90, and PASI 100 respectively.

Matching-adjusted indirect comparison (MAIC) [8, 10] and simulated treatment comparison

(STC) [9, 10] use reweighting or regression adjustment, respectively, to adjust the results of

an IPD study to the population of an AgD study and estimate a population-adjusted indirect

comparison. However, these methods were designed for two-study indirect comparisons (one

IPD and one AgD). Although extensions to indirect comparisons with more than one IPD or

AgD study have been proposed [16], these methods do not generalise easily to larger networks

of studies and treatments which are frequently encountered in practice [17]. Warren et al. [15]

previously analysed this network (Figure 1) using multiple MAIC analyses (following [16]),

comparing ixekizumab Q2W against secukinumab 300 mg via either etanercept or placebo,

and ustekinumab against secukinumab 300 mg via etanercept. However, these separate MAIC

analyses are not coherent, in the same way that performing multiple pairwise meta-analysis

does not ensure coherent estimates unlike those produced from a NMA [18]. Furthermore,
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Figure 1: Network of studies comparing treatments for moderate-to-severe plaque psoriasis.
PBO = placebo, IXE = ixekizumab, SEC = secukinumab, ETN = etanercept, UST = ustekinumab.
IXE and SEC were each investigated with two different dosing regimens.

these multiple analyses are not independent as they reuse the same data, and none of them use

all the available data (Table A.1). Crucially, unless further assumptions are made, MAIC and

STC are limited to producing estimates for the population of the AgD study which may not

match the target population for a decision [11, 12]. The AgD studies included in each of these

analyses also differ, meaning that each analysis produces results for different target populations

and thus are not directly compatible.

In the wider meta-analysis literature, several authors have considered combining both

IPD and AgD in network meta-regression models to support the estimation of effect modifier

interactions and increase statistical power and precision [5–7]. However, these methods simply

“plug in” mean covariate values for the aggregate studies which results in aggregation bias in

non-linear models [19]. Approaches that avoid this bias have been developed [20], but are only

applicable when all covariates are binary.

Multilevel network meta-regression (ML-NMR) has recently been proposed to address

many of the limitations with previous approaches [13, 14]. ML-NMR works by defining an
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individual-level regression model, which is fitted directly to the individuals in the IPD studies,

and incorporates summary outcomes from the AgD studies by integrating this individual-level

model over the covariate distribution in each AgD study. As a result, ML-NMR appropriately

synthesises networks of IPD and AgD studies of any size, adjusting for differences in effect

modifiers whilst avoiding aggregation bias and non-collapsibility bias. Crucially for decision-

making, ML-NMR can produce estimates of quantities of interest in any chosen target population,

such as population-average treatment effects or absolute event probabilities in the decision

target population. Furthermore, given sufficient data, ML-NMR may allow key assumptions

to be assessed or relaxed [13]. ML-NMR is an extension of the standard NMA framework,

reducing to standard AgD NMA when no covariates are adjusted for, and to full-IPD network

meta-regression (the “gold standard” approach) when IPD are available from every study [13].

The key assumption made by all population adjustment methods in connected networks

is that there are no unobserved effect modifiers, so that the relative effects are constant given

the effect modifiers adjusted for—the conditional constancy of relative effects assumption

[11, 12]. In sufficiently large networks this assumption may be assessed by checking for

residual heterogeneity and inconsistency [4, 13, 21]. ML-NMR has previously been applied to

a subset of the plaque psoriasis network consisting of only four studies, considering only the

PASI 75 outcome [13]. However, no tests for heterogeneity or inconsistency were conducted.

Furthermore, a shared effect modifier assumption [11] between ixekizumab and secukinumab

(meaning that the effect modifier interaction parameters were assumed common for these

treatments) was required to identify the model. Lastly, whilst higher PASI outcomes are more

clinically meaningful, low numbers of observed events for PASI 90 and PASI 100 pose difficulties

for estimation in stand-alone analyses of each PASI outcome.

In this paper, we demonstrate how the assumptions made by ML-NMR can be assessed in

practice to obtain reliable treatment effect estimates in a target population. We jointly analyse

the three PASI outcomes in an ordered categorical model, allowing information to be shared

between outcomes and aiding estimation for the higher PASI outcomes. We show how to assess

key assumptions using ML-NMR, including the conditional constancy of relative effects and

shared effect modifier assumptions, which are untestable assumptions when using methods

such as MAIC and STC. We produce estimates of population-average treatment effects and

response probabilities for target populations represented by each of the studies in the network

and for three external target populations.
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Example: plaque psoriasis

A previous systematic review found nine studies comparing ixekizumab (IXE) every two weeks

(Q2W) or four weeks (Q4W), secukinumab (SEC) at 150 mg dose or 300 mg dose, ustekinumab

(UST) at a weight-based dose, and etanercept (ETN), along with placebo (PBO) [15]. These

studies form the network in Figure 1 (summarised in Table A.1). IPD consisting of individual

outcomes and baseline covariates were available from four studies, and AgD consisting of

summary outcomes and baseline covariate summaries were extracted from published study

reports on the remaining five studies (Table A.1). Table A.2 summarises the baseline covariate

distributions in each of the nine studies. We jointly analyse the PASI 75, PASI 90, and PASI 100

outcomes at 12 weeks. We consider adjustments for duration of psoriasis, previous systemic

treatment, body surface area covered, weight, and psoriatic arthritis, which were considered

potential effect modifiers based on expert clinical opinion in previous analyses [13, 22]. In a

decision-making context such as health technology assessment, we typically require principled

selection of effect modifiers prior to analysis, either through expert opinion, systematic review,

or quantitative analyses of external evidence [11]. Trials are typically underpowered to detect

treatment-covariate interactions, and so selection based on post hoc criteria such as model fit,

estimated effect size, or uncertainty, may result in bias due to over-interpretation of chance

findings or omission of true effect modifiers. Sensitivity analyses may be performed, for example

to compare the best fitting model to the pre-specified analysis model.

To be relevant for decision-making, estimates must be produced for a decision target

population. Typically, the decision target population is not best represented by any of the

RCTs in the network; instead, such a target population may be chosen based on expert clinical

knowledge, or may be represented by a suitable registry or cohort study [11]. To illustrate, we

produce population-adjusted estimates for three external target populations (Table A.3) [23–26].

Methods

Phillippo et al. [13] introduce the general ML-NMR model, which we extend here for ordered

categorical outcomes following the approach taken for AgD NMA [4, 27].
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ML-NMR for ordered categorical outcomes

At the individual level, we have ordered categorical outcomes: < 75% reduction in PASI score,

≥ 75% and < 90% reduction, ≥ 90% and < 100% reduction, and 100% reduction. These data are

modelled using an ordered categorical likelihood, with the linear predictor for individual 𝑖 in

study 𝑗 receiving treatment 𝑘 given by

𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) = 𝜇𝑗 + 𝒙
T

𝑖 𝑗𝑘(𝜷1 + 𝜷2,𝑘) + 𝛾𝑘 , (1)

which includes study-specific intercepts 𝜇𝑗 , individual-level covariates 𝒙𝑖 𝑗𝑘 with main effects 𝜷1

and treatment-covariate interactions 𝜷2,𝑘 (corresponding to prognostic and effect modifying

terms respectively), and individual-level treatment effects 𝛾𝑘 (full details in Appendix A.1.1).

Consistency is assumed for both the individual-level treatment effects and the interactions [13].

We use the probit link function here for comparability with previous analyses, but the logit

would be another suitable choice.

At the aggregate level, outcomes are vectors of summary outcome counts in each category.

These summary data are given an ordered Multinomial likelihood, with average event proba-

bilities in each category obtained by integrating the individual-level model over the covariate

joint distribution in each arm of each AgD study. We calculate these integrals numerically using

Quasi-Monte Carlo integration [13] with 1000 integration points. To perform this integration

we require the covariate joint distributions in each of the AgD studies, however these are often

not directly available: typically only marginal covariate information (e.g. means and standard

deviations for continuous covariates, proportions for discrete covariates) is available from the

AgD studies. We discuss how the covariate joint distributions can be reconstructed under some

additional assumptions in the following section.

ML-NMR is typically implemented within a Bayesian framework. In this analysis, we place

vague N(0, 102) prior distributions on each of the model parameters, except for the latent ordered

cutpoints which are given improper uniform prior distributions U(−∞,+∞).

Using publishedmarginal covariate information

To derive the aggregate-level model for ML-NMR through integration, the covariate joint

distribution in each study is required. However, this is typically not available; instead, we

have published marginal summary statistics for each covariate. We therefore reconstruct the
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full joint distribution in each AgD study by making assumptions regarding the forms of the

marginal distributions and the correlation structure [13]. Simulation studies have shown that

these assumptions, even when incorrect, may have very little impact on the results in practice

[28].

In the plaque psoriasis analysis, marginal distributions for each covariate in the AgD studies

are chosen to match the reported summary statistics, based on theoretical properties and the

observed distributions in the IPD studies: weight and duration are given a Gamma distribution

to account for skewness, and body surface area as a percentage is given a scaled logit-Normal

distribution. Previous systemic treatment and psoriatic arthritis are binary covariates. The

correlation matrix for the covariates in the AgD studies is set to equal the weighted average of

the correlation matrices in the IPD studies.

Checkingmodel assumptions

The key assumption made by all population adjustment methods in connected networks is that

there are no unobserved effect modifiers, so that the relative effects are constant given the effect

modifiers adjusted for—the conditional constancy of relative effects assumption [11, 12]. This

assumption implies that there is no remaining heterogeneity or inconsistency after adjusting for

the given effect modifiers. In pairwise indirect comparisons this is an untestable assumption;

however, in larger networks it is possible to assess this assumption by checking for residual

heterogeneity and inconsistency [13], with techniques from standard AgD NMA [4, 21].

Assessing residual heterogeneity

We assess residual heterogeneity using a random effects ML-NMR model, where the linear

predictor 𝜂 𝑗𝑘(𝒙) in equation (1) is replaced by

𝜂 𝑗𝑘(𝒙) = 𝜇𝑗 + 𝒙
T(𝜷1 + 𝜷2,𝑘) + 𝛿 𝑗𝑘 (2a)

𝛿 𝑗𝑘 ∼ N(𝛾𝑘 , 𝜏
2) (2b)

cor(𝛿 𝑗𝑎 , 𝛿 𝑗𝑏) = 0.5 (2c)

where 𝛿 𝑗1 = 0. The study-specific relative effects 𝛿 𝑗𝑘 within each study are multivariate

Normal, with 0.5 correlations between non-treatment 1 arms under the assumption of common

heterogeneity variance 𝜏2 [2]. Two-arm studies against treatment 1 have a single univariate
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Normal random effect on the non-treatment 1 arm. We place a weakly-informative half-Normal

prior distribution half-N(0, 2.52) on the heterogeneity standard deviation 𝜏, which means that

there is 95% prior probability that 𝜏 lies between 0 and 5; 𝜏 = 5 corresponds to 95% of true

probit differences varying by ±10 between each study. Evidence of residual heterogeneity is

assessed by comparing model fit under the fixed and random effects models using the Deviance

Information Criterion (DIC) [29], and examining the posterior distribution of 𝜏.

Assessing residual inconsistency

We assess residual inconsistency using an unrelated mean effects (UME) ML-NMR model [13,

21], where the linear predictor 𝜂 𝑗𝑘(𝒙) in equation (1) is replaced by

𝜂 𝑗𝑘(𝒙) = 𝜇
(𝑡 𝑗1)

𝑗
+ 𝒙

T(𝜷1 + 𝜷2,𝑘) + 𝛾𝑡 𝑗1𝑘 , (3)

where 𝑡 𝑗1 is the treatment in arm 1 of study 𝑗 and we set 𝛾𝑘𝑘 = 0 for all 𝑘. We place

independent vague N(0, 102) prior distributions on each of the 𝛾𝑎𝑏 parameters, which now

represent independent and unrelated treatment contrasts (instead of imposing the consistency

equations). Under the UME model, the study baselines 𝜇
(𝑡 𝑗1)

𝑗
are now with respect to the

treatments 𝑡 𝑗1 in arm 1 of each study, rather than the network reference treatment 1. A random

effects UME model can also be fitted, replacing 𝛾𝑡 𝑗1𝑘 with 𝛿 𝑗𝑡 𝑗1𝑘 in equation (3) which have a

multivariate Normal structure analogous to that in equation (2) [13]. Evidence of residual

inconsistency is assessed by comparing overall model fit under the consistency model and the

UME inconsistency model using the DIC, and comparing the residual deviance contributions

from each data point under either model. If random effects models are fitted the heterogeneity

standard deviation 𝜏 should also be compared, because a reduction in estimated heterogeneity

under the inconsistency model can indicate the presence of inconsistency [21]. As Donegan et al.

[30] describe, inconsistency can also be present in the effect modifier interactions 𝜷2,𝑘 , which

may be assessed through a similar approach to the UME model by placing independent prior

distributions on the interactions on each contrast 𝜷2,𝑎𝑏 . However, there are insufficient data to

assess inconsistency in the interaction terms in this network.
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Assessing the shared effect modiőer assumption

Estimation of effect modifier interaction terms is data-intensive, requiring IPD or sufficiently

many AgD studies with different covariate distributions on each treatment [13]. In the plaque

psoriasis network we have only five AgD studies that include secukinumab arms, which is

not sufficient to simultaneously estimate independent interactions for every effect-modifying

covariate. Instead, we make the shared effect modifier assumption [11, 12] for ixekizumab and

secukinumab, which both act as interleukin-17 blockers, meaning that these treatments share

interaction terms and data requirements are shared across the class of treatments. That is, we

set 𝜷2,𝑘 = 𝜷2,IL−17 for each treatment 𝑘 in this class. We assess this assumption directly, one

covariate at a time, by splitting the common class interaction parameter for the covariate in

question into independent treatment-specific interactions, whilst maintaining the common class

interaction for the other covariates. Mathematically, for one covariate 𝑙∗ in turn we let 𝛽2,𝑘;𝑙∗ be

independent for each treatment 𝑘, whilst the remaining covariates 𝑙 retain the common class

coefficients 𝛽2,𝑘;𝑙 = 𝛽2,IL−17;𝑙 for each treatment 𝑘. We then compare the posterior distributions of

the interaction estimates from the independent interaction model to the corresponding common

interaction estimate from the model making the shared effect modifier assumption, and compare

overall model fit using the DIC. If residual heterogeneity or inconsistency are detected, then

these may be assessed again for the independent interaction models to determine whether an

invalid shared effect modifier assumption was contributing to heterogeneity or inconsistency.

Producing population-average estimates for populations of interest

Population-average estimates of quantities of interest to decision-making, such as average

treatment effects and average event probabilities, can be produced by averaging estimates of

individual-level quantities over the covariate joint distribution in the target population (see

details in Appendix A.1.2) [13]. For decision-making based on cost-effectiveness models, the

typical inputs are the population-average event probabilities for a cohort-based model (e.g.

a decision tree or Markov model) or individual event probabilities in the population for an

individual-based model (e.g. a discrete event simulation). The target population need not be

one of the studies in the network; indeed, it is more likely that it is best represented by a registry

or cohort study [11].

We produce estimates of population-adjusted average treatment effects in the three external
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target populations represented by the PsoBest registry [23, 24], and the PROSPECT [25] and

Chiricozzi 2019 [26] cohort studies. Following the process described in Appendix A.1.2, we

require only the covariate summaries reported in Table A.3. Chiricozzi 2019 is the most different

to the RCT populations, in patient age, bodyweight, disease severity, duration, and body

surface area involvement, but there is still substantial overlap with the RCTs in the network so

extrapolation is limited. In the absence of available data on covariate correlations in the external

target populations, we use the weighted average correlation matrix computed from the IPD

studies.

We also produce population-adjusted average event probabilities in the external target

populations. In addition to the covariate summaries, this requires information on the response

rates on one treatment (active or placebo) in the target population, to inform the baseline risk.

PASI 75 response counts on secukinumab 300 mg at 12 weeks are available from PROSPECT

and Chiricozzi 2019, from which we construct Beta distributions for the average PASI 75 event

probability on secukinumab 300 mg in each target population, Beta(1156, 1509 − 1165) and

Beta(243, 330−243) respectively, that serve as a reference against which the remaining population-

average event probabilities on each treatment in each of these external target populations are

produced (following Appendices A.1.2 and A.1.3). No information on event rates was available

from PsoBest.

Statistical software

All analyses were carried out in R version 4.0.2 [31], using the package multinma [32]. Models

are estimated in a Bayesian framework using Stan [33].

We fit the ML-NMR models described above, and for comparison we also fit standard AgD

NMA models with no covariate adjustment. For all models, we assess convergence using the

potential scale reduction factor 𝑅 for each parameter ensuring that 𝑅 < 1.01 [34], and check that

there are no divergent transitions [35]. Analysis code and data (including simulated IPD) are

available in the online supplementary material, and a tutorial-style walkthrough of the analysis

is available as a vignette in the multinma R package [32].
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Figure 2: Estimated population-average treatment effects (standardised mean differences) for
each treatment vs. placebo in the populations represented by each study in the network.

Results

ML-NMRmodel

Figure 2 and Table A.4 show the estimated population-average treatment effects for each

treatment compared to placebo in each study population. Since the probit link function was

used, these can be interpreted as standardised mean differences (SMDs) on the PASI scale. There

is little variation in the population-average treatment effects between populations; this is due to

the differences in effect modifier distributions between study populations (shown in Table A.2)

being small when combined with the estimated strength of the interactions (Table 1).

The estimated proportion of individuals in each study population achieving each PASI

outcome are shown in Figure 3, and listed in Tables A.5 to A.7.

We carried out sensitivity analyses removing covariates from the model (backward selection).

The best-fitting model based on DIC was a model omitting body surface area (DIC 8810.1,

residual deviance 8777.1). The estimated population-average treatment effects and event

probabilities under this model were very similar to the pre-specified analysis model.
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Figure 3: Estimated percentage of individuals achieving each PASI endpoint on each treatment,
in the populations represented by each study in the network. For interpretability, these are
given as inclusive probabilities (e.g. the probability of achieving 75% reduction or greater in
PASI score). The observed event proportions are calculated from the event counts and sample
sizes in each arm.
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Table 1: Estimated interactions for each treatment class and potential effect modifier, and
estimated individual-level treatment effects for an individual at the reference/centering values
of the covariates (18.2 years disease duration, 29.8% body surface area, 89.3 kg weight, no
previous systemic treatment or psoriatic arthritis), using the ML-NMR model. The shared effect
modifier assumption was made for ixekizumab and secukinumab, which are both interleukin-17
blockers, and so these treatments share interaction terms. Etanercept and ustekinumab were
treated as belonging to separate treatment classes (TNF𝛼 blocker and interleukin-12/23 blocker
respectively) and given independent interaction terms. All estimates are standardised mean
differences versus placebo, with 95% Credible Intervals.

Treatment class

TNF𝛼 blocker IL-17 blocker IL-12/23 blocker

Effect modifier interaction
Duration of psoriasis, per 10 years 0.17 (0.02, 0.32) 0.17 (0.02, 0.30) 0.12 (−0.08, 0.33)
Previous systemic use 0.11 (−0.27, 0.48) 0.13 (−0.21, 0.46) −0.01 (−0.69, 0.67)
Body surface area, per 10% 0.04 (−0.06, 0.15) 0.01 (−0.09, 0.11) 0.05 (−0.09, 0.20)
Weight, per 10 kg −0.09 (−0.17, −0.02) −0.05 (−0.12, 0.02) −0.04 (−0.14, 0.07)
Psoriatic arthritis 0.01 (−0.42, 0.49) 0.28 (−0.12, 0.71) 0.32 (−0.33, 1.02)

Reference individual treatment effect
ETN 1.61 (1.35, 1.87)
IXE Q2W 2.80 (2.55, 3.06)
IXE Q4W 2.63 (2.38, 2.90)
SEC 150 2.17 (1.91, 2.43)
SEC 300 2.58 (2.33, 2.84)
UST 2.21 (1.66, 2.76)

Assessing residual heterogeneity and inconsistency

Checking for residual heterogeneity using a RE ML-NMR model, the estimated heterogeneity

standard deviation is 0.09 (0.01, 0.23), which is small compared to the relative treatment effects.

Model fit statistics under each model are presented in Table 2. The DIC for the RE ML-NMR

model is very similar to the FE ML-NMR model (8815.0 and 8814.9, respectively), and we would

choose the more parsimonious fixed effect model based on DIC alone. Checking for residual

inconsistency using an UME ML-NMR model (with fixed effects), this has a DIC of 8817.2 which

is also very similar to the FE ML-NMR model assuming consistency. Plotting the residual

deviance contributions from the consistency and inconsistency models (Figure A.1) does not

suggest that any points fit better under either model. We conclude that there is no evidence

for substantial residual heterogeneity or inconsistency after population adjustment: we have

detected no failures in the assumptions for the FE ML-NMR model.

Results from fitting standard AgD NMA models (Appendix A.4) show little evidence for

between-study heterogeneity or inconsistency, yet despite this the ML-NMR model still has a

much lower DIC (Table 2). The ML-NMR model allows us to explain both between and within
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Table 2: Model fit statistics for each ML-NMR and NMA model considered (FE, RE, and UME).
𝑝𝐷 is a measure of the effective number of parameters. Residual deviance on 12,384 data
points. Estimates and 95% Credible Intervals for the heterogeneity standard deviation 𝜏 are
also presented for the RE models.

ML-NMR NMA

FE RE UME FE RE UME

Residual deviance 8778.3 8773.2 8779.4 8931.4 8925.0 8932.3
𝑝𝐷 36.3 41.8 37.8 16.8 22.4 17.7
DIC 8814.9 8815.0 8817.2 8948.2 8947.5 8950.1
𝜏 - 0.09 (0.01, 0.23) - - 0.09 (0.01, 0.24) -

study variation, resulting in better fit and reduced uncertainty in contrast estimates across the

study populations (Table A.4).

Assessing the shared effect modiőer assumption

We assess the shared effect modifier assumption, one covariate at a time, by splitting the common

interaction parameter for the covariate in question. Figure A.3 compares the posterior distribu-

tions of the independent interactions under each of the split models with the corresponding

common interaction from the model making the shared effect modifier assumption for all

covariates. In general, the independent interaction estimates are very similar to the common

interaction estimates. The only exception is for weight, where there is some suggestion that this

covariate may interact differently with the secukinumab treatment regimens to the ixekizumab

regimens. However, the credible intervals for the secukinumab interactions are wide and

overlap those for the ixekizumab regimens and the common interaction. In general, all of the

independent interaction estimates are much more uncertain for the secukinumab regimens than

for the ixekizumab regimens, as the secukinumab parameters are based solely on aggregate

data, and the ixekizumab data largely drive the interaction estimates in the common interaction

model. The DIC values (Table A.10) are higher for each of the independent interaction models

than the common interaction model, except for the independent weight interaction model where

the DIC values are nearly identical. Overall, there is some weak evidence that the shared effect

modifier assumption (for the class of interleukin-17 blockers) may be invalid for weight; we

consider this further in the discussion. Results from the ML-NMR model with independent

weight interactions are given in Appendix A.5, and are very similar to those for the model

making the shared effect modifier assumption for all covariates.
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Producing population-average estimates for external target populations of interest

Estimated population-adjusted average treatment effects in the three external target populations

are shown in Figure 4 and Table A.8. These are similar between the external target populations

and the RCTs in the network, again because the differences in effect modifier distributions

(Tables A.2 and A.3) are small when combined with the estimated strength of the interactions

(Table 1). However, the estimated population-average probabilities of achieving each PASI

outcome in the external target populations (Figure 5 and Table A.9) are lower than in the RCTs

in the network, since the observed proportions achieving PASI 75 on secukinumab 300 mg are

lower in the external target populations.

Figure 4: Estimated population-average treatment effects (standardised mean differences) for
each treatment vs. placebo in each external target population.

Figure 5: Estimated percentage of individuals achieving each PASI endpoint on each treatment,
in each external target population with information on response rates. For interpretability, these
are given as inclusive probabilities (e.g. the probability of achieving 75% reduction or greater in
PASI score).
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Discussion

In this paper, we have demonstrated an application of ML-NMR to synthesise PASI 75, 90, and

100 ordered categorical outcomes, whilst adjusting for variables considered to be potential effect

modifiers, from a network containing a mixture of IPD and AgD studies. The ML-NMR analysis

presented here also addresses several issues with previous MAIC analyses of this network

[15]. In particular, ML-NMR makes full use of all available data in one coherent analysis that

appropriately quantifies uncertainty (data are not reused), and estimated average treatment

effects and average response probabilities for each PASI outcome can be produced in any of the

included study populations or in an external target population, whichever is most relevant for

decision-making. Moreover, this analysis produces more precise estimates than the previous

MAIC analyses, and the 95% Credible Interval for the ixekizumab Q2W vs. secukinumab 300

relative effect (the focal comparison of the MAIC analyses) lies further from the null.

Synthesis of the three PASI outcomes together does require additional assumptions. These

are not central to the ML-NMR analyses presented here, and are described elsewhere [4].

All population adjustment methods, including ML-NMR, assume that all effect modifiers

have been suitably adjusted for so that the conditional constancy of relative effects assumption

holds [11]. For pairwise indirect comparisons, including MAIC and STC, this is an untestable

assumption. However, in larger networks, failures of conditional constancy of relative effects

may manifest as residual heterogeneity or inconsistency, which can be assessed using standard

techniques from AgD NMA. In this analysis, we used a random effects model and a (fixed

effect) unrelated mean effects model to check for residual heterogeneity and inconsistency

respectively, and concluded that there was no evidence of residual heterogeneity or inconsistency.

However, just as in standard AgD NMA, these techniques may have low power, and detection of

any unobserved effect modifiers relies on these being distributed differently at the aggregate

level between studies. Moreover, these methods are fundamentally “in-sample” checks for

heterogeneity and inconsistency—there may well be other omitted or unobserved effect modifiers

that differ between the studies in the network and an external target population. In a decision-

making context, this possibility should be considered when appraising the representativeness

of the studies to the decision target population. Whilst we assessed inconsistency using

the UME model, other inconsistency models such as node-splitting [13, 21] or design-by-

treatment interactions [36] may also be implemented within the ML-NMR framework. Currently,
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the multinma R package implements both UME and node-splitting models for assessing

inconsistency [32].

In this analysis, we relied on the shared effect modifier assumption within the class of

interleukin-17 blockers to support the estimation of effect modifier interaction terms. We

assessed this assumption, one covariate at a time, by fitting independent interactions for the

covariate in question. Exchangeable interactions within each treatment class could also be

considered [13]; however, this was not possible given the data available. Relaxing the shared

effect modifier assumption for multiple covariates at once is also a possibility, if sufficient data are

available. However, for the purposes of checking this assumption relaxing one covariate at a time

should be sufficient to highlight any violations. There was some weak evidence that the shared

effect modifier assumption might not be valid for weight, as there were some differences between

the independent interaction estimates and the common interaction estimate. However, there

was high uncertainty in the independent interaction estimates for the secukinumab regimens,

since these were estimated entirely from the five AgD studies, and model fit was unchanged. It

is likely that this approach to assessing the shared effect modifier assumption has low power,

particularly when data are lacking. There is also the possibility that these are chance findings

due to fitting multiple models. Nevertheless, the analyses that we propose allow the validity and

impact of this assumption to be investigated, even with these caveats, which was not previously

possible. In general, differences in estimated interactions may be due to genuinely different

interaction effects invalidating the shared effect modifier assumption, or due to an imbalance

in unobserved effect modifiers across the studies that are correlated with weight. The latter

leads to study-level confounding introducing bias into the interaction estimates (“ecological”

bias) [37], and is the reason why meta-analytic studies of effect modification typically split

interaction estimates into between-study interaction terms (which are susceptible to study-level

confounding) and within-study interaction terms (which are then expected to be unbiased)

[38, 39]. However, for the purposes of population adjustment we do not fit a split interaction

model, since we must assume that there are no unobserved effect modifiers in order to produce

population-adjusted estimates for a target population of interest. Nevertheless, it is possible to

fit ML-NMR models where the interaction terms are split in this manner (given sufficient data),

and this is an interesting avenue for further research.

When it is used, the shared effect modifier assumption is likely in many cases to be the most

challenging to assess, since it is typically used to identify the model when data are insufficient.
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However, even in cases where the shared effect modifier assumption is untestable, ML-NMR

still retains other notable benefits over MAIC and STC [13, 28]. In particular, unlike MAIC,

ML-NMR does not require full overlap between populations for stable estimation and remains

unbiased under the usual extrapolation assumptions. Unlike STC, ML-NMR appropriately

handles non-collapsible effect measures and does not combine incompatible (marginal and

conditional) estimates. Moreover, the assumptions required by ML-NMR are still weaker than

those for a standard NMA and indirect comparison, even when they are untestable. In an

indirect comparison where the shared effect modifier assumption does not hold, the estimates

from ML-NMR will only be unbiased and applicable within the AgD study population, as

is the case with MAIC and STC. Small networks with multiple treatment classes and limited

IPD are problematic for all current population adjustment methods, as there is likely to be

insufficient information to combine the estimates in a coherent manner. In this analysis, even

with a relatively small network (nine studies) we had sufficient data to relax and assess the key

assumptions, checking for residual heterogeneity and inconsistency and assessing the shared

effect modifier assumption.

When fitting network meta-regression models, as well as assuming consistency of the

relative treatment effects there is a similar assumption of consistency on the effect modifier

interactions. Donegan et al. [30] describe methods for assessing potential inconsistency in

the effect modifier interactions, analogous to the node-splitting approach [21] for assessing

inconsistency in treatment effects (described for ML-NMR models by Phillippo [14]). However,

this network has only one potential loop where inconsistency could be present (via ustekinumab)

since all other comparisons are made in multi-arm trials, and within this loop the data are

insufficient to relax consistency and estimate unrelated interactions.

For the purposes of decision-making when effect modification is present, it is crucial that

population-adjusted estimates are produced that are specific to the decision target population,

whichever population-adjustment method is used [11]. Ideally, the decision target population is

represented by a suitable registry or cohort study [11]; we have produced estimates relevant

to the populations represented by registries and a cohort study. Each of these external target

populations lay within the range of covariate values in the RCTs; when this is not the case, the

validity of extrapolation should be considered. General guidance on when and how to use

population-adjustment methods in a health technology assessment context is available [11].

When decisions are based on cost-effectiveness, the relevant inputs to the economic model are
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(for a binary or categorical outcome) typically estimated event probabilities on each treatment

in the target population. This requires information on the event probability on one treatment

in the target population, in addition to the covariate distribution. If this information is not

available, expert opinion or event probabilities from a similar population may be used.

When non-collapsible effect measures are used, for example odds ratios, hazard ratios, or

the probit scale used here, ML-NMR typically targets a different population-average treatment

effect estimand to MAIC (and indeed to standard AgD NMA based on event counts). The

population-average treatment effects typically produced by ML-NMR target a population-

average conditional estimand, the same as that targeted by a randomised controlled trial in

the target population using an analysis adjusting for baseline prognostic factors. On the other

hand, MAIC (and NMA of event counts) targets a (population-average) marginal estimand, the

same as that targeted by a randomised controlled trial in the target population using an analysis

without adjustment for baseline prognostic factors (or better from an adjusted analysis that

has been marginalised over the covariates [40]). ML-NMR can also produce estimates of these

marginal treatment effects, as we describe in Appendix A.1.2. Importantly, the marginal and

conditional estimands have different interpretations when the effect measure is non-collapsible,

and correspond to different decision questions. The population-average conditional treatment

effect is the average effect between randomly selected treated and untreated individuals with

the same covariates averaged over the distribution of covariates in the population [41], and

answers the decision question “Which treatment has the greatest effect, on average, in this

population?” The marginal population-average treatment effect is the average effect between

randomly selected treated and untreated individuals in the population, regardless of their

covariates [41], and answers the decision question “Which treatment minimises (or maximises)

the average event probability in this population?” In the absence of effect modification these

decision questions are aligned and always result in the same ranking of treatments, but this is

not necessarily the case when effect modification is present, because then different treatments

may be more effective for different individuals or subgroups within the population. Moreover,

the population-average conditional treatment effects depend only on the distribution of effect

modifying covariates, whereas the marginal treatment effects depend on the distributions of

baseline risk, prognostic and effect modifying covariates, and on PASI cut-point. It is widely

understood that when there is patient heterogeneity (including effect modification) health

economic analyses need to appropriately handle this by averaging net benefit over the population
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[42], for example by discrete event simulation [43, 44]. ML-NMR can produce estimates of both

the conditional and marginal estimands, and necessary quantities for decision models such as

average event probabilities or subgroup/individual event probabilities (see Appendix A.1.2).

Multilevel network meta-regression extends the standard NMA framework to incorporate

IPD and AgD studies in networks of any size, adjusting for differences in effect modifiers

between studies. It reduces to the “gold standard” IPD network meta-regression when IPD are

available from every study, and reduces to standard AgD NMA when no covariates are adjusted

for [13]. Moreover, we have demonstrated how techniques from the NMA literature can be used

to assess the underlying assumptions of ML-NMR models. ML-NMR also addresses issues

with previous methods such as MAIC, STC, and “plug in” meta-regression, since it synthesises

networks of any size whilst avoiding aggregation bias and non-collapsibility bias, and can

produce estimates of quantities of interest in any chosen target population. The R package

multinma facilitates the application of ML-NMR models, making these methods available to a

wider range of users [32].
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A Appendix

A.1 Statistical methods

A.1.1 ML-NMR for ordered categorical outcomes

With ordered categorical outcomes in 𝑀 categories, the IPD outcomes are given by 𝑦𝑖 𝑗𝑘 ∈

{1, . . . , 𝑀}. For the plaque psoriasis network, there are 𝑀 = 4 categories, and we let 𝑦𝑖 𝑗𝑘 ∈

{1, . . . , 4} correspond to less than 75% reduction in PASI score (i.e. failure to achieve PASI 75),

≥ 75% and < 90% reduction (achieving PASI 75 but not PASI 90), ≥ 90% and < 100% reduction

(achieving PASI 90 but not PASI 100), and 100% reduction (achieving PASI 100), respectively,

for an individual 𝑖 in study 𝑗 receiving treatment 𝑘. The individual-level model for ordered

categorical outcomes is given by

𝑦𝑖 𝑗𝑘 ∼ Categorical(𝑝𝑖 𝑗𝑘;1 , . . . , 𝑝𝑖 𝑗𝑘;𝑀) (A.1a)

𝑝𝑖 𝑗𝑘;𝑚 = Φ(𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) − 𝑐𝑚−1) − Φ(𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) − 𝑐𝑚) for 𝑚 = 1, . . . , 𝑀 (A.1b)

𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) = 𝜇𝑗 + 𝒙
T

𝑖 𝑗𝑘(𝜷1 + 𝜷2,𝑘) + 𝛾𝑘 (A.1c)

where the event probability in each category is 𝑝𝑖 𝑗𝑘;𝑚 and
∑4

𝑚=1 𝑝𝑖 𝑗𝑘,𝑚 = 1 for each 𝑖 , 𝑗 , 𝑘. The

category event probabilities are transformed onto the linear predictor scale using the probit link

function Φ−1(·) (the Normal inverse cumulative distribution function). We use the probit link

function here for comparability with previous analyses, but another suitable choice would be the

logit link function. The linear predictor for an individual on treatment 𝑘 in trial 𝑗 with covariate

vector 𝒙𝑖 𝑗𝑘 is 𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘). The parameters 𝜇𝑗 are study-specific baselines, 𝜷1 are coefficients for

prognostic variables, and 𝜷2,𝑘 are coefficients for effect modifiers specific to each treatment 𝑘.

The effect of treatment 𝑘 (at the individual level), 𝛾𝑘 , is defined with respect to the network

reference treatment 1, and we set 𝛾1 = 0 and 𝜷2,1 = 0. Some coefficients in 𝜷1 or 𝜷2,𝑘 may be set

to zero, if it is known that a particular covariate is not prognostic or effect modifying respectively.

The consistency equations on the individual-level treatment effects, where the relative effect of

treatment 𝑏 vs. 𝑎 is 𝛾𝑎𝑏 = 𝛾𝑏 − 𝛾𝑎 , are implicit in this model formulation, which is equivalent to

the widely-used “baseline shift” formulation of NMA models [4]. A similar set of consistency

equations are also implicit on the effect modifier interactions 𝜷2,𝑎𝑏 = 𝜷2,𝑏 − 𝜷2,𝑎 . The latent

1



cutpoints between categories 𝑐𝑚 are subject to the ordering constraints

𝑐0 < 𝑐1 < · · · < 𝑐𝑀 , (A.2)

and, we set 𝑐0 = −∞, 𝑐1 = 0, and 𝑐𝑀 = +∞. For the plaque psoriasis analysis, the latent cutpoint

𝑐1 corresponds to achieving PASI 75, 𝑐2 corresponds to achieving PASI 90, and 𝑐3 corresponds to

achieving PASI 100. A very similar model has previously been proposed for standard AgD NMA

of ordered count data [4, 27]; indeed, model (A.1) reduces to this when there are no covariates.

Priors for the latent cutpoints are most straightforward to specify on the differences between

adjacent cutpoints, for example 𝑐𝑚 − 𝑐𝑚−1 ∼ U(0, 𝑢𝑐) for 𝑚 = 2, . . . , 𝑀 − 1 with an appropriate

upper bound 𝑢𝑐 (as used by Dias et al. [4] with 𝑢𝑐 = 5), so that the ordering constraints (A.2)

are satisfied. When fitting the model in Stan, the ordering constraints (A.2) are guaranteed by

declaring the 𝑐𝑚 to be an ordered vector, so prior distributions can be placed directly on the

cutpoints if desired. In this analysis, we place improper uniform prior distributions U(−∞,+∞)

on 𝑐2 and 𝑐3, which are automatically truncated to satisfy the ordering constraints (A.2). We

also place vague N(0, 102) prior distributions on each of the parameters 𝜇𝑗 , 𝜷1, 𝜷2, 𝑗 , and 𝛾𝑘 .

Aggregate outcomes are vectors of summary outcome counts in each category 𝒚•𝑗𝑘 =

(𝑦•𝑗𝑘;1 , . . . , 𝑦•𝑗𝑘;𝑀)T. We work with these category counts in “exclusive” format, where individ-

uals are only counted in the highest category they achieve (as opposed to “inclusive” counts

where individuals are counted in every category up to and including the highest category

achieved; it is a straightforward matter of addition or subtraction to convert between formats).

These summary data are given a Multinomial likelihood, with the average event probabilities in

each category obtained by integrating the individual-level model (A.1b) over the covariate joint

distribution 𝑓𝑗𝑘(·) in each arm of each AgD study:

𝒚•𝑗𝑘 ∼ Multi(�̄� 𝑗𝑘;1 , . . . , �̄� 𝑗𝑘;𝑀 ; 𝑁𝑗𝑘) (A.3a)

�̄� 𝑗𝑘;𝑚 = �̄� 𝑗𝑘;𝑚 = �̄� 𝑗𝑘;𝑚−1 − �̄� 𝑗𝑘;𝑚 for 𝑚 = 1, . . . , 𝑀, where (A.3b)

�̄� 𝑗𝑘;𝑚 =

∫

𝔛

Φ(𝜂 𝑗𝑘(𝒙) − 𝑐𝑚) 𝑓𝑗𝑘(𝒙) 𝑑𝒙 (A.3c)

where �̄� 𝑗𝑘;𝑚 are the average event probabilities in each category and 𝑁𝑗𝑘 =
∑

𝑘 𝑦•𝑗𝑘;𝑚 is is the

sample size in each arm. We compute the integrals for �̄� 𝑗𝑘;𝑚 in (A.3c) using Quasi-Monte Carlo

integration [13] with �̃� = 1000 integration points �̃� 𝑗𝑘 drawn from joint distribution 𝑓𝑗𝑘(·) of the

2



covariates on each treatment 𝑘 in study 𝑗, so that

�̄� 𝑗𝑘;𝑚 ≃ �̃�−1
∑

Φ(𝜂 𝑗𝑘(�̃� 𝑗𝑘) − 𝑐𝑚).

Accounting for studies reporting a subset of categories

It is not uncommon for some studies to report only a subset of categories. These studies can be

incorporated at either the individual or aggregate level by modifying equations Equation (A.1)

or Equation (A.3), respectively, to involve the relevant latent cutpoints [4]. That is, given a

reported set of categories 𝑠1 < · · · < 𝑠𝑀𝑗 in study 𝑗, the individual-level event probabilities in

(A.1b) for the reported categories become

𝑝𝑖 𝑗𝑘;𝑠𝑚 = Φ(𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) − 𝑐𝑠𝑚−1
) − Φ(𝜂 𝑗𝑘(𝒙𝑖 𝑗𝑘) − 𝑐𝑠𝑚 ) for 𝑚 = 1, . . . , 𝑀 𝑗 .

Similarly at the aggregate level, the average event probabilities (A.3b) in each of the reported

categories become

�̄� 𝑗𝑘;𝑠𝑚 = �̄� 𝑗𝑘;𝑚 = �̄� 𝑗𝑘;𝑠𝑚−1
− �̄� 𝑗𝑘;𝑠𝑚 for 𝑚 = 1, . . . , 𝑀 𝑗 .

A.1.2 Producing population-average estimates for populations of interest

Population-average estimates of quantities of interest to decision-making, such as average

treatment effects and average event probabilities, can be produced by averaging estimates of

individual-level quantities over the covariate joint distribution in the target population [13].

For decision-making based on cost-effectiveness models, the typical inputs are the population-

average event probabilities for a cohort-based model (e.g. a decision tree or Markov model) or

individual event probabilities for an individual-based model (e.g. a discrete event simulation).

The target population need not be one of the studies in the network; indeed, it is more likely

represented by a registry or cohort study [11].

To estimate the proportion of individuals achieving each PASI endpoint in a given population,

we first note that the probability of an individual in population𝑃 with covariate values 𝒙 achieving

PASI endpoint 𝑚 or greater is

𝑞𝑘;𝑚(𝑃)(𝒙) = Φ
(
𝜇(𝑃) + 𝒙

T(𝜷1 + 𝜷2,𝑘) + 𝛾𝑘 − 𝑐𝑚
)
, (A.4)
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where 𝑚 = 1 corresponds to PASI 75, 𝑚 = 2 to PASI 90, and 𝑚 = 3 to PASI 100; 𝜇(𝑃) is the baseline

probit probability of achieving PASI 75 in population 𝑃. A distribution for 𝜇(𝑃) is required,

which may be estimated from external data on the population 𝑃. Appendix A.1.3 describes

techniques for deriving a distribution for 𝜇(𝑃) in some common evidence scenarios for baseline

response. Here, we produce estimates for each of the observed study populations and simply

use the intercepts 𝜇𝑗 estimated in the model. We then average (A.4) over the covariate joint

distribution 𝑓(𝑃)(·) in population 𝑃. This may be performed in general by

�̄�𝑘;𝑚(𝑃) = 𝑁−1

𝑁∑

𝑖=1

𝑞𝑘;𝑚(𝑃)(𝒙𝑖(𝑃)), (A.5)

where 𝒙𝑖(𝑃) are 𝑁 samples from 𝑓(𝑃)(·). For example, 𝒙𝑖(𝑃) may be 𝑁(𝑃) covariate values

of individuals in a large representative sample from the population 𝑃, or these may be �̃�

integration points if the joint covariate distribution in the population has been constructed

from summary information or from a small sample of IPD (following section “Using published

marginal covariate information”).

For quantities on the linear predictor scale such as population-average treatment effects,

averaging over the joint covariate distribution is equivalent to “plugging-in” mean covariate

values from the population of interest. The population-average treatment effect between

treatments 𝑎 and 𝑏 in population 𝑃 is estimated using

𝑑𝑎𝑏(𝑃) = �̄�
T

(𝑃)
(𝜷2,𝑏 − 𝜷2,𝑎) + 𝛾𝑏 − 𝛾𝑎 , (A.6)

where �̄�(𝑃) is the vector of mean covariate values in population 𝑃.

The population-average treatment effects 𝑑𝑎𝑏(𝑃) produced by equation (A.6) are population-

average conditional treatment effects, the average effect between randomly selected treated and

untreated individuals with the same covariates in the population. On the other hand, MAIC

targets the (population-average) marginal treatment effect, the average effect between randomly

selected treated and untreated individuals in the population, regardless of their covariates.

ML-NMR can also produce estimates of these marginal treatment effects, as

Δ𝑎𝑏;𝑚(𝑃) = Φ−1
(
�̄�𝑏;𝑚(𝑃)

)
− Φ−1

(
�̄�𝑎;𝑚(𝑃)

)
, (A.7)

for any two treatments 𝑏 and 𝑎 in population 𝑃 for outcome category 𝑚, where �̄�𝑘;𝑚(𝑃) are
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estimated using equation (A.5). Analogous approaches can be used to express marginal effects

in terms of risk differences or risk ratios for interpretation. Due to non-collapsibility, Δ𝑎𝑏;𝑚(𝑃)

will differ from 𝑑𝑎𝑏(𝑃), and—like the average category event probabilities �̄�𝑘;𝑚(𝑃)—will also differ

by the distributions of baseline event probabilities and prognostic (as well as effect-modifying)

variables between populations, and between categories. Moreover, rankings based on the

marginal effects Δ𝑎𝑏;𝑚(𝑃) (or equivalently on the average event probabilities �̄�𝑘;𝑚(𝑃)) may differ

from those based on the population-average conditional effects 𝑑𝑎𝑏(𝑃) when there is effect

modification, because the estimands correspond to different decision questions. For decision-

making based on cost-effectiveness models, the typical inputs are the population-average event

probabilities �̄�𝑘;𝑚(𝑃) for a cohort-based model (e.g. a decision tree or Markov model) or individual

event probabilities 𝑞𝑘;𝑚(𝑃)(𝒙) for an individual-based model (e.g. a discrete event simulation).

A.1.3 Transforming information on baseline response

As described in Appendix A.1.2, to produce estimates of quantities of interest such as predicted

probabilities of response we require a distribution for the baseline response probit probability

𝜇(𝑃) in the target population 𝑃. For ML-NMR models the interpretation of 𝜇(𝑃) is the probit

probability of achieving the lowest response category (PASI 75) on the network reference

treatment 1, for an individual in population 𝑃 at the reference value of the covariates. However,

we may not have information on baseline response in this format. Here we describe some simple

transformations for obtaining the baseline response information in the required format.

For example, if we have baseline response information as a distribution for 𝜇
(𝑘)

(𝑃);𝑚
the probit

probability of response for an individual in 𝑃 on treatment 𝑘 in response category 𝑚 at the

reference level of the covariates, we can recover 𝜇(𝑃) from the relation 𝜇(𝑃) = 𝜇
(𝑘)

(𝑃);𝑚
− 𝛾𝑘 + 𝑐𝑚 .

This calculation can be performed within the ML-NMR model code at the time of fitting, or

afterwards using posterior samples of 𝛾𝑘 and 𝑐𝑚 from the fitted model and a sample (of the

same size) from the distribution of 𝜇
(𝑘)

(𝑃);𝑚
.

Moreover, it is perhaps more usual to have information on the baseline response probability

at the population level, say the average response probability on treatment 𝑘 in response category

𝑚 in the population, �̄�𝑘;𝑚(𝑃). We can obtain a sample of the distribution for 𝜇(𝑃) from a sample

of the distribution for �̄�𝑘;𝑚(𝑃) by solving equation (A.5) for 𝜇(𝑃). This can be performed using

numerical optimisation, either within the ML-NMR model code at the time of fitting or using

posterior samples from the model parameters and a sample of the same length for �̄�𝑘;𝑚(𝑃), solving

5



(A.5) at every sample. By definition any link function (including the probit and logit) is smooth

and monotonic, so we have a well-behaved optimisation problem with a unique solution.
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A.2 Details of included studies and target populations
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Table A.1: Structure of studies and treatments included in the network; • indicates treatment arms included in studies from which IPD were
available, ◦ indicates treatment arms included in studies from which AgD were available.

CLEAR ERASURE FEATURE FIXTURE IXORA-S JUNCTURE UNCOVER-1 UNCOVER-2 UNCOVER-3

Placebo · ◦ ◦ ◦ · ◦ • • •

Etanercept · · · ◦ · · · • •

Ixekizumab Q2W · · · · • · • • •

Ixekizumab Q4W · · · · · · • • •

Secukinumab 150 mg · ◦ ◦ ◦ · ◦ · · ·

Secukinumab 300 mg ◦ ◦ ◦ ◦ · ◦ · · ·

Ustekinumab ◦ · · · • · · · ·

2



Table A.2: Baseline covariate summaries for each study. Reported sample size for UNCOVER-2 and 3 after removing two individuals from each
study with missing weight, and one individual from IXORA-S with missing body surface area. Statistics are mean (SD) unless otherwise specified.
* Covariate considered a potential effect modifier, to be included in population adjustment.

CLEAR ERASURE FEATURE FIXTURE IXORA-S JUNCTURE UNCOVER-1 UNCOVER-2 UNCOVER-3
(N = 676) (N = 738) (N = 177) (N = 1306) (N = 259) (N = 182) (N = 1296) (N = 1219) (N = 1339)

Age, years 44.9 (13.8) 45.1 (13.1) 45.9 (13.9) 44.5 (12.9) 43.7 (12.8) 44.7 (13.8) 45.7 (12.9) 45.0 (13.0) 45.7 (13.1)
* Body surface area, per cent 32.3 (17.3) 31.9 (18.1) 32.0 (17.3) 34.4 (18.9) 29.1 (17.0) 27.4 (14.7) 27.7 (17.3) 26.0 (16.5) 28.3 (17.1)
* Duration of psoriasis, years 17.8 (12.1) 17.4 (11.8) 19.5 (13.0) 16.5 (12.0) 18.0 (11.8) 20.5 (13.4) 19.6 (11.9) 18.7 (12.5) 18.2 (12.2)

Baseline PASI score 21.6 (8.3) 22.1 (9.4) 20.8 (8.2) 23.7 (10.2) 21.3 (8.5) 20.1 (7.3) 20.1 (8.0) 19.6 (7.2) 20.9 (8.2)
* Previous systemic treatment (%) 67.5 63.0 67.2 64.0 92.3 55.5 71.3 64.2 57.1
* Psoriatic arthritis (%) 18.2 23.2 16.4 14.7 14.7 23.1 26.3 23.6 20.5

Male (%) 71.2 69.0 66.1 71.1 67.2 68.7 68.1 67.0 68.2
* Weight, kg 87.3 (21.0) 88.5 (23.8) 91.6 (24.4) 83.3 (20.8) 87.7 (22.3) 91.6 (25.3) 92.2 (23.8) 91.6 (22.2) 91.2 (23.5)

3



Table A.3: Covariate summaries for each external target population. Statistics are mean (SD)
unless otherwise specified.
* Covariate considered a potential effect modifier, to be included in population adjustment.

Chiricozzi 2019 PROSPECT PsoBest
(N = 330) (N = 1509) (N = 2556)

Age, years 51.9 (14.6) 48.1 (13.7) 47.4 (14.1)
Baseline PASI score 16.6 (8.2) 17.7 (12.5) 14.7 (9.7)

* Body surface area, per cent 23.0 (16.8) 18.7 (18.4) 24.0 (20.5)
* Duration of psoriasis, years 16.9 (10.8) 19.6 (13.5) 18.2 (14.1)

Male (%) 68.2 62.4 60.1
* Previous systemic treatment (%) 90.6 91.0 54.0
* Psoriatic arthritis (%) 21.5 20.2 20.7
* Weight, kg 78.3 (15.9) 87.5 (20.3) 85.0 (19.1)

A.3 Additional results őgures and tables
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Table A.4: Estimated population-average treatment effects (standardised mean differences) and 95% Credible Intervals for each treatment compared
to placebo, plus selected focal comparisons of interest between licensed dose regimens, in each study population using the ML-NMR model and for
the FE NMA.

ML-NMR study population

Contrast CLEAR ERASURE FEATURE FIXTURE IXORA-S JUNCTURE UNCOVER-1 UNCOVER-2 UNCOVER-3 FE NMA

ETN vs. PBO 1.71 1.68 1.69 1.73 1.71 1.68 1.67 1.65 1.65 1.61

(1.55, 1.87) (1.53, 1.84) (1.53, 1.87) (1.56, 1.90) (1.52, 1.93) (1.51, 1.85) (1.50, 1.86) (1.49, 1.82) (1.49, 1.81) (1.47, 1.74)

IXE Q2W vs. PBO 2.95 2.94 2.95 2.93 2.97 2.96 2.98 2.95 2.92 2.86

(2.78, 3.11) (2.78, 3.10) (2.78, 3.12) (2.77, 3.11) (2.77, 3.17) (2.79, 3.13) (2.80, 3.15) (2.78, 3.11) (2.77, 3.08) (2.73, 3.00)

IXE Q4W vs. PBO 2.78 2.77 2.78 2.76 2.80 2.79 2.81 2.78 2.75 2.68

(2.61, 2.94) (2.61, 2.93) (2.61, 2.96) (2.59, 2.94) (2.60, 3.00) (2.63, 2.97) (2.64, 2.98) (2.62, 2.94) (2.60, 2.91) (2.55, 2.83)

SEC 150 vs. PBO 2.31 2.31 2.31 2.30 2.33 2.33 2.34 2.31 2.29 2.18

(2.13, 2.49) (2.13, 2.48) (2.13, 2.51) (2.13, 2.48) (2.12, 2.56) (2.14, 2.53) (2.15, 2.55) (2.12, 2.51) (2.11, 2.47) (2.02, 2.33)

SEC 300 vs. PBO 2.72 2.72 2.72 2.71 2.74 2.74 2.75 2.72 2.70 2.58

(2.55, 2.90) (2.54, 2.89) (2.54, 2.91) (2.53, 2.88) (2.53, 2.96) (2.55, 2.93) (2.56, 2.95) (2.54, 2.91) (2.52, 2.87) (2.43, 2.73)

UST vs. PBO 2.28 2.28 2.28 2.28 2.25 2.28 2.28 2.26 2.26 2.14

(2.05, 2.50) (2.05, 2.51) (2.04, 2.51) (2.05, 2.51) (2.00, 2.52) (2.01, 2.56) (2.04, 2.53) (2.01, 2.50) (2.01, 2.51) (1.95, 2.34)

SEC 300 vs. IXE Q2W −0.22 −0.22 −0.22 −0.22 −0.22 −0.22 −0.22 −0.22 −0.22 −0.28

(−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07) (−0.43, −0.14)

UST vs. IXE Q2W −0.67 −0.66 −0.67 −0.66 −0.72 −0.68 −0.69 −0.69 −0.67 −0.72

(−0.86, −0.47) (−0.87, −0.45) (−0.87, −0.47) (−0.86, −0.44) (−0.92, −0.52) (−0.92, −0.43) (−0.89, −0.49) (−0.90, −0.47) (−0.90, −0.43) (−0.90, −0.54)

UST vs. SEC 300 −0.44 −0.43 −0.45 −0.43 −0.49 −0.45 −0.47 −0.46 −0.44 −0.44

(−0.60, −0.28) (−0.61, −0.26) (−0.61, −0.28) (−0.60, −0.26) (−0.69, −0.30) (−0.67, −0.24) (−0.64, −0.29) (−0.65, −0.28) (−0.64, −0.24) (−0.58, −0.29)



Table A.5: Estimated proportion of individuals achieving PASI 75 on each treatment in each study population, along with 95% Credible Intervals,
using ML-NMR combining information from all PASI endpoints. For interpretability, these are given as inclusive probabilities (i.e. the probability of
achieving 75% reduction or greater in PASI score).

Treatment

Study population Placebo Etanercept Ixekizumab Q2W Ixekizumab Q4W Secukinumab 150 mg Secukinumab 300 mg Ustekinumab

CLEAR 8.47 59.64 92.34 89.73 79.60 88.89 78.84

(5.95, 11.53) (53.03, 66.12) (89.19, 94.81) (85.76, 92.94) (74.62, 84.04) (86.17, 91.14) (75.08, 82.45)

ERASURE 4.33 45.33 86.13 82.25 68.73 80.99 67.07

(3.06, 5.80) (39.56, 51.02) (82.12, 89.57) (77.65, 86.39) (64.94, 72.36) (77.76, 84.04) (59.89, 73.89)

FEATURE 4.29 45.28 85.62 81.67 68.00 80.40 66.74

(2.57, 6.60) (37.14, 53.67) (79.68, 90.57) (74.92, 87.76) (60.76, 74.79) (74.64, 85.59) (57.24, 75.41)

FIXTURE 3.74 44.55 84.83 80.70 66.53 79.35 64.64

(2.67, 5.06) (40.21, 48.91) (80.96, 88.15) (76.17, 84.69) (62.14, 70.64) (75.89, 82.48) (57.70, 71.31)

IXORA-S 4.95 49.44 87.22 83.48 70.22 82.25 70.62

(2.89, 7.64) (41.85, 56.96) (82.47, 91.10) (77.67, 88.53) (62.25, 77.65) (76.80, 87.00) (63.16, 77.16)

JUNCTURE 4.33 44.66 85.67 81.74 68.17 80.47 67.21

(2.57, 6.61) (35.96, 53.02) (79.63, 90.52) (74.79, 87.62) (60.70, 74.91) (74.35, 85.73) (57.73, 75.97)

UNCOVER-1 4.72 46.42 86.91 83.16 69.87 81.85 69.50

(3.49, 6.10) (41.95, 50.89) (84.11, 89.36) (80.05, 86.03) (63.96, 75.59) (77.27, 86.11) (61.95, 76.65)

UNCOVER-2 4.42 44.31 85.86 81.91 68.09 80.53 67.52

(3.22, 5.80) (40.63, 47.88) (83.27, 88.24) (78.93, 84.64) (62.21, 73.71) (75.95, 84.80) (59.62, 74.86)

UNCOVER-3 5.93 50.08 88.78 85.40 73.02 84.20 71.92

(4.39, 7.63) (46.73, 53.43) (86.48, 90.74) (82.77, 87.69) (67.56, 78.07) (79.88, 87.80) (64.72, 78.50)
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Table A.6: Estimated proportion of individuals achieving PASI 90 on each treatment in each study population, along with 95% Credible Intervals,
using ML-NMR combining information from all PASI endpoints. For interpretability, these are given as inclusive probabilities (i.e. the probability of
achieving 90% reduction or greater in PASI score).

Treatment

Study population Placebo Etanercept Ixekizumab Q2W Ixekizumab Q4W Secukinumab 150 mg Secukinumab 300 mg Ustekinumab

CLEAR 2.12 34.21 78.14 73.06 56.94 71.46 55.22

(1.33, 3.18) (28.25, 40.56) (72.34, 83.22) (66.39, 79.06) (50.47, 63.19) (67.09, 75.38) (50.31, 60.26)

ERASURE 0.89 22.28 66.93 60.90 43.58 59.02 41.19

(0.57, 1.30) (18.09, 26.76) (61.04, 72.61) (54.56, 66.97) (39.41, 47.83) (54.65, 63.32) (33.83, 48.92)

FEATURE 0.89 22.33 66.19 60.14 42.86 58.26 40.96

(0.46, 1.53) (16.41, 29.05) (57.53, 74.37) (51.10, 69.24) (35.44, 50.47) (50.66, 65.80) (31.41, 50.83)

FIXTURE 0.74 21.46 64.68 58.49 41.05 56.56 38.47

(0.47, 1.09) (18.23, 24.87) (58.93, 70.04) (52.43, 64.39) (36.23, 45.98) (51.72, 61.19) (31.51, 45.57)

IXORA-S 1.06 25.38 68.48 62.47 45.02 60.59 45.06

(0.52, 1.86) (19.53, 31.81) (60.76, 75.38) (53.87, 70.27) (36.32, 53.96) (52.72, 67.93) (36.97, 53.05)

JUNCTURE 0.90 21.94 66.37 60.35 43.13 58.47 41.54

(0.45, 1.56) (15.77, 28.57) (57.62, 74.46) (51.06, 69.28) (35.30, 50.86) (50.43, 66.13) (31.83, 51.58)

UNCOVER-1 1.01 23.13 68.16 62.19 44.89 60.28 43.90

(0.68, 1.41) (19.79, 26.71) (64.37, 71.78) (58.39, 66.16) (38.55, 51.55) (54.13, 66.41) (35.98, 52.26)

UNCOVER-2 0.92 21.33 66.33 60.23 42.80 58.29 41.61

(0.60, 1.32) (18.63, 24.12) (62.83, 69.87) (56.40, 63.94) (36.63, 49.12) (52.15, 64.49) (33.60, 50.02)

UNCOVER-3 1.34 25.86 71.41 65.68 48.57 63.82 46.67

(0.89, 1.88) (23.12, 28.66) (67.93, 74.50) (61.91, 69.08) (42.24, 54.84) (57.61, 69.50) (38.76, 54.91)
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Table A.7: Estimated proportion of individuals achieving PASI 100 on each treatment in each study population, along with 95% Credible Intervals,
using ML-NMR combining information from all PASI endpoints.

Treatment

Study population Placebo Etanercept Ixekizumab Q2W Ixekizumab Q4W Secukinumab 150 mg Secukinumab 300 mg Ustekinumab

CLEAR 0.23 11.40 49.15 42.73 26.63 40.78 24.53

(0.12, 0.40) (8.41, 14.97) (41.88, 56.31) (35.44, 50.13) (21.43, 32.19) (36.21, 45.46) (20.72, 28.75)

ERASURE 0.08 5.99 36.09 30.25 16.93 28.52 14.98

(0.04, 0.13) (4.30, 7.90) (30.24, 42.08) (24.70, 36.00) (14.00, 20.09) (24.52, 32.58) (10.79, 19.85)

FEATURE 0.08 6.05 35.43 29.65 16.52 27.93 14.93

(0.03, 0.15) (3.77, 9.00) (27.29, 44.31) (22.18, 38.24) (11.94, 21.70) (21.69, 34.75) (9.66, 21.34)

FIXTURE 0.06 5.56 33.65 27.96 15.26 26.30 13.30

(0.03, 0.10) (4.28, 7.03) (28.16, 39.23) (22.82, 33.41) (12.21, 18.76) (22.09, 30.84) (9.66, 17.54)

IXORA-S 0.09 7.20 37.35 31.37 17.67 29.61 17.31

(0.04, 0.19) (4.76, 10.18) (29.72, 45.30) (23.92, 39.42) (12.30, 24.12) (23.08, 36.81) (12.42, 22.81)

JUNCTURE 0.08 5.93 35.71 29.93 16.76 28.22 15.32

(0.03, 0.15) (3.60, 8.82) (27.15, 44.62) (22.14, 38.40) (11.79, 22.24) (21.58, 35.30) (9.94, 21.93)

UNCOVER-1 0.09 6.32 37.29 31.35 17.80 29.66 16.67

(0.05, 0.14) (4.96, 7.88) (33.96, 40.95) (28.31, 34.81) (13.78, 22.43) (24.47, 35.33) (11.90, 22.30)

UNCOVER-2 0.08 5.52 35.28 29.45 16.39 27.81 15.18

(0.04, 0.13) (4.48, 6.69) (31.91, 38.94) (26.12, 32.81) (12.51, 20.74) (22.64, 33.32) (10.62, 20.56)

UNCOVER-3 0.13 7.40 40.85 34.70 20.29 32.93 18.44

(0.07, 0.20) (6.13, 8.77) (37.17, 44.53) (31.15, 38.47) (15.81, 25.34) (27.22, 38.97) (13.41, 24.32)
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Table A.8: Estimated population-average treatment effects (standardised mean differences) and
95% Credible Intervals for each treatment compared to placebo, plus selected focal comparisons
of interest between licensed dose regimens, in each external target population using ML-NMR.

External target population

Contrast PsoBest PROSPECT Chiricozzi 2019

ETN vs. PBO 1.68 1.70 1.76

(1.52, 1.85) (1.48, 1.94) (1.55, 1.98)

IXE Q2W vs. PBO 2.95 3.00 3.01

(2.79, 3.11) (2.80, 3.23) (2.81, 3.24)

IXE Q4W vs. PBO 2.78 2.83 2.84

(2.63, 2.94) (2.63, 3.06) (2.64, 3.07)

SEC 150 vs. PBO 2.32 2.37 2.38

(2.13, 2.51) (2.13, 2.62) (2.16, 2.62)

SEC 300 vs. PBO 2.73 2.78 2.79

(2.55, 2.91) (2.55, 3.03) (2.57, 3.02)

UST vs. PBO 2.26 2.23 2.26

(1.99, 2.53) (1.94, 2.55) (1.97, 2.56)

SEC 300 vs. IXE Q2W −0.22 −0.22 −0.22

(−0.39, −0.07) (−0.39, −0.07) (−0.39, −0.07)

UST vs. IXE Q2W −0.69 −0.77 −0.75

(−0.94, −0.43) (−1.01, −0.54) (−0.99, −0.52)

UST vs. SEC 300 −0.47 −0.55 −0.53

(−0.69, −0.25) (−0.78, −0.31) (−0.75, −0.31)
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Table A.9: Estimated proportion of individuals achieving each PASI outcome on each treatment in each external target population with information
on response rates, along with 95% Credible Intervals, using the ML-NMR model combining information from all PASI endpoints. For interpretability,
these are given as inclusive probabilities (e.g. the probability of achieving 75% reduction or greater in PASI score).

Treatment

Population Placebo Etanercept Ixekizumab Q2W Ixekizumab Q4W Secukinumab 150 mg Secukinumab 300 mg Ustekinumab

Chiricozzi 2019

PASI 75 2.51 38.73 80.08 75.17 59.23 73.62 60.68

(1.10, 4.79) (28.68, 49.38) (73.84, 85.33) (68.25, 81.55) (52.08, 66.16) (68.82, 78.27) (48.06, 72.83)

PASI 90 0.45 17.25 57.25 50.73 33.41 48.73 34.58

(0.16, 1.00) (10.86, 24.93) (48.90, 65.28) (42.26, 59.18) (26.80, 40.43) (42.79, 54.90) (23.35, 47.35)

PASI 100 0.03 4.00 26.55 21.46 10.79 19.96 11.24

(0.01, 0.08) (2.03, 6.82) (19.90, 33.65) (15.59, 28.25) (7.52, 14.74) (15.81, 24.55) (5.93, 18.56)

PROSPECT

PASI 75 3.45 41.49 82.56 78.03 62.93 76.60 65.13

(1.70, 6.10) (32.86, 50.75) (78.11, 86.47) (72.74, 82.74) (58.08, 67.77) (74.47, 78.70) (54.15, 75.41)

PASI 90 0.67 19.33 61.00 54.62 37.14 52.65 39.12

(0.27, 1.38) (13.39, 26.21) (54.40, 67.03) (47.63, 61.35) (32.15, 42.61) (49.40, 55.79) (28.33, 50.49)

PASI 100 0.05 4.80 29.98 24.57 12.87 22.96 13.76

(0.02, 0.13) (2.76, 7.50) (24.25, 35.99) (19.17, 30.44) (9.94, 16.30) (20.18, 25.94) (8.18, 20.93)
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Figure A.1: Residual deviance contributions (posterior mean and 95% Credible Interval)
under a fixed effect ML-NMR model assuming consistency, and under a fixed effect ML-NMR
inconsistency (UME) model. Here, all of the posterior mean residual deviance contributions lie
on the line of equality; all points fit equally well under either model.
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A.4 Comparison with aggregate data NMA

For models to be comparable using DIC, we need the input data to be the same. The DIC values

in Table 2 for the NMAs are therefore calculated considering the residual deviance of each IPD

point separately (i.e. with the uncollapsed data, not data collapsed into summary counts as

is usual), so that direct comparison can be made with the ML-NMR models. The collapsed

and uncollapsed NMA models are mathematically equivalent, and the conclusions from model

comparison between the NMA models are also the same since the residual deviance and DIC

are equivalent up to a fixed constant.

The estimated heterogeneity standard deviation from the RE NMA without covariate

adjustment was 0.09 (0.01, 0.24), which is small compared to the magnitude of the relative effects

(Table A.4). The DIC values for the FE and RE NMA models without covariate adjustment were

8948.2 and 8947.5 respectively (see Table 2); there is little difference between these models, and

we would choose the more parsimonious fixed effect model based on DIC alone. The DIC for an

UME model which does not make the consistency assumption is 8950.1 which is a little higher

than the FE consistency model, and a plot of the residual deviance contributions under each

model (Figure A.2) shows that all data points are fit equally well under either model, altogether

suggesting no evidence of inconsistency. However, despite a lack of evidence for between-study

heterogeneity or inconsistency, the ML-NMR model has a much lower DIC of 8814.9. The

ML-NMR model allows us to explain both between and within study variation, resulting in

better fit and reduced uncertainty in contrast estimates across the study populations (Table A.4).
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Figure A.2: Residual deviance contributions (posterior mean and 95% Credible Interval) under
a fixed effect NMA model assuming consistency, and under a fixed effect NMA inconsistency
(UME) model. Here, all of the posterior mean residual deviance contributions lie on the line of
equality; all points fit equally well under either model.
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A.5 Assessing the shared effect modiőer assumption

Figure A.3: Posterior estimates (median, 95% CrI, and density) of effect modifier interaction
parameters from the ML-NMR model making the shared effect modifier assumption within the
IL-17 blocker class for all covariates, and the ML-NMR models relaxing this to independent
interactions for each covariate in turn.
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Table A.10: Model fit statistics for the ML-NMR model making the shared effect modifier assumption within the IL-17 blocker class for all covariates,
and the ML-NMR models relaxing this to independent interactions for each covariate in turn. 𝑝𝐷 is a measure of the effective number of parameters.
Residual deviance on 12,384 data points.

Independent interactions for covariate

Common interactions Duration of psoriasis Previous systemics Body surface area Weight Psoriatic arthritis

Residual deviance 8778.3 8780.9 8779.9 8780.9 8775.3 8780.6
𝑝𝐷 36.6 38.9 38.6 38.7 39.6 38.5
DIC 8814.9 8819.9 8818.5 8819.6 8815.0 8819.1
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Figure A.4: Estimated population-average treatment effects (standardised mean differences) for each treatment vs. placebo in each study population,
from the ML-NMR model making the shared effect modifier assumption within the IL-17 blocker class for all covariates, and the ML-NMR model
relaxing this to independent interactions for weight.
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Figure A.5: Estimated percentage of individuals achieving each PASI endpoint on each treat-
ment, in each study population, from the ML-NMR model making the shared effect modifier
assumption within the IL-17 blocker class for all covariates, and the ML-NMR model relaxing
this to independent interactions for weight.



Figure A.6: Estimated population-average treatment effects (standardised mean differences)
for each treatment vs. placebo in each external target population, from the ML-NMR model
making the shared effect modifier assumption within the IL-17 blocker class for all covariates,
and the ML-NMR model relaxing this to independent interactions for weight.

Figure A.7: Estimated percentage of individuals achieving each PASI endpoint on each treatment,
in each external target population with information on response rates, from the ML-NMR model
making the shared effect modifier assumption within the IL-17 blocker class for all covariates,
and the ML-NMR model relaxing this to independent interactions for weight.
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