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Abstract

Many approaches at the forefront of structural health monitoring rely on cutting-edge techniques from the field of

machine learning. Recently, much interest has been directed towards the study of so-called adversarial examples; deliber-
ate input perturbations that deceive machine learning models while remaining semantically identical. This article demon-

strates that data-driven approaches to structural health monitoring are vulnerable to attacks of this kind. In the perfect

information or ‘white-box’ scenario, a transformation is found that maps every example in the Los Alamos National
Laboratory three-storey structure dataset to an adversarial example. Also presented is an adversarial threat model spe-

cific to structural health monitoring. The threat model is proposed with a view to motivate discussion into ways in which

structural health monitoring approaches might be made more robust to the threat of adversarial attack.
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Background

Data-driven modelling in structural health monitoring

Monitoring the health of engineering structures is of

critical importance to countless engineering disciplines

and applications. Since it is very difficult for most sen-

sors to measure damage,1 the practising engineer must

instead rely on a range of indirect tools and techniques

in order to identify, locate and manage damage in

structures.

Much interest in the field of structural health moni-

toring (SHM) has been in data-driven approaches that

leverage techniques from machine learning and statisti-

cal pattern recognition.2 Several authors have extolled

the virtues of casting SHM problems in this way.3,4 The

modern engineer is fortunate to have at their disposal a

litany of tools that are able to perform pattern recogni-

tion, and the literature reflects this. To date, authors

have employed outlier analysis,5 neural networks,6 sup-

port vector machines7 and decision trees8 among many

other approaches. The reader is directed to Farrar and

Worden9 for a comprehensive reference text.

Despite the wealth of progress made in the last

two decades, the large-scale deployment of SHM

methodologies is still in its infancy. There are many well

cited reasons for this, with the scarce availability of

damaged training data and issues surrounding environ-

mental variation emerging as key themes. However,

innovative solutions to these problems are steadily

being found.

In the face of these challenges, there are several

large-scale systems that are currently in deployment.

Perhaps most famous is the OnStar navigation and

diagnostics system available in some commercial vehi-

cles. There is also the integrated condition assessment

system (ICAS)10 deployed by the US navy for the mon-

itoring of hardware, as well as a number of techniques
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developed for monitoring rotor-craft under the

umbrella term of health and usage monitoring systems

(HUMS).11 These systems are all implemented in

potential life-safety applications and are therefore

potential targets for malicious attack.

It is the opinion of the authors that if SHM frame-

works are to be adopted in life-safety or economically

critical projects, then it is of utmost importance that the

security and robustness of the underlying models are

rigorously examined.

Adversarial attacks on pattern recognition models

It is important here to distinguish between the similar

but distinct topics of adversarial attack and adversarial

machine learning. The latter refers to machine learning

methods whereby two learning models are pitted

against each other in order to produce generative mod-

els12 that are able to sample from the underlying input

distributions.

Adversarial attack, however, refers to the construc-

tion of adversarial examples for classification models.

These are deliberately perturbed inputs for which the

classifier assigns an incorrect label despite small or

imperceptible semantic alteration from the true state.

Mathematically, for a classification model M that

assigns a class label y to input vector fxg

MðfxgÞ ¼ y ð1Þ

An adversarial example fx0g will result in an adver-

sarial classification (erroneous label)

Mðfx0gÞ ¼ y0 ð2Þ

The adverse label is assigned despite semantic simi-

larity to a human observer

fxg’fx0g ð3Þ

The vulnerability of neural-network models to

adversarial attack was first presented by Szegedy

et al.13 It was later shown that the vulnerability of such

models was not limited to the area of neural networks.14

In fact, a wide array of classification algorithms are sus-

ceptible to this type of attack. Subsequently, Carlini

and Wagner15 produced a general approach for the

construction of adversarial examples that were difficult

to detect and were able to bypass several of the recently

proposed adversarial defence strategies.

Since this revelation, the literature has grown rich

with contributions exploring adversarial attacks and

the generation of adversarial examples. A recent review

can be found in Yuan et al.16 By far, the majority of

the case studies and the application papers thus far

published on adversarial attack have been concerned

with image classification and machine vision. It is in

these areas that the majority of the taxonomy has been

developed. In this article, the authors hope to demon-

strate that adversarial attack is also a real threat to

SHM models.

Data-driven approaches to SHM rely at their core

on machine learning models that are susceptible to

adversarial attack. While some of these rely directly on

neural networks,6,17–19 Papernot et al.14 demonstrated

extensively the vulnerability of techniques beyond

neural networks, including support vector machines,

decision trees, logistic regressors and others in their

highly cited paper. With this in mind, it is clear that the

adversarial attack is a threat to a great deal of data-

driven SHM.

While no direct consideration of adversarial vulner-

ability for SHM has yet been presented in the litera-

ture, the susceptibility of data-driven approaches has

already been demonstrated for the related field of pro-

cess monitoring.20 In their paper, the authors demon-

strate the adversarial fragility of a deep neural network

trained to detect system failures and offer an adversar-

ial training method similar to Madry et al.21 for hard-

ening the classifier.

With the rapid pace of adversarial attack research in

mind, it is the aim of this article to motivate serious dis-

cussion into the vulnerability of the learning models

proposed for SHM. Presented here are two contribu-

tions. The following section envisages an adversarial

attack threat model for SHM. The threat model is

accompanied by a taxonomy specific to threats arising

in SHM frameworks. The third and the fourth sections

provide demonstration of adversarial attack on a dam-

age detection model trained on an SHM-benchmarking

dataset. It is shown that simple transformations can be

constructed that map every true input to an adversarial

example, even when the inputs have not been used to

train the classification model. The final section outlines

the directions for further investigation into ways in

which SHM might be made more robust to adversarial

attack.

An adversarial attack threat model for

data-driven SHM

The foundation for this threat model will be the

vibration-based damage identification framework pre-

sented in Farrar et al.22 The approach can be sum-

marised by four steps:

1. Operational evaluation

2. Data acquisition

3. Feature extraction or pre-processing

4. Label discrimination



1478 Structural Health Monitoring 20(4)

This framework is expanded in Figure 1 to produce

a physics-to-label representation of the SHM frame-

work. For convenience, the following definitions are

presented:

� A SHM framework (the system, Figure 1) that uti-

lises a statistical pattern recognition model (the

model, MðfxgÞ) is deployed for the purpose of

identifying damage or otherwise measuring the

health state of some structure of interest (y).
� A malicious entity (the attacker) is attempting to

influence or compromise the accuracy of the model

by leveraging adversarial examples ({x#}) to induce

false or misleading results.

The principal threats in this scenario are thus defined

as follows:

� The false labelling of the damaged state as unda-

maged (false negative, y+ ! y0�);
� The false labelling of the undamaged state as dam-

aged (false positive, y� ! y0
+
);

� Semantic similarity between real and adverse inputs

to the model ðfxg’fx0gÞ.

Thus, we may define a general objective function for

the production of semantically convincing adversarial

examples as

Jðfx0gjfxg,MÞ ¼ Fðfxg, fx0gÞ + lGðy; y0Þ ð4Þ

where y ¼ MðfxgÞ and y0 ¼ Mðfx0gÞ are as defined

earlier. The objective function has two terms and a

weighting parameter. The first term penalises examples

that are not semantically similar to true inputs such as

the L1 or L2 norm. The second term is a metric, which

ensures that the adversarial example produces adver-

sarial miss-classifications such as cross-entropy loss

metrics. The nefarious labelling of damaged structures

as healthy is of serious concern. If left undetected,

attacks of this type have the potential to result in wor-

sening of structural health or critical failure.

The consequences of a false-positive classification

may seem minor compared to that of the false-negative

classification and in the extreme this is certainly the

case. However, unnecessary maintenance and inspec-

tion may bear a financial toll and repeated miss-

classifications may erode confidence in the monitoring

system. Unaddressed, either of these eventualities are

likely to render the system completely useless in the

long term. Furthermore, if the adversarial examples

have high semantic similarity to measured healthy data,

it would be very difficult for a human to recognise the

occurrence of the adversarial examples and trouble-

shooting the problem may be difficult.

The SHM analogue of semantic similarity from

image recognition is not immediately intuitive. It is

unlikely that a human would be able to identify dam-

age by observing measured signals from a structure

alone. However, there are domains that do present

semantic information to the trained eye. For intuition,

consider the frequency response functions (FRFs) of a

Figure 1. An example overview of a data-driven SHM methodology.
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vibrating structure. FRFs are frequently used as dam-

age and condition-sensitive features in SHM as they

encode physical dynamic properties and can be effi-

ciently computed. To a trained engineer, the natural

frequencies and damping properties of a structure are

approximately tractable visually and it would certainly

be possible to identify significant deviation from the

expected structure of the signal. FRFs, as well as other

features such as coherence and acoustic emission sig-

nals, contain semantic structure and are all potential

targets for adversarial attack.

Threat model

In order to arrive at a coherent adversarial attack threat

model for SHM, it is important to first consider the vec-

tors for attack that are present in the system. Figure 2

presents a breakdown of the principal attack vectors

into three domains.

The first of these is the data-acquisition domain and

is largely concerned with the physical security of sen-

sing equipment. Given access, the attacker is able to

adversely influence or gain access to structural mea-

surement data. This includes both online data collec-

tion and training data collection. Vectors for attack

include the placement of impostor sensing equipment,

‘spoofing’ sensors with adversarial inputs and eaves-

dropping on sensor data.

The second domain is related to data storage secu-

rity. Threat models for generic data storage security

have been previously explored in Hasan et al.23 In the

context of SHM, the principal threat is that training

and model data might be maliciously accessed with the

intent to construct adversarial examples. A data breach

could arise as the result of either a physical or cyber

intrusion and so hardening the system to these vectors

is especially difficult.

The third domain is concerned with the implementa-

tion of the model. The principal threat is that knowl-

edge of the structure and parameterisation of the model

might become available to the attacker. Risks in this

domain are largely concerned with insider threats,

whereby a person with trusted access to the implemen-

tation and acquisition components of the system is able

to act maliciously. However, other means of access,

such as social engineering and espionage, are also vec-

tors by which access to model implementation might be

acquired. With total access to the system, an attacker

would be trivially able to bypass safeguards and affect

their machinations.

Threat taxonomy

In light of the earlier discussion, the principal distinc-

tion between adversarial attack types is the level of

access that is afforded to the attacker. This is certainly

the case in the machine learning literature where attacks

are characterised as either white- or black-box.

In a white-box attack, it is assumed that the attacker

has complete access to the system. This could include

Figure 2. Categorisation of attack vectors.
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model structure, parameters and gradient information,

as well as access to the training data, inputs and out-

puts. This corresponds to access in all three domains of

Figure 2. The white-box attack is primarily a simula-

tion of the insider threat. The scenario can also apply

to systems whereby the implementation has been made

publicly available, for example, if the model had been

published in the academic literature.

In a black-box attack, it is assumed that the attacker

has query access to the model only, with no knowledge

of the model structure, training procedure or access to a

training dataset. There is some variation in exactly what

is available to the attacker in the literature. Papernot

et al.24 assumed that a very small set (less than 10 per

class) of examples from the input domain (but not

necessarily the training data) are available. In an SHM

context, we include scenarios whereby the attacker is

able to query the model and has access to incoming

data as black-box attacks.

The black-box attack is indicative of an outsider

threat whereby an attacker is able to query the classifier

either remotely via a cyber attack or by gaining access

to models and data during a physical attack. In order

for the black-box attack to be realistic, the number of

queries to the classifier must be kept to a minimum.

Guo et al.25 argued that any black-box attack that

makes use of many thousands of queries can easily be

defeated by query limitation.

Consideration of both the white- and black-box sce-

narios is important for SHM applications. One ques-

tion the SHM community is going to have to deal with

is how to certify SHM systems for monitoring publicly

owned critical infrastructure for life-safety applications.

The importance of this issue will increase as SHM

research has begun to mature and SHM systems begin

to be sold commercially. The complexity of SHM sys-

tems is high enough that the community itself will need

to provide public authorities guidance to guard against

commercial entities selling malicious or sub-standard

SHM systems. One way to guard against the use of

sub-standard SHM systems is to mandate that the

design of these systems be transparent. However, trans-

parency is often not in the interest of commercial enti-

ties, and it does make white-box attacks more easy to

execute. This tradeoff between security and ensuring

the performance of SHM systems must be considered.

Furthermore, as 5G networks become more prevalent,

they will increasingly be used to implement SHM sys-

tems. A number of security risks have been identified

with 5G networks (e.g. supply chain, interdependencies

and increased overall attack surface) that make white-

box attacks more plausible.26 As a result, both white-

and black-box scenarios should be considered by the

SHM community.

Based on the original work on adversarial exam-

ples,13 a great number of approaches have been devel-

oped for the construction of adversarial examples. The

recent review by Yuan et al.16 does an excellent job in

recording and categorising the approaches that have

thus far been proposed. A brief outline of the key defi-

nitions is included here.

Attack scope. An example search is a style of attack that

performs optimisation in the input space of the SHM

model to specify single or multiple adversarial examples

({x#}) that are optimised independently. This type of

attack is most likely to be enacted as a one-time attack.

A training attack (also referred to as data poisoning) is

conducted during the training phase of the SHM frame-

work, before the system has been fully implemented.

During a training attack, the training data are augmented

or appended with adversarial examples with a view to

maximise erroneous classification within the model itself.

A universal example search is an altogether different

type of attack. Instead of optimising individual exam-

ples, the attack is a search for a function ðAðfxgÞÞ that
transforms every input to an adversarial example

MðAfxgÞ ¼ Mðfx9gÞ ¼ y9 ð5Þ

A : y ! y9 ð6Þ

This is often a more challenging task (as the map-

ping must span the input space) and is more dangerous

to the operation of an SHM system as the adversarial

examples can be delivered continuously in an online

fashion.

Adversarial specificity. In a targeted attack, the adverse

class labels are specifically chosen such that, for example,

a damaged structure is selectively labelled as undamaged

Atargeted :
y + ! y�
y� ! y+

ð7Þ

In an untargeted attack, there is no specific attention

paid to which label is assigned to the adverse example

as long as it is not the true class. In the binary classifi-

cation case, this is equivalent to the targeted attack

Auntargeted : yi ! fyjg, i 6¼ j ð8Þ

Attack frequency. A one-time attack involves the specifi-

cation and injection of adversarial examples without

querying the classifier. Such attacks might be appropri-

ate for attack motives that require only temporary fal-

sification of the SHM system.

An iterative attack makes multiple queries to the

classifier to assess the effectiveness of the adverse
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examples, improving their potency iteratively. This

attack style tends to result in more semantically convin-

cing examples but comes at the cost of increased com-

putational effort and risk of exposure.

Dataset and classification results

This section details the specification and training of a

classification algorithm for the Los Alamos National

Laboratory (LANL) three-storey structure dataset

(Figure 3).27 The primary objective of the classifier will

be to accurately predict damage labels despite the pres-

ence of simulated environmental variation.

There are essentially two classes of algorithm avail-

able for performing this task. Generative models aim to

construct the full joint probability of the labels and the

data. The advantage is that the algorithm is able to

return predictive probability distributions and so uncer-

tainty in the predictions is handled graciously.

By comparison, discriminative models aim to recon-

struct only the class conditional probabilities and so

only the labels themselves can be returned. For this

work, only discriminative models are considered.

LANL three-storey structure dataset

The three-storey structure was conceived as a test-bed

for SHM algorithms. Many published approaches to

SHM demonstrate their effectiveness on this dataset.

This prominence in the literature makes the three-

storey dataset ideal for demonstrating the vulnerability

to adversarial attack. Another objective of the original

Figure 3. Schematic view of the three-storey structure (all dimensions are in cm).
Reproduced with permission from Figueiredo et al.27
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report on the dataset is to assess robustness in the

face of environmental and operational variation. As

such, there are 17 structure configurations (detailed

in Table 1) representing either a damaged or unda-

maged state.

Damage is simulated in the structure by the inclusion

of a bumper that acts between the second and third

storeys of the structure. The impacting bumper adds

significant nonlinearity to the dynamics of the struc-

ture. The gap, measured from the equilibrium point to

the bumper, is varied to simulate the progression of

damage. The bumper engages once the inter-storey dis-

placement exceeds the gap distance. This means that

smaller gap distances simulate increased levels of dam-

age. A full account of the configuration of the structure

in each of the 17 states is recorded in Table 1.

The dataset consists of the input force and accelera-

tion responses measured at each storey of the structure.

The structure is excited with a band-limited (20–150

Hz) Gaussian forcing signal by an electrodynamic sha-

ker attached to the base. The data are recorded with 50

tests per state where each test consists of 8192 points

recorded at a sampling frequency of 320 Hz. In order to

increase the number of examples available for training

the classifier, each of the tests are divided in half, result-

ing in 100 tests per state of 4096 points (1700 examples

in total).

Classification approach

As state labels are available for the dataset, the classifier

will be trained in a supervised manner. The extracted

features will be the accelerance FRFs estimated by the

Welch method (resulting in a real-valued spectral den-

sity) with no overlap, the Hanning window and five-

fold averages. FRFs are computed for the base of the

structure and each for of the three-storeys.

The FRF for the ith storey ðxiÞ is calculated from the

accelerations ðaiÞ as

fxig ¼
WðfaigÞ

Wðfa0gÞ
ð9Þ

where W indicates the Welch operation as described

earlier. The xi are then concatenated and normalised

(zero mean, unit variance) to form training vectors with

1640 points. This reduction in sampling points is due to

the five-fold averaging in the Welch operation.

The use of FRFs as features is motivated by the

observation that variations in the normal condition

(masses, stiffnesses) exhibit more variance in the natural

frequencies of the spectra, whereas the damage progres-

sion is most evident in the variance of the higher fre-

quencies. The FRF is therefore a suitable feature as it is

independently expressive in both of these directions.

For further motivation and in order to aid visualisa-

tion, Figure 4(a) and (b) depict the first two principal

components of the dataset for the time series and the

FRFs, respectively. The individual classes are clearly

more separable in the FRF basis. In addition, varia-

tions in normal condition seems to be approximately

orthogonal to the progression of damage. Figure 5

shows the first two principal components of the FRFs

recoloured to depict damage labels only.

For the task of damage identification, a multi-layer

perceptron (MLP) is trained with a single hidden layer.

The structure of the classification model is detailed in

Table 1. The 17 structural states recorded in the LANL three-storey dataset.

Label Damage condition Description

0 Undamaged Normal condition
1 Undamaged Mass = 1.2 kg at the base
2 Undamaged Mass = 1.2 kg on the 1st floor
3 Undamaged 87.5% stiffness reduction in column 1BD
4 Undamaged 87.5% stiffness reduction in column 1AD and 1BD
5 Undamaged 87.5% stiffness reduction in column 2BD
6 Undamaged 87.5% stiffness reduction in column 2AD and 2BD
7 Undamaged 87.5% stiffness reduction in column 3BD
8 Undamaged 87.5% stiffness reduction in column 3AD and 3BD
9 Damaged Gap = 0.20 mm

10 Damaged Gap = 0.15 mm
11 Damaged Gap = 0.13 mm
12 Damaged Gap = 0.10 mm
13 Damaged Gap = 0.05 mm
14 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base
15 Damaged Gap = 0.20 mm and mass = 1.2 kg on the 1st floor
16 Damaged Gap = 0.10 mm and mass = 1.2 kg on the 1st floor

Reproduced with permission form Figueiredo et al.27 Column references refer to the indices described in the original report and in Figure 3.
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Table 2. The dataset is divided into training and valida-

tion sets with 500 examples separately reserved for the

evaluation of performance on unseen examples.

The network is initialised with random weights uni-

formly distributed on the interval [–1, 1] and then

trained for up to 100 epochs using a cross-entropy loss

function and the Adam optimiser. The hyperpara-

meters for the optimiser are set to the default values

provided in the original study.28

The training process is repeated for hidden node

numbers in the range [1, 100]. Figure 6 depicts the train-

ing curves for training and validation sets. The figure

clearly depicts a stable training regime with excellent

validation performance on networks with greater than

around 15 hidden nodes. Although many network

structures give optimal performance, in order to ensure

our demonstration is as realistic as possible, the sim-

plest model with the best validation accuracy is selected.

This is a network that achieves a validation accuracy of

99.58% with 16 hidden nodes trained over 79 epochs.

The structure of the classification model is detailed in

Table 2.

Classification results

Figure 7 depicts the classification confusion matrix on

the 500 unseen testing examples that were not used dur-

ing training. The classifier achieves a multi-class predic-

tion accuracy of 98.60% on the testing data, with only

two (0.40%) false-positive and zero false-negative clas-

sifications. The remaining miss-classifications (1.00%)

are between the three damage classes that have the

smallest geometric differences in gap size.

Conventional analysis of the capacity of classifica-

tion models such as the Vapnik–Chervonenkis (VC)

dimension29 places lower bounds on the number of

training examples required to ensure generalisation.

However, empirical evidence and recent studies30 show

that neural networks and deep learning models routi-

nely outperform the theoretical limits placed on them.

(a) (b)

Figure 4. Comparison of label-sensitive features: the first two principal component directions plotted and coloured by label. Label

clusters are visually far more separable in the FRF domain: (a) time series data and (b) FRF data.

Figure 5. First two PCA components of the FRF data,

recoloured to reflect damage labels.

Table 2. Structure of the MLP used for damage identification.

Layer Nodes Activation

Input 1640 Linear
Hidden 16 Hyperbolic tan
Output 17 Normalised exponential
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Such models are often shown to achieve strong empiri-

cal generalisation despite enormous VC-dimensions

and limited training data.

The dataset used here is small (1700 examples) com-

pared to the number of examples in modern deep

learning benchmark problems (typically on the order of

100,000 examples) and indeed the VC-dimension of the

model (a simplified estimate would be 2
nh ¼ 65; 536

examples required, where nh ¼ 16, the number of hid-

den nodes). Despite this, the classifier is able to achieve

high accuracy and good generalisation on unseen data.

The authors therefore argue that this strong perfor-

mance on unseen data is ample justification that the

training data are sufficient to learn a general mapping

from the data manifold to the labels.

Demonstration of adversarial vulnerability

The objective of this article is to motivate serious dis-

cussion into the vulnerability of data-driven SHMmod-

els by demonstrating the most threatening attacks in

both the white-box and black-box threat scenarios. For

brevity, we consider only the more challenging task of

performing a universal example search. The goal is to

identify an adversarial transformation A that produces

an adversarial output for every true input, while main-

taining semantic similarity between true and adversarial

examples

Aðfxg, uAÞ ¼ fx0g ð10Þ

Figure 6. Training curves for the classifier, varying the number of hidden nodes.

Figure 7. Confusion matrix of the classifier on unseen testing data.
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where uA are the parameters of the adversarial trans-

formation. Semantic similarity is judged by eye, in the

FRF domain. This is conducted by comparing the

adverse example fx0g to examples from both its true

class fxg and the adverse class fxl0g. An adverse exam-

ple will be judged to have semantic similarity if it more

closely resembles the true class while still inducing an

adversarial classification.

For maximum impact, the demonstration is con-

ducted as a targeted attack. The approach here is the

more challenging task of aiming for perfect miss-

classification with every label representing either a spe-

cific false-positive or false-negative result. Adverse

training labels are constructed by the following tar-

geted scheme

fl0g ¼
l0i ¼ 0 li<8

l0i ¼ 13 li.8

�

i 2 ½1;N �

ð11Þ

where N is the number of training examples. A class

label of zero corresponds to the normal condition,

whereas a class label of 13 relates to the maximally

damaged state. Constructing the adversarial target

labels in this way ensures that A represents a transfor-

mation that maximises the rates of false positives and

false negatives. The demonstrations here are also itera-

tive attacks in that the parameters of the transformation

are optimised over successive queries to the classifier.

Demonstration of white-box attack

The first demonstration of adversarial attack on an

SHM implementation is conducted in a white-box man-

ner. Since gradient information is available in this con-

text, the parameters of the adversarial transformation

uA can be optimised via gradient descent. Several

authors have presented efficient methods for conduct-

ing attacks in this context.31,32 However, in order to

emphasise vulnerability to naive attackers, the method

used here is simplistic and consists of two distinct

phases.

For the white-box demonstration, the adversarial

transformation A is specified as an MLP with ran-

domly initialised weights (the adversarial perturbation

network (APN)). The first phase in the attack is the lis-

tening phase whereby Aðfxg, uAÞ is trained to reproduce

the inputs from the training data.The purpose of this

listening phase is to reduce the total number of queries

that must be made to the target classifier. By pre-

training the adversarial transformation to reproduce

the inputs, an internal model of the input is constructed

in the same manner as that of an auto-encoder. This

internal model can then be optimised to produce adver-

sarial examples during the second phase.

The second phase is the learning phase during which

the network learns a perturbing transformation that

maps true inputs to adversarial examples. The exact pro-

cedure is as follows. During the listening phase, an MLP

(Table 3) with parameter set uA is first trained to repro-

duce the inputs under a mean-squared error loss function

J 0listeningðuÞ ¼
1

NL

X

N

i

X

L

k

ðxik � x0ikÞ
2 ð12Þ

where J 0ðuAÞ is the adversarial loss. Next, the network

is appended to the input of the classifier and trained on

the adversarial labels to produce adversarial examples.

During the learning phase, training is conducted as

a multi-objective problem with constraints placed on

both the cross-entropy loss between the predicted and

adversarial labels and the mean-squared error between

the adversarial example and the true output

J 0learningðuAÞ ¼ �
1

N

X

N

i

X

M

j

y0ij logðŷ
0
ijÞ

+

l

NL

X

N

i

X

L

k

ðxik � x0ikÞ
2

ð13Þ

where M is the number of classes in the dataset and L is

the dimension of the input. The parameter l is a hyper-

parameter that controls the weighting of the miss-

classification and mean-squared error reconstruction

terms. Several approaches to this multi-objective opti-

misation problem are possible, including placing a min-

imum threshold on either of the terms. For these

demonstrations, it is set to unity in order to give equal

weighting to the classification and similarity terms. The

parameters of uA are then optimised via the Adam sto-

chastic gradient descent algorithm using the classifica-

tion training data.

In order to verify that the attack has been successful,

the testing set of examples not used during adversarial

training is fed through the perturbing network and

classified. Figure 8 depicts the confusion matrix of the

classifier on the adversarially perturbed validation

examples. The confusion matrix represents 99.58% and

100% as false-negative and false-positive classification

rates, respectively. In fact, only a single example was

Table 3. Parameters of the MLP used for adversarial

perturbation.

Layer Nodes Activation

Input 1640 Linear
Hidden 200 Rectilinear unit
Output 1640 Linear
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correctly assigned a damage label by the classifier. The

adversarial transformation has rendered the SHM clas-

sifier useless.

Figure 9 plots the resulting adversarial examples

from the false-positive and false-negative cases, respec-

tively. Looking at the adversarial examples, it can be

seen that there is a high level of semantic similarity

between the adversarial and true signals. This is espe-

cially pronounced in the false-positive examples which

are almost indistinguishable from the unperturbed

input. It seems that the largest semantic differences are

present in the variance of the false-negative adversarial

examples.

For intuition as to how the semantic structure of the

signals remains intact during the perturbation, the first

two principal component analysis (PCA) directions of

the FRF data are plotted in Figure 10. Overlayed on

the figure are 10 of the transformations from true

inputs (dots) to adverse examples (crosses) coloured by

damage label. In the figure, it can be seen that the per-

turbation is small in the PCA basis suggesting that the

majority of the structure has been maintained.

Demonstration of black-box attack

For the black-box attack demonstration, it is assumed

that the attacker only has access to the classifier on an

input–output basis and has no knowledge of the inner

workings of the algorithm. We permit the attacker

access to a set of training examples and corresponding

target labels, but crucially not the gradient information.

While many black-box approaches to adversarial attack

rely on the construction of a surrogate model in order

to generate a synthetic classifier that can be attacked as

a white-box, the approach utilised here is deliberately

more naive. It is the reasoning of the authors that vul-

nerability to such naive attacks lowers the bar for

adversarial attack and further motivates investigation

into the ways in which SHM algorithms might be made

more robust.

The aforementioned approach consists of two

phases. During the listening phase a 1024-512-n deep

auto-encoder (DAE)33 is trained to learn a reduced-

order representation of the inputs. While other more

sophisticated reduced-order models (such as hierarchi-

cal models or modal analysis–based approaches) are

clearly appropriate, the objective here is to demonstrate

Figure 8. Confusion matrix of the classifier during a white-box

attack.

(a) (b)

Figure 9. Adversarial examples arising from the white-box attack. The adversarial input is semantically similar and follows the

overall structure of the true inputs more closely than the adversarial target signal. There is however a notable difference in the

variance of the signal in the false-negative case: (a) false-negative example and (b) false-positive example.
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a naive approach that makes little to no assumptions

about the structure of the input. The DAE consists of

two components, the encoding transformation f and

decoding transformation c

fðfxgÞ ¼ fzg
cðfzgÞ ¼ fx̂g

ð14Þ

where fx̂g is the reconstructed signal. The parameters

of the DAE are first trained under a mean-squared

error loss using the same objective function as the

white-box attack in equation (12). This step is critical

for the black-box attack as it greatly reduces the num-

ber of parameters that must be optimised without gra-

dient information.

Several authors have studied adversarial attacks on

DAEs and other latent space models.34,35 The approach

shown here is most similar to that of Creswell et al.36 in

that the latent space is perturbed directly. However,

while the authors specify an additive transformation for

AðzÞ, the approach here is a more general n-dimensional

affine transformation, where n is the size of the latent

encoding. In the latent encoding, the transformation is

fz0g ¼ Afzg ¼

a11 a12 . . . a1n a1n+ 1
a21 a22 . . . a2n a2n+ 1

.
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During the learning phase, the DAE is prepended to

the classifier and the perturbing transformation is

inserted between the encoder and the decoder. The for-

ward adversarial transformation is now given by

fx̂0g ¼ cðAfðfxgÞÞ ð16Þ

As before, this is a multi-objective optimisation

problem that seeks to maximise both semantic similar-

ity and miss-classification. The learning phase objective

function is now given by

J 0learningðuAÞ ¼ �
1

N

X

N

i

X

M

j

y0ij logðŷ
0
ijÞ

+

l

NL

X

N

i

X

L

k

ðxik � x̂0ikÞ
2

ð17Þ

where fx̂0g ¼ cðAfðfxgÞÞ and N , M and L are the num-

ber of examples, classes and input dimensions, respec-

tively. However, there are now two hyperparameters

that must be specified. These are the size of the DAE

latent encoding n and weighting term l which is set to

unity.

The size of the latent encoding represents a trade-off

between accurate reconstruction of the inputs and the

complexity (number of parameters) of the affine trans-

formation. More parameters in the latent encoding will

result in higher fidelity representations of the inputs,

but will require more parameters to be optimised in

order to find the adversarial transformation. The num-

ber of parameters in A grows as n2 + n and so choosing

a lower value of n is preferable.

In order to select a value for n, the explained var-

iance of the first 50 PCA components are plotted along-

side the classification accuracy of the reconstructed

signal in Figure 11. Although not directly related, the

PCA explained variance plot affords intuition into the

number of parameters that are required to provide an

Figure 10. First two PCA directions of training and validation

data (coloured by damage label) as well as latent representation

of adversarial perturbation. Arrows show mapping from true

examples (dots) to adversarial examples (crosses).

Figure 11. Explained variance of PCA representation, plotted

alongside the reconstructed classification accuracy and

parameters in the affine transformation for differing values of

n (based on the figure, the value n ¼ 10 is selected).
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accurate representation of the input. It can be seen

from the figure that only a small number of parameters

are responsible for the majority of the variance in the

inputs (this is expected from highly structured data

such as FRFs). The classification accuracy does not

seem to be affected above values of 5. With this in

mind, a conservative value of n ¼ 10 is selected.

Figure 12 depicts the input and reconstruction for

the trained DAE. It can be seen in the figure that the

DAE has done a good job of representing the overall

structure of the data but struggles to emulate the

variance seen in the higher frequencies of the damaged

examples. Nevertheless, this representation is clearly

able to capture the damage-sensitive nature of the

FRFs as the classification confusion matrix in Figure

13 is largely unchanged.

The parameters of the adversarial transformation uA
are then optimised to produce adversarial examples. As

gradient information is not available, a heuristic algo-

rithm must be used. In this study, optimisation is

achieved via a self-adapting differential evolution

(SADE) scheme, with a loss function defined in equa-

tion (17). The hyperparameters of the SADE optimiser

are presented in Table 4, and these parameters have

been selected based on the authors’ experience with the

method. Other than these parameters, the implementa-

tion of the SADE algorithm is as described in the origi-

nal paper.37 As SADE is an adaptive optimiser, it is

already largely insensitive to the selection of the initial

values of the learning, mutation and crossover para-

meters. Presentation of the full iterative scheme is

beyond the scope of this current work and the inter-

ested reader is directed to the original paper for details.

The parameters of 100 trial transformations are opti-

mised over 10 runs from an initial uniform distribution

(a) (b)

Figure 12. Original inputs and DAE reconstructions after the learning phase. The DAE has learned to represent the structure

of the data well but is struggling to reproduce the increased variance in the higher frequencies found in the damaged signals:

(a) damaged case and (b) undamaged case.

Figure 13. Confusion matrix of the classifier predictions on

the DAE reconstructed signal before adversarial perturbation.

Table 4. Hyperparameters of SADE optimiser.

Parameter Notation Value

Mutation parameter mean Fm 0.5
Crossover parameter mean Cr 0.5
Learning period Lp 10
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on the interval ½�1; 1�. The SADE algorithm is allowed

to proceed for 100 iterations per run. After each run,

the convergence history is plotted to verify that the opti-

miser has been successful in finding a global minima.

Figure 14 shows the best and the mean cost function

values plotted for each run. The lowest cost transforma-

tion over the 10 runs is then selected and evaluated on

the unseen examples as before.

Figure 15 depicts the classification confusion matrix

on the unseen data. Although not as successful as the

white-box attack, the latent space perturbation has still

managed to induce false-positive and false-negative

classifications in almost every case. Figure 16 depicts

the adversarial examples generated in the black-box

attack from the same unperturbed inputs used to gener-

ate the examples in Figure 9. However, it is immedi-

ately obvious that the black-box attack has failed to

produce adversarial examples that maintain semantic

similarity to the true inputs. The overall structure of

the input has been conserved during the attack and the

signals still clearly resemble FRFs. However, the adver-

sarial examples more closely resemble members of the

target class, meaning that the chances of such examples

fooling a human observer is low.

Figure 17 depicts the PCA directions of the dataset

for the first 10 adversarial transformations as in

Figure 14. Convergence history of the SADE optimiser over

10 runs.

Figure 15. Classification confusion matrix resulting from the

black-box attack.

(a) (b)

Figure 16. Adversarial examples results arising from a black-box attack. The adversarial examples (red) are semantically more

similar to the target class (orange) than the true input (blue): (a) false-negative example and (b) false-positive example.
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Figure 10. In this figure, the reason for the loss of

semantic similarity might be explained. The perturba-

tions in the latent space have translated to large shifts

in the PCA projection, suggesting that the adversarial

examples are structurally quite dissimilar to the true

inputs from which they were constructed. Another

possible explanation is a poor correlation between

latent and classification spaces. The nonlinearity

introduced by the decoding layer of the DAE has the

effect of exaggerating small changes made in the

latent space into large changes in the adversarial

examples. Such an effect would make optimisation on

the parameters of A, extremely difficult as the result-

ing objective surface would be highly non-smooth. A

future approach to manage this phenomenon could

be to use a linear transformation (such as PCA) into

a reduced-order space.

Despite these results, some semantically convincing

examples can still be constructed by a variant of the

latent attack method described earlier. By optimising

the parameters of A to transform a single example at a

time (example search attack) and tuning the l para-

meter in the objective function, the adversarial exam-

ples in Figure 18 are generated. While not the result of

a universal example search, these examples maintain

better semantic similarity to the inputs than those

shown earlier. Visually the examples do not show sig-

nificant change in natural frequency or damping infor-

mation and it is conceivable that a human observer

would be fooled by these examples.

Although these examples were cherry-picked from a

large group of potential examples as visually more

threatening, the authors would point out that an

attacker would also be free to make such a selection. In

fact, query limitation would be the only thing prevent-

ing an attacker from generating many thousands of

trial examples and selecting only the most potent for

malicious deployment. In an SHM context, whereby

even a small number of false positives (and an even

smaller number of false negatives) are enough to render

a framework useless, an approach of this type repre-

sents a serious threat.

Figure 17. First two PCA directions of training and validation

data (coloured by damage label) as well as latent representation

of adversarial perturbation (arrow from true to adversarial).

(a) (b)

Figure 18. Adversarial examples results arising from the second black-box attack, selected for presentation based on a visual

assessment of semantic similarity. The adversarial input is semantically similar and follows the overall structure of the true inputs

more closely than the adversarial target signal: (a) false-negative example with l = 80 and (b) false-positive example with l = 40.
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Adversarial defence strategies for SHM

Several adversarial defence strategies have already been

presented in the machine learning literature and the

development of new approaches is a very active area of

research. The development of the techniques has thus

far been centred largely around image classification

tasks and have often been presented in an ad hoc man-

ner, whereby any one strategy is only effective against a

subset of attack types and vise versa.

Of the defences thus far presented, two prominent

themes are distillation38 and adversarial training21,39

type defences. While distillation has been shown to be

effective against some common attacks, it has also been

shown to be insecure against attacks deliberately

designed to circumvent the method.40 Adversarial

training defences generate adversarial examples during

the model training process, with the hope that the

trained model will develop robustly. While promising

progress has been made, the application of this tech-

nique in an SHM context is likely to be limited by the

availability of damaged training data.

Recently, Ilyas et al.41 have presented a new

approach related to adversarial training based on the

theory that adversarial examples arise due to ‘non-

robust features’ that are present in the dataset. Their

approach utilises a penalty term in the objective func-

tion that punishes models that rely on the non-robust

features.

Another promising direction is the investigation into

generative models. Li et al.42 have recently suggested

that generative models may be more robust to adversar-

ial attacks. They present adversarial defence strategies

that are able to make use of the full joint distribution in

order to detect adverse examples. This is a promising

result for SHM, as many modern approaches utilise

models of this type, for example, Bayesian networks.43

However, Gilmer et al.44 have shown that the presence

of adversarial examples in high-dimensional datasets is

(at least in a simplified spherical case) independent of

the model used for classification.

Conclusion

In this work, it has been possible to demonstrate the

serious vulnerability of an SHM classifier to adversarial

attack. A universal example search, has been shown to

construct semantically convincing adversarial examples

that are able to fool an SHM classifier with almost per-

fect testing accuracy. This was achieved in the white-

box threat scenario, which is the more realistic for

SHM applications. Although failing to replicate this

feat, a naive black-box attack has also been able to

construct individual adversarial examples.

Clearly, robustness to adversarial attack is an open

problem that presents a real challenge to the robustness

of machine learning applications. This work demon-

strates that data-driven SHM methods are not

exempted. In order to facilitate further investigation,

an adversarial attack threat model for SHM has been

proposed. It is hoped that this will serve as a platform

for future discussion surrounding the security implica-

tions of data-driven SHM approaches. The authors

believe that adversarial attack robustness will emerge

as a key challenge in the widespread deployment of

SHM frameworks.
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