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A B S T R A C T

Much attention has been given to the study of nonlinear normal modes (NNMs), a nonlinear
extension to the eminently useful framework for the analysis of linear dynamics provided by
linear modal analysis (LMA). In the literature, several approaches have gained traction, with
each able to preserve a subset of the useful properties of LMA. A recently-proposed framework
(Worden and Green, 2017) casts nonlinear modal analysis as a problem in machine learning,
viewing the NNM as directions in a latent modal coordinate space within which the modal
dynamics are statistically uncorrelated. Thus far, the performance of this framework has been
measured in a largely qualitative way. This paper presents, for the first time, an exploration into
the underlying dynamics of the statistically-independent NNMs using techniques from nonlinear
system identification (NLSI) and higher-order frequency-response functions (HFRFs).

In this work, the statistically-uncorrelated NNMs are found for two simulated nonlinear
cubic-stiffness systems using a recently-proposed neural-network based approach. NLSI models
are fitted to both physical and modal displacements and the HFRFs of these models are
compared to theoretical values. In particular, it is found for both systems that the modal
decompositions here permit an independent single-input single-output (SISO) representation
that can be projected back onto the original displacements with low error. It is also shown
via the HFRFs that the underlying linear natural frequencies of the modal dynamics lie very
close to the underlying linear natural frequencies of the nonlinear systems, indicating that a
true nonlinear decomposition has been identified.

1. Introduction

Linear modal analysis (LMA) is a mainstay in the practical analysis of linear dynamic systems. The framework has a number
of desirable properties that permit analysis of linear dynamics over a wide array of applications. The principal concept of linear
modal analysis is the specification of invariant, or modal, properties that are sufficient to entirely describe the underlying linear
equations of motion (EOM). To the dynamicist, these invariants are familiar as the mode shapes, natural frequencies, damping
ratios and frequency response functions. The specification of these quantities has been attempted in myriad ways, using approaches
ranging from direct derivation from the EOM [1], to sophisticated statistical methods that glean the parameters from measured
data [2]. Once specified, these parameters give rise to the other great advantage of modal analysis, that of linear decoupling. Given
proportional (or Raleigh type) damping, the dynamics of a generic multi-input–multi-output (MIMO) linear system can be exactly
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expressed as a linear combination of single-input–single-output (SISO) oscillators and visa-versa. This modal decomposition can
expressed as,

𝐲 = 𝛹𝐮, 𝐮 = 𝛹−1𝐲 (1)

where 𝐲 are the physical displacements, 𝐮 are the modal displacements and 𝛹 is the modal matrix. This decoupling permits a
greatly-simplified analysis, as each mode can be analysed and tested against prospective inputs individually, without concern about
interaction with other modes. The overall response of the system can be found as a simple linear sum of such analyses—this is the
principal of superposition.

The presence of nonlinearity in structural dynamics is inescapable in the modern engineering landscape. As the demands of
engineering structures become ever more complex, composite materials, demanding geometries and loading conditions outside
linear-elastic regions are increasingly part of cutting-edge design. Regrettably, these conditions can all lead to nonlinearity.

Nonlinearity breaks linear modal analysis in more than one place. The invariant modal properties cease to be invariant and often
come to depend on the excitation energy of the system. Furthermore, a linear decoupling into SISO oscillators is no longer possible.
Superposition is generally no longer available.

It is without wonder that much attention has been given to the extension of modal analysis to the nonlinear case. Although
unproven, it is difficult to imagine that every positive attribute of modal analysis can be preserved in the nonlinear case and so a
pragmatic approach is required. In [3], it is argued that the engineer can view a nonlinear normal mode in one of two ways.

1. A (local or global) coherent motion of a structure; this generalises the idea of the linear modeshape.
2. A decomposition into lower-order dynamical systems, the motions of which correspond to the ‘modes’; this generalises the
idea of a modal decomposition.

Approaches corresponding to both viewpoints can be found in the literature. The first, from Rosenberg [4], generalises the idea
of the linear modeshape by allowing an arbitrary function to describe the displacements of the system given a single displacement.
The Rosenberg ansatz is therefore,

𝑦𝑖 = 𝑓𝑖(𝑦1) ∀𝑖 = 2,… , 𝐷 (2)

where 𝐷 is the number of degrees-of-freedom. In practice, any displacement can be selected for the ‘input’ displacement, but 𝑦1 is
used here without loss of generality. The Rosenberg framework has desirable properties – including reduction to the linear case in the
absence of nonlinearity – but also comes with some significant drawbacks. Neither non-conservative forces nor internal resonances
are natively supported, although there have been contributions to address these shortcomings [5]. For a more detailed description
of the method, the reader is directed to the Ref. [6].

A geometrically more general approach was later proposed by Shaw and Pierre in [7]. In the extended framework, the idea
of a coherent motion is extended to the phase-space of the nonlinear system, where the displacements and velocities of the system
response are permitted to depend functionally on a single displacement–velocity pair. The ansatz is now,

𝑦𝑖 = 𝑓𝑖(𝑦1, �̇�1)

�̇�𝑖 = ℎ𝑖(𝑦1, �̇�1)
(3)

This approach retains the properties of the Rosenberg ansatz, but extends the approach naturally to non-conservative forces. The
fundamentally linear notion of a planar modeshape in the configuration space has been generalised to the phase space and is now an
invariant manifold. These curved manifolds in the phase space retain many of the desirable properties of a nonlinear modal analysis.
If motion is initiated on such a manifold, then it remains on that manifold for all time; this is akin to the idea that no linear mode
can excite any others. Secondly, the manifolds are shown by Shaw and Pierre to be tangent to the underlying linear modes (whereby
all nonlinear terms in the EOM are deleted) at the equilibrium point. This ensures that the Shaw–Pierre NNM is equivalent to the
linear mode in the limit of zero nonlinearity. This approach has generated a great deal of interest and development. For example,
in [8] a number of uniqueness and existence results are presented. The Shaw–Pierre framework has also been extensively used in
the treatment of geometric nonlinearities, the interested reader is directed to [9] for a recent survey.

Modal decomposition into lower order systems, the second viewpoint of [3], leads to a somewhat more practical view of NNMs.
Here, the ethos is to retain the properties of linear modal analysis that facilitate simpler analyses. Many techniques are applicable
to this problem, including nonlinear embedding methods [10], polynomial decoupling methods [11] and statistical decoupling
approaches such as proper orthogonal decomposition [12]. It is argued here that the metrics of success for NNMs with these
motivations are,

1. The ability of the decomposition to render the dynamics into independent modal dynamics (preferably SISO) wherein the
dynamics are simplified.

2. The extent to which the original dynamics can be recovered from the decomposition (nonlinear superposition).

Ref. [3], proposes a third class of NNM, based on a nonlinear decomposition into uncorrelated time series. The motivation for
this NNM is that often during analysis, the engineer does not have access to the underlying EOM of their system. An output-only
approach is also desirable.

The fundamental idea behind this NNM can be stated simply. By generalising the linear idea of decomposition, the framework
specifies a static map 𝑓 from the physical displacements to a new coordinate system within which the nonlinear modal displacements
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Fig. 1. Overview of the novel NNM approach.

are uncorrelated time series. As an additional inductive bias, the framework seeks to retain the idea of orthogonality that is present
in linear modal analysis (the mode shapes are an orthogonal basis), by requiring that the forward and inverse transformations
are conformal and locally preserve orthogonality. A conformal map 𝑓 ∶ 𝑋 → 𝑌 locally preserves angles between vectors but not
necessarily lengths. Thus, for two vectors originating from a single point 𝐱𝐢, 𝐱𝐣 ∈ 𝑋. From the definition of the dot product, 𝑓 is
conformal if,

𝐱𝑖 ⋅ 𝐱𝑗

‖𝐱𝑖‖‖𝐱𝑗‖ =
𝑓 (𝐱𝑖) ⋅ 𝑓 (𝐱𝑗 )

‖𝑓 (𝐱𝑖)‖‖𝑓 (𝐱𝑗 )‖ ∀𝐱𝑖, 𝐱𝑗 ∈ 𝑋 (4)

Fig. 1 depicts the statistical independence approach graphically. In the figure, dotted lines are functionals and solid lines represent
static maps. As can be seen, the framework also defines the inverse map 𝑓−1, permitting an approximate nonlinear superposition.
Following a machine-learning approach, 𝑓 is learnt from data via an objective function which penalises the pairwise correlations
of the modal displacements and encourages orthogonality of the transformation.

Although this approach may at first seem to bear close resemblance to the Rosenberg framework, there are structural differences.
In the Statistically independent framework, every physical displacement is used to build a map onto each modal displacement 𝑢𝑖.
In this fashion there is no concept of a ‘driving DOF’ as seen the in the NNM frameworks of Rosenberg and Shaw–Pierre. The new
ansatz is,

𝑢𝑖 = 𝑓𝑖(𝑦1, 𝑦2,… , 𝑦𝐷) ∀𝑖 = 1,… , 𝐷 (5)

It is certainly interesting to imagine if any equivalence could be established linking the statistically-independent NNMs to
previous approaches. However, the authors do not claim any such equivalence at this time.

In terms of language, the authors believe that any decomposition from the full nonlinear dynamics onto a simplified (by some
definition) set of coordinates that, in the limit of linearity, reduces correctly to the linear modes can rightly be called an NNM.

The original work [3], adopts a truncated multinomial expansion for 𝑓 and a Gaussian process (GP) form for 𝑓−1. Orthogonality
is introduced by a term in the objective function that encourages orthogonality between rows in the parameter matrices of the
multinomial. However, this approach is shown in [13], to lead to bloated models that give poor performance in the heuristic
optimisation methods used to tune the parameters of the multinomial. Despite this, the polynomial approach showed good
performance on a range of nonlinear single-input multiple-output (SIMO) systems comprising both simulated and experimental
datasets.

A recent work adopts an alternative neural architecture for 𝑓 and 𝑓−1 [14]. In this work, a cycle-consistent generative adversarial
network (cycle-GAN) is used [15]. The cycle-GAN architecture consists of two generator models (feed-forward neural networks)
representing 𝑓 and its inverse. These models are trained adversarially against discriminator models that encourage the generators to
map to a target distribution. For additional details on adversarial training and GANs, the reader is directed to the seminal paper [16].

There are several advantages to the cycle-GAN approach. Principally, the neural architectures are extremely flexible and can
learn complex nonlinear mappings if required. When compared to other neural architectures used for embeddings (such as auto-
encoders [17] or their variational extensions [18,19]), there is no need for a bottleneck layer to avoid learning trivial mappings.
Retaining the dimensionality of the input ensures that as many modal coordinates are defined as there are degrees-of-freedom in
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Fig. 2. Schematic of the two-DOF system used in this paper.

the nonlinear structure. The target distributions of the generator models can be chosen freely to ensure independence (in [14],
independent Gaussians are used). There is also no need to learn a separate inverse mapping, because the forward and inverse
mappings are learnt simultaneously. Additionally, a gradient-descent approach permits good optimisation performance on arbitrary
(differentiable) objective functions, even in the presence of large numbers of model parameters. The cycle-GAN NNMs of [14]
showed improved performance over the multinomial GP approach in both decomposition and reconstruction tasks.

Thus far, the performance of these NNMs have been judged by a mixture of qualitative and quantitative measures. When first
proposed, the quality of the simplification was judged ‘by-eye’ to be the extent to which the modal displacements produced solitary
peaks in their power-spectral densities (PSD). In [13], this was extended to a convolution-based approach, and in [14], to an
approach based on the inner-product. The quality of the reconstruction can of course be evaluated by a normalised mean-square
error (NMSE) metric.

The methodology of statistically-independent NNMs has already been successfully applied to a number of case studies, both
simulated and experimental. However, until now, little attention has been given to the precise nature of the dynamics that are
present in the NNMs generated under the statistically-independent framework. This paper seeks to address this issue by utilising
techniques from nonlinear system identification (NLSI). The approach here is to model the dynamics of the nonlinear functional
𝐱 → 𝐮, and compare them to equivalent models of the physical dynamics 𝐱 → 𝐲, to look for more concrete evidence of simplification.

The contributions of this paper are the following: For the first time, the nature of the underlying dynamics in the statistically-
uncorrelated NNMs are examined. For two benchmark nonlinear dynamical systems, the dynamics are approximated by discrete-time
linear and nonlinear models. The relevant fidelity of these models (and their ability to reconstruct the physical dynamics) is used
as justification for the extent to which the NNMs can be described as nonlinear-SISO systems in their own right. Also presented, is
a study comparing the performance of the modal transformation in generalising between excitation levels. Finally, the higher-order
frequency response functions (HFRFs) of the NLSI models are derived in a vectorised form and computed. The HFRFs form an infinite
series and can be used to glean information about polynomial nonlinearities present in the dynamics. Of particular interest is the
quantity 𝐇1 which is equivalent to the linear FRF of a system if all nonlinear elements are deleted. This quantity is used to determine
the extent to which the NNM are equivalent to their linear counterparts in the absence of nonlinearity. An incidental novel result
here, is the derivation of the first three HFRFs of a Gaussian-process nonlinear autoregressive with exogeneous inputs (GP-NARX)
model in the case of independent lengthscales. These are furthermore presented in a novel vectorised form, offering a significant
computational speedup over previously presented expressions.

The structure of the remainder of this paper is as follows; the second section describes the specification and simulation of the
nonlinear benchmark systems used in this paper. The third section covers the nonlinear modal analysis and the construction of the
NNMs by the cycle-GAN method. The fourth section introduces the training of NLSI models of the physical and modal displacements.
The fifth section describes the derivation and computation of HFRFs for the NLSI models. A final section holds some discussions
over the results of this paper and discusses limitations and future avenues for investigation.

2. Benchmark nonlinear dynamical systems

Statistically-independent NNMs have thus far been found for a range of dynamical systems undergoing random excitation. Both
numerical and experimental systems have been considered across a range of types of nonlinearities, including polynomial and impact
types [3,14].

For the present study, the NNMs of two and three degree-of-freedom (DOF) systems with a static cubic stiffness nonlinearity will
be investigated. Fig. 2 gives a schematic view of the two-DOF system under investigation.

In both case studies, nonlinearity is introduced into the system by the addition of a fixed cubic stiffness element between the
first degree of freedom and the base. The equations of motion for the two and three DOF systems are therefore given by,

𝑀 �̈� + 𝐶 �̇� +𝐾𝐲 +𝐾3𝐲
3 = 𝐱(𝑡) (6)

where, 𝑀,𝐶,𝐾,𝐾3 are square parameter matrices corresponding to the nonlinear system depicted in Fig. 2, and have values as
given by Table 1.
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Table 1
Parameters for the nonlinear benchmark systems.

Parameter Description Value

𝑚 Mass (Kg) 1

𝑐 Viscous damping coefficient (Ns/m) 20

𝑘 Linear stiffness (N/m) 1 × 104

𝑘3 Cubic stiffness (N/m3) 5 × 109

[𝜔1 , 𝜔2] Linear natural frequencies (2 DOF) (Hz) [15.9, 27.5]

[𝜔1 , 𝜔2 , 𝜔3] Linear natural frequencies (3 DOF) (Hz) [12.1, 22.5, 29.4]

𝑓𝑠 Sampling frequency (Hz) 500

𝑓𝑐 Lowpass cut-off frequency (Hz) 50

𝜎𝑥 Excitation standard deviation (N) 20

𝑁𝑠 Points sampled 1 × 105

Fig. 3. PSDs (estimated by the Welch method [20]) for the nonlinear and underlying linear system, the nonlinear data shows a clear hardening via shifts in
the principal resonance frequencies.

The equations of motion are integrated forward in time by a fixed-step fourth-order Runge–Kutta scheme. In total 105 points are

generated in order to achieve good estimates of the spectral densities. The input excitations are white Gaussians 𝑥 ∼ 𝑁(0, 𝜎𝑥) on the

first degree of freedom. An additional low-pass filter is applied to the excitations with a cut-off frequency of 50 Hz. Overall, data

at three excitation levels of 𝜎𝑥 = [8, 14, 20] are collected for each configuration. For convenience, all parameters pertaining to the

numerical simulation are collected in Table 1.

After simulation, the data are divided into training, validation and testing sets, with each set consisting of 103 points. In order

to remove the effect of transient behaviour introduced by the initial conditions or the numerical solver, the first 104 points from the

simulation are discarded.

In order to verify that the dynamics are indeed nonlinear, the spectral densities (estimated by the Welch method [20]) of

the nonlinear data are compared to the equivalent system with the nonlinear elements removed. Nonlinear cubic hardening is

demonstrated for the two degree-of-freedom system and 𝜎𝑥 = 20 in Fig. 3. In the plot there is clear evidence of hardening of the

resonance peaks from the inclusion of the cubic stiffness.
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3. Modal analysis

With the data from the benchmark nonlinear systems established, attention can be turned to the construction of the modal
transformations. In [3,13], the NNMs are constructed analytically via a polynomial expansion of the input displacements. The
parameters in the polynomial expansion were optimised via a meta-heuristic method that solved a multi-objective optimisation
problem. This approach was found to be effective for small numbers of degrees of freedom; however, in [13], it was demonstrated
that as the number of degrees-of-freedom or terms in the polynomial expansion grow, the optimisation problem quickly becomes
computationally impractical without access to the parameter gradients.

In order to address this problem, the recent contribution [14], demonstrates that cycle-consistent generative adversarial networks
(cycle-GAN) provide better access to the NNMs than an explicit form of the transformation into modal coordinates. The inverse
mapping is handled naturally and network parameters can be optimised via gradient descent. Another useful contribution of the
work is the proposal of an inner-product metric for evaluating the separation of the modes in the frequency domain; this replaces
the ‘by-eye’ approach used in [3].

Clearly any reasonable framework for NNMs should have as many modal directions as there are physical degrees-of-freedom
(even if a reduced-order representation is desirable) and so these architectures become problematic. The cycle-GAN does not have
such a limitation. In this work, the cycle-GAN approach is adopted. For a full presentation of the method the reader is directed to
the original paper [14], but a brief description of the approach is included here.

The structure of the cycle-GAN model here is essentially two generative adversarial networks (GANs) [16], tasked with learning
the forward (𝑓 ∶ 𝑌 → 𝑈) and inverse (𝑓−1 ∶ 𝑈 → 𝑌 ) mapping to the modal coordinates. Within each GAN, are two neural networks
each possessed of a single hidden layer. Of these two networks, the first, – the generators (𝑓 , 𝑓−1) – learn the desired mapping, while
a second – the discriminators (𝐷𝑓 , 𝐷𝑓−1 ) – learn to classify according to the target distributions.

Here, as in [14], the targeted distribution for the modal coordinates is a pair of independent Gaussian distributions. The target
distribution for the physical coordinates is learnt from the measured samples. The adversarial training of the GANs ensures that
the generator models learn the required mappings, while respecting the target distributions. Adversarial training leads to a number
of loss functions for the cycle-GAN that are optimised simultaneously by a stochastic gradient-descent algorithm. The first are the
adversarial losses, computed as in the original cycle-GAN paper [15],

𝐲

1
= E[log𝐷𝑓 (𝐲)] + E[log(1 −𝐷𝑓 (𝑓 (𝐮)))]

𝐮
1
= E[log𝐷𝑓−1 (𝐮)] + E[log(1 −𝐷𝑓−1 (𝑓

−1(𝐮)))]
(7)

where E is the expectation operator, 𝑓 (resp. 𝑓−1) are the forward and inverse modal transformations and 𝐷𝑓 (resp. 𝐷𝑓−1 ) are the
discriminator models trained to classify the target modal and physical distributions. The next objective function is the reconstruction
loss,

𝐲

2
= ‖𝐲 − 𝑓 (𝑓−1(𝐲))‖2

𝐮
2
= ‖𝐮∗ − 𝑓−1(𝑓 (𝐮∗))‖2

(8)

where the 𝐮∗ are samples from independent Gaussian distributions. Finally, the inductive bias of orthogonality is introduced by a
third loss term 3, that ensures the conformality of the inverse modal transformation 𝐮 → 𝐲. It is only required to place this restriction
on one of either 𝑓 of 𝑓−1 since the conformal property necessarily applies to inverses. In the interest of brevity, the algorithm used
to compute 3 is not included here. For a detailed explanation of the orthogonality enforcement assembly, the interested reader is
directed to [14]. The networks are trained over a number of epochs consisting of 2048 samples per epoch using an ADAM [21],
stochastic gradient-descent algorithm. The loss from a given training epoch is given by,

 = 𝜆1(𝐲

1
+ 𝐮

1
) + 𝜆2(𝐲

1
+ 𝐮

1
) + 𝜆33 (9)

where the 𝜆𝑖 are weights in the objective function. Following the approach of [14] and here, values of 𝜆1 = 1, 𝜆2 = 10 and 𝜆3 = 1

are used.
During each training epoch, gradient descent is performed on the cycle-GAN in both forward and inverse passes. Each pass

consists of feedforward and backpropagation steps. In the forward configuration, the observed physical displacements 𝑦 are mapped
onto their modal counterparts via the generator of 𝑓 and back onto the reconstructed physical displacements �̂� by the generator of
𝑓−1. Gradient is then backpropagated through all models according to the ADAM optimiser. In the inverse pass, the model is inverted
and draws from a Gaussian distribution are mapped onto samples from a distribution learnt from the physical displacements by the
inverse mapping 𝑓−1 and then back onto the random samples by 𝑓 . A graphical depiction of the forward pass through the model is
depicted in Fig. 4.

Following [14], in order to remove any dominant linear correlations, the input displacements are first transformed by a PCA
decomposition. Transforming the data in this way frees the neural architecture to learn any nonlinearity that might be required for
𝑓 without having to learn all the linear transformations as well. The same structure is of course present in the inverse mapping.

The network structures and parameters are detailed in Table 2. The number of hidden nodes in both the forward and inverse
mappings are set to the same value and training is repeated over a range of values to ensure the best possible chance of learning a
good decomposition and to ensure validation of the model architecture. For this paper, values between 10 and 200 are considered
with an increment of 10, with 10 training repeats per increment.

All networks, across all repeats, are trained for 5000 epochs each consisting of 2048 training examples. Once trained, an inner-
product metric is used to select the best encoder and decoder pair. This metric ensures that the transformation gives good separation
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Fig. 4. Overview of the cycle-GAN structure for the forward pass.

Table 2
Network parameters for the cycle-GAN network.

Parameter Description Value

𝑛𝑟 Training repeats 10
𝑛𝑒 Training epochs 5000
𝑛𝑠𝑒 Training examples per epoch 2048
𝑛𝑙 Number of hidden layers in 𝑓 and 𝑓−1 1
ℎ𝑙 Min. hidden nodes in 𝑓 and 𝑓−1 10
ℎ𝑚 Max. hidden nodes in 𝑓 and 𝑓−1 200
𝑛𝑠 Hidden node step size 10
𝑊hann Samples per Welch segment 2048
𝑊𝑜 Welch segment overlap 0

of peaks in the frequency domain. To simplify the computational complexity of the approach, the inner-product score is computed
every 100 training epochs. The metric is defined over the power-spectral densities (PSD) of modal coordinates 𝑃𝐮 and is given by,

inner =
𝑛dof∑

𝑖=1,𝑗=𝑖+1

𝑃𝑢𝑖 ⋅ 𝑃𝑢𝑗

‖‖𝑃𝑢𝑖‖‖ ‖‖‖𝑃𝑢𝑗
‖‖‖

(10)

In the above, the 𝑃𝑢𝑖 and 𝑃𝑢𝑗 are estimated by a Welch method [20]. This choice leads to the introduction of some additional
hyperparameters arising from the window length and overlap size in the Welch method. The authors’ experience with the cycle-GAN
approach has shown that too much noise in the PSD can lead to poor performance and so values of the parameters that promote
smoothness are selected. In the present study, a Hamming window of length 211 samples is used with zero overlap.

The PSDs of the modal coordinates are compared to those of the physical coordinates for the two-DOF and three-DOF systems
in Figs. 5 and 6. When judged visually, the peaks in the PSDs are well separated, indicating a good decomposition. Whilst this
qualitative analysis is promising, the remaining sections of this present a more rigorous examination of the decomposition using
NLSI.

4. Nonlinear system identification

Now that the 𝐲 and 𝐮 are established, attention can be turned towards analysis of the underlying dynamics. Following linear
modal analysis, it is assumed that the 𝐮 are the outputs of some modal dynamic system 𝐱 → 𝐮 that represents a decoupled formulation
of the physical dynamics. Unlike previous work that relied on qualitative metrics of decomposition, this work uses NSLI to model
the modal dynamics themselves. The approach in this work will be to conduct NLSI using both linear and nonlinear models. For
the linear modelling, auto-regressive models with exogenous inputs (ARX) will be used. ARX are a discrete time formulation where
the model form is,

𝑦𝑡 =

𝑛𝑦∑
𝑖=1

𝑎𝑖𝑦𝑡−𝑖 +

𝑛𝑥−1∑
𝑖=0

𝑏𝑖𝑥𝑡−𝑖 (11)

where 𝑛𝑥 and 𝑛𝑦 refer to the number of lagged inputs and outputs respectively and 𝑎 and 𝑏 are vectors of model parameters. For a
given lag structure, ARX models permit a vectorised formulation,

𝐲 = 𝐻

[
𝐚

𝐛

]
(12)
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Fig. 5. PSD of physical and modal displacements: two-DOF system.

Fig. 6. PSD of physical and modal displacements: three-DOF system.
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where 𝐻 is the Hankel matrix of lagged inputs and outputs at time 𝑡 given by,

𝐻 =

⎡⎢⎢⎢⎢⎢⎣

𝑦𝑡−1 𝑦𝑡−2 … 𝑦𝑡−𝑛𝑦
𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 … 𝑥𝑡−𝑛𝑥+1

𝑦𝑡−2 𝑦𝑡−3 … 𝑦𝑡−𝑛𝑦−1
𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3 … 𝑥𝑡−𝑛𝑥

𝑦𝑡−3 𝑦𝑡−4 … 𝑦𝑡−𝑛𝑦−2
𝑥𝑡−2 𝑥𝑡−3 𝑥𝑡−4 … 𝑥𝑡−𝑛𝑥−1

⋮ ⋮

𝑦𝑡−𝑁+𝑝 𝑥𝑡−𝑁+𝑝−1

⎤⎥⎥⎥⎥⎥⎦

(13)

where 𝑁 is the total number of temporal points in the training data. ARX models are completely defined by the model weights 𝑎𝑖
and 𝑏𝑖 which can be simply fitted to input data by least-squares solution of the linear equation in (12).

For the nonlinear models, Gaussian process NARX models will be used. The model formulation is that of a generic nonlinear
auto-regressive model with exogenous inputs (NARX) as,

𝑦𝑡 = 𝐹 (𝑦𝑡−1, 𝑦𝑡−2,… , 𝑦𝑡−𝑛𝑦
, 𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2,… , 𝑥𝑡−𝑛𝑥+1

) (14)

where 𝐹 is a static nonlinear map from the Hankel matrix to the predictions. As before, NARX models can be expressed in terms of
the Hankel matrix,

𝐲 = 𝐹 (𝐻) (15)

For the GP-NARX formulation it is assumed that 𝐹 can be approximated by a Gaussian process. This formulation comes with a
number of advantages over more traditional approaches, such as a polynomial expansion. Uncertainty quantification is handled
naturally, and the non-parametric form permits a high degree of model flexibility. A full description of Gaussian processes and
the GP-NARX model is beyond the scope of this paper and so only a brief overview is included here; for excellent references on
the topics, the reader is directed to [22–24]. A Gaussian process (GP) is a essentially a regression over a space of functions. For a
multi-input single-output (MISO) model the core of the GP is the regression formulation,

𝑦𝑖 = 𝑓 (𝐱) + 𝜖𝑖, 𝜖𝑖 ∼  (0, 𝜎2
𝑛
) (16)

where 𝑓 is a latent function that has not been observed directly, but can only be accessed via the observations 𝑦. The GP is formed
by assuming a distribution over possible values of the latent function as,

𝑓 (𝐱) ∼ (𝑚(𝐱), 𝑘(𝐱, 𝐱)) (17)

where 𝑘 is a positive semi-definite covariance kernel 𝑘(𝐱, ⋅) → R+ and 𝑚(𝐱) → R is the mean function. Several choices for both of
these functions are applicable and their selection is often driven by domain knowledge [22]. In the absence of any prior knowledge,
the zero-mean 𝑚(𝐱) = 𝟎 function is the safest assumption and ensures that the GP function is entirely shaped by the data.

The GP formulation allows one to marginalise over all possible latent functions 𝑓 . The result is a multivariate normal distribution
over some observed data {𝑋, 𝐲} and unobserved testing points {𝑋∗, 𝐲∗}.

(
𝐲

𝐲∗

)
∼ 

(
𝟎,

[
𝐾(𝑋,𝑋) + 𝜎2

𝑛
𝐼 𝐾 (𝑋,𝑋∗)

𝐾 (𝑋∗, 𝑋) 𝐾 (𝑋∗, 𝑋∗) + 𝜎2
𝑛
𝐼

])
(18)

where 𝐾(𝑋, ⋅) → R𝑛+ is a vectorised formulation of the covariance kernel for 𝑛 training inputs. From this distribution, it is
straightforward to calculate the posterior predictive distribution for unobserved variables 𝐲∗ as,

𝐲∗ ∼  (E[𝐲 ∗],V[𝐲 ∗]) (19)

where the posterior mean prediction is given by,

E[𝐲 ∗] = 𝐾
(
𝑋∗, 𝑋

) [
𝐾(𝑋,𝑋) + 𝜎2

𝑛
𝐼
]−1

𝐲 (20)

and the posterior variance is given by,

V[𝐲 ∗] = 𝐾
(
𝑋∗, 𝑋∗

)
−𝐾

(
𝑋∗, 𝑋

) [
𝐾(𝑋,𝑋) + 𝜎2

𝑛
𝐼
]−1

𝐾
(
𝑋,𝑋∗

)
+ 𝜎2

𝑛
(21)

Substituting the zero-mean function and the posterior variance into the formulation of a NARX model in (15) and taking the mean
prediction of the posterior distribution (equivalent to a maximum a posteriori (MAP) evaluation) gives the prediction or one step ahead
(OSA) prediction from the GP-NARX on some unseen lagged inputs 𝐻∗ as,

𝐲∗OSA = E[𝑦 ∗] = 𝐾
(
𝐻∗,𝐻

) [
𝐾(𝐻,𝐻) + 𝜎2

𝑛
𝐼
]−1

𝐲 (22)

where 𝐻 is the Hankel matrix of training data as before and 𝐻∗ is the Hankel matrix of inputs for the prediction points. A more
rigorous test of the performance of the model is the simulation or model-predicted output (MPO). To obtain this type of prediction,
the model predictions are fed back into the model as inputs to the next time step. The predictions from an MPO run treat the
discrete-time model as a differential equation in its own right subject to an initial value problem (IVP). Such predictions give a
more accurate picture of the dynamics that have been learned during training. MPO simulation requires new predictions for each
time step and so the vectorised form of the equations above cannot be used. The prediction at time 𝑡 for MPO prediction is given
by,

𝑦∗
𝑡
= 𝑘

(
𝐡∗
𝑡
,𝐻

) [
𝐾(𝐻,𝐻) + 𝜎2

𝑛
𝐼
]−1

𝐲 (23)
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Table 3
Parameters used in the optimisation of the GP-NARX models.

Parameter Description Value

𝑆𝑝 Population size 200

𝑆𝑔 Number of generations 200

𝑛train Training points 1000

𝑛val Validation points 1000

𝑛test Testing points 1000

𝜎2
RMS

Regularisation noise (MPO training only) 1% RMS

where 𝐡∗
𝑡
are the lagged inputs and lagged predicted outputs from the current time step,

𝐡∗
𝑡
=
[
�̂�∗
𝑡−1

�̂�∗
𝑡−2

… �̂�∗
𝑡−𝑛𝑦

𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 … 𝑥𝑡−𝑛𝑥+1

]
(24)

where the �̂�∗ are model predictions from previous time steps that are fed back into the model. MPO prediction raises some difficulties
in the context of GP-NARX models. The major issue is that, by definition, the GP is not permitted to have uncertainty on the values
of the inputs. This limitation makes it impossible to fully incorporate uncertainty quantification during MPO prediction, and in
practice, leads to underestimates of the predicted variance. One approach to circumvent this issue is to use a Monte Carlo-based
sampling technique [23,24]. However because uncertainty quantification is not the principal aim of the current investigation this
has not been considered here.

Practically, there are still a small number of hyperparameters that must be addressed when fitting GP-NARX models. The first
is the specification of the covariance function. A common choice for physical processes is the squared-exponential (SE) kernel.
Although there are several potential choices for the covariance function, the SE kernel is used here. The SE kernel is known to
produce smooth (class 𝐂∞) functions [22], and so is an appropriate choice for NLSI where the nonlinearities are expected to be
continuous. The SE kernel is given by,

𝑘
(
𝑥, 𝑥′

)
= 𝜎2

𝑓
exp

(
−

1

2𝓵2
‖‖𝑥 − 𝑥′‖‖2

)
(25)

where 𝜎2
𝑓
is the signal variance and 𝓁 is a 1 × (𝑛𝑥 + 𝑛𝑦) vector of length scales that allow for differently scaled dynamics on each

input dimension. Utilising a vector of length scales rather than a single hyperparameter allows for greater model flexibility and is
referred to as automatic-relevance detection (ARD) in the GP literature [22]. These parameters, along with the noise variance 𝜎2

𝑛

and lag structure, are hyperparameters of the GP-NARX model and must be optimised to ensure a good model.
The training approach for GP-NARX models trained in this paper is the following. Firstly, a training, validation and testing set of

data are taken from the simulated and modal data, each comprising 103 points. In the authors experience with NLSI models datasets
of this size represent a good trade-off between generalisation performance and computational-complexity. The next step is to fix
the lag structure. This is achieved by a grid search over the maximum number of lags in the input 𝑛𝑥 and output 𝑛𝑦 respectively. A
full combinatorial lag selection is not deemed necessary as it is assumed that the effect of any unnecessary lags will be removed by
the model weights in the ARX models or the lengthscales in the GP-NARX models. For each point in the grid, ARX and GP-NARX
models are trained on the training data and the remaining hyperparameters (𝜎2

𝑛
, 𝜎2

𝑓
,𝓁) are optimised. In order to alleviate some

of the computational difficulties associated with training GP-NARX models in such a brute-force approach, the optimisation of the
hyperparameters during lag structure optimisation (LSO) is completed using an evidence framework for which the objective function
is given by the negative log of the marginal likelihood,

𝐽LSO(𝜎
2
𝑛
, 𝜎2

𝑓
,𝓁) = −

1

2
𝐲𝑇

[
𝐾(𝑋,𝑋) + 𝜎2

𝑛
𝐼
]
𝐲 −

1

2
log

|||𝐾(𝑋,𝑋) + 𝜎2
𝑛
𝐼
||| (26)

With ARX and GP-NARX models trained at each point on the grid, predictions are then generated for the validation data using
the MPO approach described above. The lag structure is chosen to be the one that produces the lowest normalised mean-square
error (NMSE) on the validation data. The NMSE metric is defined by,

𝐽NMSE =
100

𝜎2
𝑦
𝑁𝐽

𝑁𝐽∑
𝑖

(
𝑦𝑖 − �̂�𝑖

)2
(27)

where 𝑁𝐽 = 𝑁𝑝 − (𝑛𝑥 + 𝑛𝑦). A visualisation of the resultant cost surfaces is given for the two-DOF system in Fig. 7. As can be seen
in the figures, the cost surfaces show a steep gradient for low integer numbers of lags but beyond this threshold there is a noisy
plateau indicating that an appropriate number of lags have been considered. With the lag structure set, the models are re-trained
using an NMSE loss function on the MPO predictions; this is done to encourage the models to learn the underlying dynamics of the
data.

All GP-NARX hyperparameter optimisations are completed using a particle swarm algorithm [25]. The optimisation and training
parameters are collected in Table 3.

For each SISO functional mapping 𝑥𝑖 → 𝑦𝑖 and 𝑥𝑖 → 𝑢𝑖, both ARX and GP-NARX models are fitted using the approach described
above.
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Fig. 7. GP-NARX NMSE surface during LSO training. NMSE scores exceeding 100 are excluded from the plot.

Table 4
Lag structures and MPO NMSE scores for the trained models on the unseen testing data for the
two-DOF system.

Model Target 𝑛𝑥 𝑛𝑦 MPO NMSE

ARX 𝑦1 11 13 4.08
𝑦2 3 14 4.95
𝑢1 7 9 4.25
𝑢2 15 13 3.62

GP-NARX 𝑦1 17 22 0.0502
𝑦2 21 34 0.234
𝑢1 39 38 0.154
𝑢2 1 26 3.16

For the two-DOF system, the MPO predictions on the unseen training data are depicted in Figs. 8 and 9 for the physical and

modal displacements respectively. MPO NMSE scores and lag structures are collected in Table 4. Overall, the GP-NARX models are

outperforming the linear ARX models in every case except 𝑢2, where performance is similar.

As can be seen from the results, the quality of fit is good for the ARX models (NMSE generally less than 5%) and excellent for

the GP-NARX models (NMSE generally less than 1%). It is interesting to note the wide range of lag structures that are present in

the results. This can likely be attributed to the difficulty of the optimisation problem leading to very rough LSO surfaces like the

one seen in Fig. 7. It is likely that there are a number of ‘good’ choices for lag structure in the NLSI models and so it is imagined

that prediction accuracy on the unseen testing data is fairly insensitive to the actual values of 𝑛𝑥 and 𝑛𝑦 beyond a certain level.

For the three-DOF system, the model predictions on 𝑦 and 𝑢 are shown in Figs. 10 and 11 respectively. Lag structures and NMSE

scores are collected in Table 5.



Mechanical Systems and Signal Processing 181 (2022) 109510

12

M.D. Champneys et al.

Fig. 8. MPO predictions on the unseen testing data for the NLSO models of the functional 𝐱 → 𝐲 for the two-DOF system.

Fig. 9. MPO predictions on the unseen testing data for the NLSO models of the functional 𝐱 → 𝐮 for the two-DOF system.
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Fig. 10. MPO predictions on the unseen testing data for the NLSO models of the functional 𝐱 → 𝐲 for the three-DOF system.

Fig. 11. MPO predictions on the unseen testing data for the NLSO models of the functional 𝐱 → 𝐮 for the three-DOF system.
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Table 5
Lag structures and MPO NMSE scores for the trained models on the unseen testing data for the
three-DOF system.

Model Target 𝑛𝑥 𝑛𝑦 MPO NMSE

ARX 𝑦1 37 39 4.52
𝑦2 35 3 3.85
𝑦3 25 25 4.28
𝑢1 31 8 3.38
𝑢2 33 24 5.65
𝑢3 33 11 4.49

GP-NARX 𝑦1 27 35 0.510
𝑦2 13 38 0.687
𝑦3 19 35 1.36
𝑢1 35 22 0.575
𝑢2 13 13 4.25
𝑢3 23 2 3.28

5. Higher-order frequency response functions

When studying linear dynamic systems, it is often very useful to examine the frequency response functions (FRFs) in order to
understand and predict how a system might respond to various loading conditions. Physically, the FRF of linear a system is known
to arise from Duhamel’s integral [26], which for a SDOF system can be written,

𝑦(𝑡) = ∫
∞

−∞

d𝜏ℎ(𝜏)𝑥(𝑡 − 𝜏) (28)

where ℎ(𝜏) is the impulse response of the system and is sufficient to characterise the dynamics entirely [26]. The FRF of the system
𝐻(𝜔) can be obtained by taking Eq. (28) into the frequency domain, via the Fourier transform. Thus,

𝑌 (𝜔) = 𝐻(𝜔)𝑋(𝜔) (29)

The FRFs of a general linear system can be derived by the approach of harmonic probing. For a linear dynamic system given by
some equation of motion,

𝑀 �̈�(𝑡) + 𝐶 �̇�(𝑡) +𝐾𝐲(𝑡) = 𝐱(𝑡) (30)

with mass, stiffness and damping parameter matrices given by 𝑀,𝐶,𝐾 respectively. The FRF 𝐻 (𝑘𝑟) describing the response of the
system at location 𝑟 to an excitation at location 𝑘 can be found by substituting in the probing input,

𝑥𝑘(𝑡) = 𝑒𝑖𝜔𝑡 (31)

From (28) and (29) the response of the system is therefore,

𝑦𝑟(𝑡) = 𝐻 (𝑘𝑟)(𝜔)𝑋𝑘(𝜔) = 𝐻 (𝑘𝑟)(𝜔)𝑒𝑖𝜔𝑡 (32)

These expressions can be substituted into the equation of motion in (30), and in solving for 𝐻 (𝑘𝑟), one arrives at the familiar
formulation,

𝐻 (𝑘𝑟)(𝜔) = [𝑀(𝑖𝜔)2 + 𝐶(𝑖𝜔) +𝐾]−1 (33)

In the case of linear systems, the principle of superposition means that, if instead of 𝑥𝑘(𝑡) = 𝑒𝑖𝜔𝑡, the probing input was comprised
of independent harmonics 𝑥𝑘(𝑡) = 𝑒𝑖𝜔1𝑡 + 𝑒𝑖𝜔2𝑡, the overall response can still be calculated in terms of the FRF as,

𝑦𝑟(𝑡) = 𝑒𝑖𝜔1𝑡𝐻 (𝑘𝑟)(𝜔1) + 𝑒𝑖𝜔2𝑡𝐻 (𝑘𝑟)(𝜔2) (34)

Nonlinear systems do not obey the principle of superposition. The impulse response function of a nonlinear system is no
longer sufficient to characterise the dynamics; this means that Eq. (34) no longer holds and a more general approach is required.
Fortunately, a generalisation of Eqs. (28) and (29) was developed by several authors (and named for the late Volterra) [27] in the
late 1950s. The Volterra series extends Duhamel’s integral as an infinite series,

𝑦(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡) + 𝑦3(𝑡) +⋯ (35)

where,

𝑦1(𝑡) = ∫
+∞

−∞

d𝜏ℎ1(𝜏)𝑥(𝑡 − 𝜏) (36)

𝑦2(𝑡) = ∫
+∞

−∞ ∫
+∞

−∞

d𝜏1 d𝜏2ℎ2
(
𝜏1, 𝜏2

)
𝑥
(
𝑡 − 𝜏1

)
𝑥
(
𝑡 − 𝜏2

)
(37)

and so on. In this expansion, the ℎ𝑛(𝜏1,… , 𝜏𝑛) are known as the Volterra kernels and act as generalisations of the impulse response
of a dynamic system to multiple independent impulses. One can think of the ℎ1(𝜏1) as being the impulse response of the system to
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an excitation at time 𝜏1 as before. ℎ2(𝜏1, 𝜏2) is the nonlinear response of a system to impulses at 𝜏1 and 𝜏2. Clearly in the linear case,
one has no such nonlinear contributions and so,

ℎ𝑛(𝜏1,… , 𝜏𝑛) = 0 ∀𝑛 > 1 (38)

As before, a frequency-domain representation is possible. In this domain, the Volterra kernels transform to higher-order frequency
response functions (HFRFs). The HFRFs generalise the FRFs for nonlinear systems and represent the nonlinear system responses to
multiple excitation harmonics. A full derivation of the series expansions for arbitrary input is beyond the scope of this paper, but
for a SISO system with a single excitation harmonic (𝑥(𝑡) = 𝑒𝑖𝜔𝑡), the response can be shown to be [26],

𝑦(𝑡) = 𝐻1(𝜔)e
𝑖𝜔𝑡 +𝐻2(𝜔,𝜔)e

𝑖2𝜔𝑡 +𝐻3(𝜔,𝜔, 𝜔)e
i3𝜔𝑡 +⋯ (39)

For a detailed explanation of the underlying theory of the Volterra series and general derivation for the MIMO case, the reader
is directed towards the monograph [26].

As in the linear case, the HFRFs can be extracted from the equations of motion by using a harmonic probing approach [28,29]. For
MIMO systems this process grows in complexity very quickly. Not only the HFRFs pertaining to differing input and output locations
(i.e.𝐻 (𝑖𝑗) in linear analysis) must be considered, but also the cross-HFRFs arising from responses from nonlinear interactions between
different input locations. In keeping with the notation of [26], a HFRF of order 𝑘, encoding the response at location 𝑗, from multiple
independent harmonic inputs at locations 𝑎, 𝑏 etc. may be written 𝐻

(𝑗∶𝑎𝑎𝑏𝑏)

𝑘
. Note that independent harmonics may be applied at

the same input location.
In the SIMO (and therefore SISO) case, a significant simplification is available. Because only a single input is present, all such

cross-HFRFS can be ignored. This means that the HFRF structure can be expressed in terms of the HFRF vectors,

𝐇𝑘(𝜔1,… , 𝜔𝑘) =

⎡
⎢⎢⎢⎣

𝐻
(𝑗∶1)

𝑘
(𝜔1,… , 𝜔𝑘)

⋮

𝐻
(𝑗∶𝑛)

𝑘
(𝜔1,… , 𝜔𝑘)

⎤
⎥⎥⎥⎦

(40)

If the NLSI has been successful, the HFRFs of the physical displacements are expected to be close to their theoretical values,
which are known for a SIMO quadratic-cubic Duffing-type system (Eq. (A.1)) to be equal to,

𝐇1(𝜔) = [𝑀(𝑖𝜔)2 + 𝐶(𝑖𝜔) +𝐾]−1 (41)

𝐇2(𝜔1, 𝜔2) = −𝐾2

(
𝐇1(𝜔1)◦𝐇1(𝜔2)◦𝐇1(𝜔1 + 𝜔2)

)
(42)

𝐇3(𝜔1, 𝜔2, 𝜔3) = −
1

6
𝐇1

(
𝜔1 + 𝜔2 + 𝜔3

)

◦
[

4𝐾2𝐇1

(
𝜔1

)
◦𝐇2

(
𝜔2, 𝜔3

)

+4𝐾2𝐇1

(
𝜔2

)
◦𝐇2

(
𝜔3, 𝜔1

)

+4𝐾2𝐇1

(
𝜔3

)
◦𝐇2

(
𝜔1, 𝜔2

)

+6𝐾3𝐇1

(
𝜔1

)
◦𝐇1

(
𝜔2

)
◦𝐇1

(
𝜔3

) ]

(43)

whereby ◦ denotes an elementwise product between vectors, and parameter matrices 𝑀,𝐶,𝐾,𝐾2, 𝐾3 have their familiar meaning.
These quantities are derived from the Volterra series [26] and can be obtained for arbitrary equations of motion using the method
of harmonic probing [28,29]. The interested reader is directed to the appendices of this paper for a full derivation.

The utility of the above quantities in interpreting the nonlinear properties of the NLSI models of the NNMs is hopefully clear.
𝐇1(𝜔) describes the underlying linear part of the dynamics and it is interesting to compare this quantity to that of the underlying
linear modes. The quantities 𝐇2(𝜔1, 𝜔2) and 𝐇3(𝜔1, 𝜔2, 𝜔3) are completely scaled by the quadratic and cubic nonlinearities, providing
insight into the types of nonlinearity present in the dynamics.

In order to examine the properties of the NLSI models in close detail, the HFRFs are also constructed for the GP-NARX models.
The derivation of these quantities is algebraically laborious and so is reserved for the appendices at the end of this paper. The HFRFs
of a SISO GP-NARX model are presented for the first time in vectorised form here. First let,

𝑣𝑗𝑘 =
𝐻𝑗𝑘

𝓁
(𝑦)

𝑘

𝑗 ∈ 1,… , 𝑁𝑝 𝑘 ∈ 1,… , 𝑛𝑦 (44)

𝑢𝑗𝑚 =
𝐻𝑗𝑚

𝓁
(𝑥)
𝑚

𝑗 ∈ 1,… , 𝑁𝑝 𝑚 ∈ 𝑛𝑦 + 1,… , 𝑛𝑦 + 𝑛𝑥 (45)

be training parameter matrices corresponding to the lagged outputs and inputs respectively, scaled by the lengthscales on the inputs
(𝓁(𝑦)

𝑘
) and outputs (𝓁(𝑥)

𝑚 ) respectively. Furthermore let,

𝐀 = 𝜎2
𝑓
(𝜶◦𝜸) = 𝜎2

𝑓

[
e
−

1
2

(∑
𝑘 𝑣

2
𝑗𝑘
+𝑢2

𝑗𝑚

)
◦
[
𝐾(𝐻,𝐻) + 𝜎2

𝑛
𝐼
]−1]

𝐲 (46)

be a 1 ×𝑁𝑝 vector of weights derived from the training data and kernel. Next define,

∆𝐲(𝜔)𝑘 =
𝑒−𝑘𝑖𝜔,𝛥𝑡

𝓁
(𝑦)

𝑘

, 𝑘 ∈ 1,… , 𝑛𝑦 (47)
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Fig. 12. Comparison of the 𝐇1s for the two-DOF nonlinear system.

∆𝐱(𝜔)𝑚 =
𝑒−(𝑚−1)𝑖𝜔,𝛥𝑡

𝓁
(𝑥)
𝑚

, 𝑚 ∈ 1,… , 𝑛𝑥 (48)

as 1 × 𝑛𝑦 and 1 × 𝑛𝑥 vectors of lag operators scaled by the lengthscales where 𝛥𝑡 is the sampling period of the data. Then the HFRFs
can be expressed as,

𝐇1(𝜔) =
∆𝐱(𝜔)𝑈𝐴𝖳

∆𝐲(𝜔)𝑉 𝐴𝖳 − 1
(49)

𝐇2(𝜔1, 𝜔2) =
𝑁1 +𝑁2 +𝑁3 +𝑁4

𝐷 − 1
(50)

where,

𝑁1 = −𝐇1(𝜔1)𝐇1(𝜔2)
[(
∆𝐲(𝜔1)𝑉

)
◦
(
∆𝐲(𝜔2)𝑉

)
−∆𝐲(𝜔1)

𝖳
∆𝐲(𝜔2)

]
𝐀𝖳 (51)

𝑁2 = −𝐇1(𝜔1)
[(
∆𝐲(𝜔1)𝑉

)
◦
(
∆𝐱(𝜔2)𝑈

)]
𝐀𝖳 (52)

𝑁3 = −𝐇1(𝜔2)
[(
∆𝐱(𝜔1)𝑈

)
◦
(
∆𝐲(𝜔2)𝑉

)]
𝐀𝖳 (53)

𝑁4 = −
[(
∆𝐱(𝜔1)𝑈

)
◦
(
∆𝐱(𝜔2)𝑈

)
−∆𝐱(𝜔1)

𝖳
∆𝐱(𝜔2)

]
𝐀𝖳 (54)

𝐷 =
[
∆𝐲(𝜔1 + 𝜔2)𝑉

]
𝐀𝖳 (55)

All other symbols retain their meaning from the previous sections. The expression for 𝐇3(𝜔1, 𝜔2, 𝜔3) is more lengthy and is
comprised of fourteen terms in the numerator and so is reserved for the appendices.

The formulations of the HFRFs for a GP-NARX model presented in this work offer several improvements over previously derived
expressions. Primarily, the expressions given here consider for the first time, a more general GP case that incorporates differing
lengthscales on each input to the GP (ARD). Another advantage is that these expressions are given in terms of precomputable vectors,
offering a dramatic improvement in computational complexity compared to the equivalent-polynomial NARX method in [24].

The first three HFRFs are calculated for each SISO mapping 𝐱 → {𝐲,𝐮} for both of the benchmark nonlinear systems. The 𝐇1(𝜔)s
are plotted for the two-DOF system in Fig. 12 and for the three-DOF system in Fig. 13.

As can be seen in the figures, there is excellent agreement between the NLSI estimates and theoretical values of 𝐇1(𝜔) for the
physical displacements. Using an NMSE metric to compare the true values to the predicted ones derived from the NLSI models returns
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Fig. 13. Comparison of the 𝐇1s for the three-DOF nonlinear system.

values less then 0.008% in all cases. This agreement implies that the NLSI has been successful in reconstructing the dynamics of the
underlying linear model precisely. The 𝐇1 of the modal coordinates show predominantly single frequency responses, indicating that
a good decomposition into SISO systems has been achieved. It is interesting to note that there is still some evidence of structure
at other frequencies in some of the modal coordinates, indicating that some dependence between the systems may not have been
completely eliminated by modal transformation.

The benchmark nonlinear systems considered in this paper do not have any quadratic stiffness elements and so the expected
values of the 𝐇2(𝜔1, 𝜔2) are zero for the physical displacements; these are plotted in Figs. 14 and 15 for the two-DOF system. As
can be seen in the figures there is evidence of non-zero components in these plots that implies that some small spurious quadratic
term may have been picked up by the GP-NARX formulation, which is perhaps unsurprising given the flexibility of the model class.
However, the presence of peaks in the 𝐇2(𝜔1, 𝜔2) magnitudes does not necessarily mean that there is a meaningful contribution
from these terms. Because the 𝐇2 are complex-valued, and derived from the 𝐇1, any structure (even noise) will present as peaks
at locations 𝜔1, 𝜔2 and 𝜔1 + 𝜔2. The remaining plots visualising the higher-dimensional HFRFs are excluded from the body of this
paper for reasons of space.

6. Discussion

It is argued in this paper that for a useful nonlinear modal decomposition there are two criteria for success: A decomposition
into SISO functionals and nonlinear reconstruction of the physical displacements. The statistically-independent NNMs considered
here demonstrate strong performance in both areas.

Considering the success of the SISO decomposition, it can be seen from the results of the NLSI that both the physical and modal
displacements can be well approximated by SISO models of the dynamics. As expected the GP-NARX formulation outperforms the
linear ARX models in almost every case indicating that nonlinearity remains present in the dynamics of the modal displacements.
Some good NMSE scores are achieved by the ARX models but these can likely be explained by the linear model learning a biased
linear representation of the cubic stiffness.

Also indicative of a good decomposition into SISO functionals are the largely single-peak structures of the 𝐇1 for the modal
coordinates in fact. Another particularly encouraging observation is that the peaks of the modal 𝐇1 are very close to the underlying
linear natural frequencies. Percentage differences between the peaks in the modal 𝐇1 and underlying linear natural frequencies are
[0.45%, 4.1%] for the two-DOF system and [0.33%, 1.73, 6.85%] for the three-DOF system. These results indicate that the underlying
linear modal structure has been retained and the discrepancies can likely be explained by a decreasing signal-to-noise ratio in the
higher frequency modes. As discussed, the 𝐇2 (and therefore 𝐇3) of the GP-NARX contain some spurious structure. One explanation
for this observation is the flexibility of the GP-NARX model class. However, it is not possible to rule out the possibility that the
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Fig. 14. 𝐇2 of the GP-NARX model of 𝐱 → 𝐲.

dynamics 𝐱 → 𝐮 have not been truly decoupled by a static map on the output only. Some possible extensions to the framework to
improve this are discussed later in this section.

With regard to the modal reconstructions, the performance of the transformations learned in this work are excellent. An
advantage of the cycle-GAN is that the inverse mapping is constructed alongside the forward modal transformation. Practically, this
results in excellent reconstruction performance. For the two-DOF system, the overall reconstruction introduces NMSEs of 0.0262%
and 0.0133% for each DOF respectively over the entire 105 simulated points. Performance on the three-DOF system degrades slightly,
but still provides a high-fidelity reconstruction with NMSE scores of 0.0972%, 1.032% and 0.371% for the three degrees of freedom
respectively. Once the cycle-GAN is trained, the overall mapping 𝐲 → �̂� or 𝑓 (𝑓−1(𝐲)) is static and is plotted in Fig. 16 for the two-
DOF transformation. As can be seen in the figure, the overall reconstruction mapping is very close to unity, indicating an excellent
level of nonlinear reconstruction. The regions of Fig. 16 that depart from unity are the regions of the input-space corresponding to
high amplitudes. Because of the nature of the Duffing-like equation, these regions of the input-space are inevitably under-sampled
compared to lower amplitude regions and it is therefore unsurprising that these regions are less well reconstructed.

A stringent test of both the SISO decomposition and reconstruction is to project the MPO model predictions of the modal
coordinates back onto the physical coordinate system via the inverse modal transformation. These estimates can then be compared
to the true observed physical displacements by an NMSE score. This reconstruction enables a quantitative measure of how well
the NNMs function as a SISO basis for representing the SIMO dynamics of the problem. In effect, this allows one to measure the
effectiveness of the decomposition quantitatively. The results of such an investigation are presented in Table 6. In the table, the
SISO model reconstruction (the 𝑦𝑖 reconstructed from the NLSI predictions of the 𝑢𝑖) are compared to the SIMO reconstructions
(�̂� = 𝑓−1(𝑓 (𝐲))) for 900 sampling points from the unseen testing set (the first 100 points are discarded to remove the effects of
differing lag structures between NLSI models).

As can be seen in Table 6, the SISO decomposition produces excellent reconstructions for the two-DOF and good reconstructions
three-DOf systems. This result indicates quantitatively that the modal decomposition represents a practical nonlinear decomposition
of the SIMO functional into SISO models. It is interesting to note that some of the SISO reconstruction errors are worse than the
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Fig. 15. 𝐇2 of the GP-NARX model of 𝐱 → 𝐮.

Fig. 16. Overall functional reconstruction of the forward and inverse modal transformations for the two-DOF system.

NMSE MPO errors on the corresponding modal coordinates. An example is present for the three-DOF system; the SISO reconstruction

of 𝑦1 is 2.25% but the NMSE MPO error for 𝑢1 is 0.575%. This is not an unexpected result. The reconstruction is known to introduce

some error due to the inevitable difficulty of finding an invertible map from 𝐲 → 𝐮. Another important consideration is that the

inverse map 𝑓−1 constructs each 𝑦𝑖 from all modal coordinates in a nonlinear way resulting in SISO reconstructions that may be
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Table 6
Comparison of NMSE reconstruction performance between the SISO modal models and the
reconstructed input.

System DOF Cycle-GAN reconstruction SISO reconstruction

2-DOF 1 0.0347 0.660
2 0.0252 0.765

3-DOF 1 0.103 2.25
2 0.704 1.34
3 0.319 1.74

Fig. 17. Cross-validation NMSE of GP-NARX and ARX models of modal displacements at different excitation levels for the two-DOF system.

worse than the corresponding NLSI model for the modal coordinates. However, it is still preferable to conduct the NLSI on an
independent basis. Assuming a priori that the modal DOFs are independent allows one to ignore all cross dependencies between
DOFs. In the example of a polynomial-NARX model, the number of terms in a SISO polynomial basis of order 𝑟 with 𝑑 DOFs is given
by,

𝑑 ×

(
𝑟 + 𝑛𝑥 + 𝑛𝑦

𝑟

)
(56)

where 𝑛𝑥 and 𝑛𝑦 are the number of lags on the input and output respectively. In the full MIMO case the number of terms scales
combinatorically, representing a significant increase in the difficulty of the identification problem.

It is also interesting to examine the generalisation performance of the nonlinear transformation. In order to achieve this,
additional nonlinear data is generated for both the two-DOF and three-DOF systems at the lower excitation levels of 𝜎𝑥 = 14 and
𝜎𝑥 = 8. The modal displacements for these additional data are then produced by the same forward modal transformation 𝑓 that was
used for the data at 𝜎𝑥 = 20. The NLSI process is then repeated for each of the new excitation levels. The resultant MPO prediction
NMSE scores (on each of the unseen testing data) are collected for the modal displacements in Figs. 17 and 18.

The figures show good generalisation of the nonlinear models compared to linear models which constitutes further evidence of
nonlinearity in the functional 𝐱 → 𝐮. As one might expected, the best generalisation performance for linear and nonlinear models
is present when the training excitation level is close to the testing level. For the two-DOF system, the nonlinear models show an
extremely good level of generalisation (all but one NMSE < 1%) for the first DOF and fairly strong generalisation between excitation
levels for the second DOF. For the three-DOF system there is a similar pattern with very good generalisation (all but one NMSE
< 2%) in the first DOF and reasonable generalisation in the second and third DOFs.

A particularly interesting observation is that, for some of the modal coordinates 𝑢𝑖, 𝑖 > 1, the linear models also show a
reasonable level of generalisation. The authors offer two explanations for this phenomena. The first is that the NLSI may be entirely
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Fig. 18. Cross-validation NMSE of GP-NARX and ARX models of modal displacements at different excitation levels for the three-DOF system.

limited by the poor signal-to-noise ratio in the data and so the GP-NARX makes a simplistic linear approximation. This seems unlikely
given the flexibility of the GP-NARX model and the relatively good NMSE scores that are found by both model classes when trained
and tested at the same excitation level. A second potentially very interesting explanation is that the cycle-GAN has learned a static
map that is able to decouple the SIMO nonlinear functional into SISO nonlinear and SISO linear functionals. Such a decoupling
would represent a highly-useful tool in the analysis of nonlinear structural dynamics. Although the generalisation study presented
here provides some evidence of such a decomposition, a formal proof is not available at this stage. Certainly, there are analyses that
could be fruitful in this direction and the authors are actively pursuing these.

One possible issue with the nonlinear modal analysis considered by this paper is the normalisation scheme in the training of
the cycle-GAN. All input displacements to the model are pre-scaled onto the interval [−1, 1]. Although this is common practice
in machine-learning, the scaling may be acting to limit the generalisation potential of the modal transformation, as both low
and high-amplitude responses are mapped to the same interval despite having potentially very dissimilar dynamics. A more
sophisticated normalisation scheme is an interesting avenue for additional work and may enable a greater generalisation of the
modal transformation between excitation levels.

7. Limitations and future work

The statistically-independent NNMs have been shown to have a number of desirable properties for the practising engineer in terms
of decomposition and modelling. Also of practical concern is the application of the method in an experimental setting. Although
the approach has already been applied to a number of simulated and experimental case-studies, there has not yet been a thorough
treatment of how the method might be applied in an experimental setting generally. For example, the specification of the number
of modes to include in the model (and therefore the number of sensors to provision) is an open problem. A related problem is
the treatment of missing measurements. The authors envisage that these practical concerns can likely be approached in much the
same manner as is done in experimental modal analysis in the linear case. For example, the appropriate number of modes could
be determined by qualitative assessment of the PSDs of the structure of interest, whereby the number of modes can be related to
the number of resonances. A full treatment of these ideas is beyond the scope of the current investigation and is therefore left for
future investigation.

Another limitation of the present methodology is the time taken to learn and validate the maps in the cycle-GAN model. Whilst not
insurmountable for the low numbers of DOFs considered here, the complexity increases somewhat with increasing dimensionality.
At the core of the statistically-independent framework is the machine-learning problem of specifying the forward and inverse maps,
the computational complexity of which is strongly related to model choice. Indeed, the cycle-GAN approach presented in [14]



Mechanical Systems and Signal Processing 181 (2022) 109510

22

M.D. Champneys et al.

already represents a significant computational saving over the approach of [3]. Alternative methods of computing the statistically-
independent NMMs are already an active area of investigation. For example, Ref. [30] uses an approach based on normalising-flows
and [31] uses an approach based on variational-autoencoder models.

All of the statistically-independent nonlinear modal analyses considered thus far have been focussed on a single output-only
transformation on the physical displacements that map to their modal counterparts. However, it is interesting to note that this
is not even sufficient for a total decoupling of the dynamics in the linear case. In linear modal analysis, the modal matrix also
transforms the input to the systems into the modal force vector,

𝛹𝖳𝐱 = 𝐳 (57)

so that the functional,

𝛹𝖳𝐱 = 𝐳 → 𝐮 = 𝛹𝐲 (58)

is truly decoupled. It is of interest to imagine what might be achievable by the application of an additional nonlinear map on the
input to a nonlinear system, even in the SIMO case.

As stated above, no equivalence can be currently claimed between the present framework and the previous approaches of
Rosenberg and Shaw–Pierre, owing to structural differences in the modal ansatz. However, it is interesting to imagine extensions to
the present investigation that might reconcile these differences. Certainly, if theoretical manifolds of Shaw–Pierre could be learnt
via a data-driven statistical framework (perhaps by the application of additional inductive biases) it would represent a significant
tool in the analysis of nonlinear structural dynamics.

8. Conclusions

Statistically-independent NNMs are an interesting avenue for the analysis of nonlinear structures subject to broadband random
excitation – a common scenario in structural dynamics. The NNMs constructed in this paper have been shown to be successful in
both metrics defined as criteria for a practical nonlinear extension to modal analysis; SISO decomposition and modal reconstruction.

In terms of the first criteria, a static-decomposition into SISO functionals has been identified. The independence of these
functionals is verified by the fitting of SISO NLSI models that are able to achieve very high-fidelity representations of the modal
dynamics. It is also demonstrated that the SISO functionals are able to locally-generalise across excitation-levels indicating that
the nonlinear dynamics of the system are accurately preserved by the decomposed formulation. By analysis of the HFRFs of the
nonlinear SISO functionals, it is also shown that the underlying linear modes are preserved in the dynamics of the nonlinear system.
This implies that the statistically-independent NNMs identified here are akin to the linear modal dynamics with additional nonlinear
structure.

In terms of a modal reconstruction, the statistically-independent NNMs considered in this paper are also shown to be successful.
The inverse modal transformation is able to reconstruct the physical displacements of the nonlinear system with a very high degree
of fidelity. It is also shown that a strictly-SISO reconstruction (wherein SISO NLSI models of the modal displacements are used) also
permits a good reconstruction, indicating that a practical modal reconstruction is possible from a simplified SISO basis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

MDC would like to acknowledge the support of the EPSRC, UK grant EP/L016257/1.
GT would like to thank the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant

agreement DyVirt (764547).
KW would like to acknowledge support via the EPSRC Established Career Fellowship, UK EP/R003625/1 and Programme Grant

EP/R006768/1.

Appendix A. Harmonic probing of a quadratic-cubic simo duffing oscillator

The derivations presented in this section follow the results derived in [32] for the HFRFs of MDOF nonlinear systems but are
presented in a convenient vectorised formulation. The application of the harmonic probing algorithm permits the derivation of
analytical HFRFs, when the equations-of-motion are known. For the SIMO quadratic-cubic system with 𝑛 DOFs under consideration,
the EOM in matrix form are given by,

𝑀 �̈� + 𝐶 �̇� +𝐾𝐲 +𝐾2𝐲
2 +𝐾3𝐲

3 = 𝐱(𝑡) (A.1)

where 𝐲 and 𝐱 are vectors, and 𝑀 , 𝐶, 𝐾, 𝐾2, and 𝐾3 are square 𝑛 × 𝑛 parameter matrices.
The 𝐇𝑘 encode the 𝑘th-order frequency domain response of the system to an input at location 𝑗input.
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The 𝐇1 encode the linear responses of the structure. The appropriate probing input is,

𝐱(𝑡) = 𝐩𝑒𝑖𝜔𝑡 (A.2)

where,

𝐩 = 𝛿𝑗𝑗input
(A.3)

is a one-hot vector corresponding to the input location of the SIMO system. The generalised probing output is given by (39),

𝐲(𝑡) =

⎡⎢⎢⎢⎣

𝐻
(1∶1)

1
(𝜔)𝑒𝑖𝜔𝑡 +𝐻

(1∶1,1)

2
(𝜔,𝜔)e𝑖2𝛺𝑡 +⋯

⋮

𝐻
(𝑛∶1)

1
(𝜔)𝑒𝑖𝜔𝑡 +𝐻

(1∶1,1)

2
(𝜔,𝜔)e𝑖2𝛺𝑡 +…

⎤⎥⎥⎥⎦
= 𝐇1𝑒

𝑖𝜔𝑡 (A.4)

In the above expression, the coefficients of the 𝐇1 are all 𝑒
𝑖𝜔𝑡. By utilising the orthogonality properties of independent harmonic

inputs, all higher-order terms in the above expansion can be neglected leaving,

𝐲(𝑡) =

⎡⎢⎢⎢⎣

𝐻
(1∶1)

1
(𝜔)𝑒𝑖𝜔𝑡

⋮

𝐻
(𝑛∶1)

1
(𝜔)𝑒𝑖𝜔𝑡

⎤⎥⎥⎥⎦
= 𝐇1𝑒

𝑖𝜔𝑡 (A.5)

Substituting (A.2) and (A.5) into the equation-of-motion gives,

𝐇1(𝜔)𝑒
𝑖𝜔𝑡[𝑀(𝑖𝜔)2 + 𝐶(𝑖𝜔) +𝐾] +𝑁 = 𝐩𝑒𝑖𝜔𝑡 (A.6)

where 𝑁 contains the terms with harmonics at integer multiples of 𝜔 from the quadratic and cubic stiffness terms. Equating
coefficients of 𝑒𝑖𝜔𝑡 in (A.6) gives,

𝐇1(𝜔)[𝑀(𝑖𝜔)2 + 𝐶(𝑖𝜔) +𝐾] = 𝐩 (A.7)

and so the 𝐇1 can be read off,

𝐇1(𝜔) = [𝑀(𝑖𝜔)2 + 𝐶(𝑖𝜔) +𝐾]−1𝐩 (A.8)

As expected, the expression is identical to the FRF of the underlying linear SIMO system (the case where 𝐾2 = 𝟎 and 𝐾3 = 𝟎).

In order to analyse the nonlinear behaviour of the system, the higher-order 𝐇𝑘 must be extracted. The process of harmonic-
probing for 𝐇2(𝜔,𝜔) is identical, although this time the probing input is comprised of two harmonics,

𝐱(𝑡) = 𝐩
(
𝑒𝑖𝜔1𝑡 + 𝑒𝑖𝜔2𝑡

)
(A.9)

so that the effect of interacting harmonics can be captured. The system response to this input can be derived from the Volterra
series. Considering only the terms that can generate coefficients of the harmonic 𝑒𝑖(𝜔1+𝜔2)𝑡 one has,

𝐲(𝑡) = 𝐇1(𝜔1)𝑒
𝑖𝜔1𝑡 +𝐇1(𝜔2)𝑒

𝑖𝜔2𝑡 + 2𝐇2(𝜔1, 𝜔2)𝑒
𝑖(𝜔1+𝜔2)𝑡 (A.10)

Substituting (A.9) and (A.10) into (A.1) as before and extracting the coefficients of 𝑒𝑖(𝜔1+𝜔2)𝑡 results in
[
−2𝑀𝜔2

1
+ (2𝑖𝐶 − 4𝑀𝜔2)𝜔1 + 2𝑖𝐶 − 2𝑀𝜔2

2
+ 2𝐾

]
𝐇𝟐

(
𝜔1, 𝜔2

)
+ 2𝐾2𝐇𝟏

(
𝜔1

)
𝐇𝟏

(
𝜔2

)
= 𝟎 (A.11)

Solving the above for 𝐇2 results in,

𝐇2(𝜔1, 𝜔2) = −𝐾2𝐇1(𝜔1)◦𝐇1(𝜔2)[𝑀(𝑖(𝜔1 + 𝜔2))
2 + 𝐶(𝑖(𝜔1 + 𝜔2)) +𝐾]−1 (A.12)

where ◦ denotes an elementwise product over the degrees-of-freedom. Simplifying in terms of the previously computed 𝐇1(𝜔),

𝐇2(𝜔1, 𝜔2) = −𝐾2𝐇1(𝜔1)◦𝐇1(𝜔2)◦𝐇1(𝜔1 + 𝜔2) (A.13)

It is clear that in the absence of any quadratic nonlinear terms (𝐾2 = 𝟎) there can be no contribution from 𝐇2(𝜔1, 𝜔2) to the
overall response.

The calculation for 𝐇3 is somewhat more tedious, but follows the same approach as the lower-order terms. Starting with the
probing input,

𝐱(𝑡) = 𝐩
(
𝑒𝑖𝜔1𝑡 + 𝑒𝑖𝜔2𝑡 + 𝑒𝑖𝜔3𝑡

)
(A.14)

the output from the Volterra series is given by,

𝐲(𝑡) =𝐇1(𝜔1)𝑒
𝑖𝜔1𝑡 +𝐇1(𝜔2)𝑒

𝑖𝜔2𝑡 +𝐇1(𝜔3)𝑒
𝑖𝜔3𝑡

+ 2𝐇2(𝜔1, 𝜔2)𝑒
𝑖(𝜔1+𝜔2)𝑡 + 2𝐇2(𝜔2, 𝜔3)𝑒

𝑖(𝜔2+𝜔3)𝑡 + +2𝐇2(𝜔1, 𝜔3)𝑒
𝑖(𝜔1+𝜔3)𝑡

+ 6𝐇3(𝜔1, 𝜔2, 𝜔3)𝑒
𝑖(𝜔1+𝜔2+𝜔3)𝑡

(A.15)
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where higher-order terms that cannot produce coefficients of 𝑒𝑖(𝜔1+𝜔2+𝜔3)𝑡 can be ignored. Substituting (A.14) and (A.15) into (A.1)
and extracting the coefficients of the harmonic 𝑒𝑖(𝜔1+𝜔2+𝜔3)𝑡 gives,

6𝐇3(𝜔1, 𝜔2, 𝜔3) =(
−6

(
𝜔1 + 𝜔2 + 𝜔3

)2
𝑀 + 6𝑖𝐶𝜔1 + 6𝑖𝐶𝜔2 + 6𝑖𝐶𝜔3 + 6𝐾

)
𝐇3

(
𝜔1, 𝜔2, 𝜔3

)

+ 6𝐇1

(
𝜔1

)
𝐇1

(
𝜔2

)
𝐇1

(
𝜔3

)
𝐾3 + 4𝐾2𝐇1

(
𝜔2

)
𝐇2

(
𝜔1, 𝜔3

)

+ 4𝐾2𝐇1

(
𝜔3

)
𝐇2

(
𝜔1, 𝜔2

)
+ 4𝐇1

(
𝜔1

)
𝐇2

(
𝜔2, 𝜔3

)
𝐾2

(A.16)

Solving finally for 𝐇3(𝜔1, 𝜔2, 𝜔3) and substituting in the definitions of 𝐇1 and 𝐇2 gives the simplified solution,

𝐇3(𝜔1, 𝜔2, 𝜔3) = −
1

6
𝐇1

(
𝜔1 + 𝜔2 + 𝜔3

)

◦
[

4𝐾2𝐇1

(
𝜔1

)
◦𝐇2

(
𝜔2, 𝜔3

)

+4𝐾2𝐇1

(
𝜔2

)
◦𝐇2

(
𝜔3, 𝜔1

)

+4𝐾2𝐇1

(
𝜔3

)
◦𝐇2

(
𝜔1, 𝜔2

)

+6𝐾3𝐇1

(
𝜔1

)
◦𝐇1

(
𝜔2

)
◦𝐇1

(
𝜔3

) ]

(A.17)

Appendix B. Harmonic probing of the SISO GP-NARX model

One begins with the generic formulation for a kernel-NARX model,

𝑦𝑡 = 𝜎2
𝑓

𝑁−𝑝∑
𝑗

𝛼𝑗𝜅(𝑋,𝑋′) (B.1)

where the 𝛼𝑗 are the kernel weights. In a GP these are given by finding the product of the inverse of the covariance matrix and the
observations,

𝛼 = [𝐾(𝑋,𝑋) + 𝜎2
𝑛
𝐈]−1𝐲 (B.2)

In the above expressions, 𝑋 is the Hankel matrix of the training inputs. The GP-NARX formulation treats both lagged input and
output values as pure inputs to the GP,

𝑋 =

⎡⎢⎢⎢⎢⎢⎣

𝑦𝑡−1 𝑦𝑡−2 … 𝑦𝑡−𝑛𝑦
𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 … 𝑥𝑡−𝑛𝑥+1

𝑦𝑡−2 𝑦𝑡−3 … 𝑦𝑡−𝑛𝑦−1
𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3 … 𝑥𝑡−𝑛𝑥

𝑦𝑡−3 𝑦𝑡−4 … 𝑦𝑡−𝑛𝑦−2
𝑥𝑡−2 𝑥𝑡−3 𝑥𝑡−4 … 𝑥𝑡−𝑛𝑥−1

⋮ ⋮

𝑦𝑡−𝑁+𝑝 𝑥𝑡−𝑁+𝑝−1

⎤⎥⎥⎥⎥⎥⎦

(B.3)

For a NARX(𝑛𝑦, 𝑛𝑥) formulation, 𝑋 has shape 𝑝× (𝑁 − 𝑝), where 𝑝 = (𝑛𝑦 + 𝑛𝑥). For notational convenience, let 𝑉 refer to the first
𝑛𝑦 columns of 𝑋 and 𝑈 refer to the last 𝑛𝑥 columns.

In practice there are a number of suitable choices for the kernel function 𝜅. In [24] the squared exponential kernel [22] is used
and the HFRF are extracted based on a decomposition of the kernel into an equivalent NARX model. In this paper a similar approach
based on a multivariate Taylor series expansion is used.

The squared-exponential kernel is given by,

𝜅(𝑥𝑖, 𝑥𝑗 ) = 𝜎2
𝑓
exp

⎛
⎜⎜⎝
−

(
𝑥𝑖 − 𝑥𝑗

)2
2𝓁2

⎞
⎟⎟⎠

(B.4)

where 𝓁 is a hyperparameter controlling the length-scales of the process. In order to provide a better fit to the data, individual length-
scales can be fitted to each input (or lag) in the GP. Denoting these by the vectors 𝓁(𝑥) and 𝓁(𝑦) respectively and then substituting
(B.4) into the explicit form of the kernel-NARX model in (B.1) gives,

𝑦𝑡 = 𝜎2
𝑓

𝑁−𝑝∑
𝑗=1

𝛼𝑗 exp

(
−
1

2

[ 𝑛𝑦∑
𝑘=1

(𝑣𝑗𝑘 − 𝑦𝑡−𝑘)
2

(𝓁
(𝑦)

𝑘
)2

+

𝑛𝑥∑
𝑚=0

(𝑢𝑗𝑚 − 𝑦𝑡−𝑚)
2

(𝓁
(𝑥)
𝑚 )2

])
(B.5)

This expression can be considered to be a nonlinear discrete-time equation of motion for a system with input 𝑥(𝑡) and output
𝑦(𝑡). In order to apply the harmonic-probing algorithm the expression must first be converted into polynomial form by taking a
multivariate series expansion in 𝑦𝑡−𝑘 and 𝑥𝑡−𝑚. In the derivation that proceeds, the following notational shortcuts will be adopted
for simplicity. Let,

𝑣𝑗𝑘 =
𝐻𝑗𝑘

𝓁
(𝑦)

𝑘

𝑗 ∈ 1,… , 𝑁𝑝 𝑘 ∈ 1,… , 𝑛𝑦 (B.6)

𝑢𝑗𝑚 =
𝐻𝑗𝑚

𝓁
(𝑥)
𝑚

𝑗 ∈ 1,… , 𝑁𝑝 𝑚 ∈ 𝑛𝑦 + 1,… , 𝑛𝑦 + 𝑛𝑥 (B.7)
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be training parameter matrices corresponding to the lagged outputs and inputs respectively, scaled by the lengthscales corresponding
to that lag. Furthermore let,

𝐀 = 𝜎2
𝑓
(𝜶◦𝜸) = 𝜎2

𝑓

[
𝛾◦

[
𝐾(𝐻,𝐻) + 𝜎2

𝑛
𝐼
]−1]

𝐲 (B.8)

be a 1 ×𝑁𝑝 vector of weights derived from the training data and kernel, where,

𝛾 = exp

(
−
1

2

[∑
𝑗

𝑉 2
𝑗
+
∑
𝑚

𝑈2
𝑚

])
(B.9)

are the terms inside the kernel that do not depend on 𝐱 or 𝐲.

The explicit representation in (B.5) can now be rewritten in vectorised form as,

𝑦𝑡 = exp

(
−1

2

[
−2𝐲𝑉 + 𝐲𝖳𝐲 − 2𝐱𝑈 + 𝐱𝖳𝐱 +

(∑
𝑗

𝑉 2
𝑗
+
∑
𝑚

𝑈2
𝑚

)])
𝐀𝖳 (B.10)

Expanding the exponential in the above as a series expansion in 𝑋 and 𝑌 gives,

𝑦𝑡 = [
1 + 𝐱𝑈 + 𝐲𝑉 + (𝐱𝑈 )◦(𝐲𝑉 )

+
1

2
(𝐲𝑉 )◦(𝐲𝑉 ) +

1

2
(𝐱𝑈 )◦(𝐱𝑈 ) −

1

2
𝐲𝖳𝐲 −

1

2
𝐱𝖳𝐱

+
1

6
(𝐲𝑉 )◦(𝐲𝑉 )◦(𝐲𝑉 ) +

1

6
(𝐱𝑈 )◦(𝐱𝑈 )◦(𝐱𝑈 )

−
1

2
𝐲𝖳(𝐲◦𝐲) −

1

2
𝐱𝖳(𝐱◦𝐱)

+
1

8
(𝐲𝑉 )◦(𝐲𝑉 )◦(𝐱𝑈 ) +

1

8
(𝐲𝑉 )◦(𝐱𝑈 )◦(𝐱𝑈 ) +⋯

]
𝐀𝖳

(B.11)

This expression now has a polynomial form in 𝑋 and 𝑌 , and the harmonic probing algorithm can be applied. One might imagine
that truncating the series might lead to inevitable errors in the calculations of the HFRF; however, this is not the case. To see why,
a similar argument to the analytical approach above can be adopted. Coefficients of the appropriate probing input can only be
generated by terms in the expansion up to a certain order. For the probing input of 𝑥𝑝(𝑡) = 𝑒𝑖𝑤𝑡, only the first order terms in 𝑋 and
𝑌 can produce coefficients of 𝑒𝑖𝑤𝑡. For a probing input of 𝑥𝑝(𝑡) = 𝑒𝑖(𝜔1+𝜔2)𝑡 only terms up to second order can produce the appropriate
coefficients. This limits the algebraic difficulty of the harmonic-probing approach considerably.

One begins with the probing input for 𝐻1 for a SISO system,

𝑥(𝑝)(𝑡) = 𝑒𝑖𝜔𝑡 (B.12)

and corresponding output from the Volterra series,

𝑦(𝑝)(𝑡) = 𝑒𝑖𝜔𝑡𝐻1(𝜔) (B.13)

where higher-order terms that cannot produce coefficients of 𝑒𝑖𝜔𝑡 can be ignored. The GP-NARX formulation is in discrete time and
so the differential operator must be applied to lagged inputs and outputs,

𝑥
(𝑝)
𝑡−𝑚 = 𝑒𝑖𝜔𝑡𝑒−𝑖𝑚𝜔𝛥𝑡 (B.14)

𝑦
(𝑝)

𝑡−𝑘
= 𝑒𝑖𝜔𝑡𝐻1(𝜔)𝑒

−𝑖𝑘𝜔𝛥𝑡 (B.15)

where 𝛥𝑡 is the sampling period of the discrete time model. Next define,

∆𝐲(𝜔)𝑘 =
𝑒−𝑘𝑖𝜔,𝛥𝑡

𝓁
(𝑦)

𝑘

, 𝑘 ∈ 1,… , 𝑛𝑦 (B.16)

∆𝐱(𝜔)𝑚 =
𝑒−(𝑚−1)𝑖𝜔,𝛥𝑡

𝓁
(𝑥)
𝑚

, 𝑚 ∈ 1,… , 𝑛𝑥 (B.17)

as vectorised lag operators so that Eqs. (B.14) and (B.15) may be written,

𝐲𝑝 = 𝑒𝑖𝜔𝑡𝐻1(𝜔)∆𝐲(𝜔) (B.18)

𝐱𝑝 = 𝑒𝑖𝜔𝑡∆𝐱(𝜔) (B.19)

Substituting these into the series expansion in (B.11) gives,

𝑒𝑖𝜔𝑡𝐻1(𝜔) =
[
𝑒𝑖𝜔𝑡∆𝐱(𝜔)𝑈 + 𝑒𝑖𝜔𝑡𝐻1(𝜔)∆𝐲(𝜔)𝑉 +⋯

]
𝐀𝖳 (B.20)
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where no other terms are able to generate coefficients of 𝑒𝑖𝜔𝑡. Solving the above for 𝐻1(𝜔) produces the desired result,

𝐻1(𝜔) =
∆𝐱(𝜔)𝑈𝐴𝖳

∆𝐲(𝜔)𝑉 𝐴𝖳 − 1
(B.21)

For 𝐻2(𝜔1, 𝜔2), the vectorised probing inputs and outputs can be written,

𝐲𝑝 = 𝑒𝑖𝜔1𝑡𝐻1(𝜔1)∆𝐲(𝜔1) + 𝑒𝑖𝜔2𝑡𝐻1(𝜔2)∆𝐲(𝜔2) + 2𝑒𝑖𝜔1+𝜔2𝑡𝐻2(𝜔1, 𝜔2)∆𝐲(𝜔1 + 𝜔2) (B.22)

𝐱𝑝 = 𝑒𝑖𝜔1𝑡∆𝐱(𝜔1) + 𝑒𝑖𝜔2𝑡∆𝐱(𝜔2) (B.23)

Substituting these into (B.11) and considering only terms that generate coefficients of 𝑒𝑖𝜔1+𝜔2𝑡 and then solving for 𝐻2(𝜔1, 𝜔2)

produces,

𝐻2(𝜔1, 𝜔2) =
𝑁1 +𝑁2 +𝑁3 +𝑁4

𝐷 − 1
(B.24)

where,

𝑁1 = −𝐇1(𝜔1)𝐇1(𝜔2)
[(
∆𝐲(𝜔1)𝑉

)
◦
(
∆𝐲(𝜔2)𝑉

)
−∆𝐲(𝜔1)

𝖳
∆𝐲(𝜔2)

]
𝐀𝖳 (B.25)

𝑁2 = −𝐇1(𝜔1)
[(
∆𝐲(𝜔1)𝑉

)
◦
(
∆𝐱(𝜔2)𝑈

)]
𝐀𝖳 (B.26)

𝑁3 = −𝐇1(𝜔2)
[(
∆𝐱(𝜔1)𝑈

)
◦
(
∆𝐲(𝜔2)𝑉

)]
𝐀𝖳 (B.27)

𝑁4 = −
[(
∆𝐱(𝜔1)𝑈

)
◦
(
∆𝐱(𝜔2)𝑈

)
−∆𝐱(𝜔1)

𝖳
∆𝐱(𝜔2)

]
𝐀𝖳 (B.28)

𝐷 =
[
∆𝐲(𝜔1 + 𝜔2)𝑉

]
𝐀𝖳 (B.29)

Finally for 𝐻3(𝜔1, 𝜔2, 𝜔3), the appropriate probing inputs and outputs are,

𝐲𝑝 =

+ 𝑒𝑖𝜔1𝑡𝐻1(𝜔1)∆𝐲(𝜔1) + 𝑒𝑖𝜔2𝑡𝐻1(𝜔2)∆𝐲(𝜔2)

+ 2𝑒𝑖𝜔1+𝜔2𝑡𝐻2(𝜔1, 𝜔2)∆𝐲(𝜔1 + 𝜔2)

+ 2𝑒𝑖𝜔2+𝜔3𝑡𝐻2(𝜔2, 𝜔3)∆𝐲(𝜔2 + 𝜔3)

+ 2𝑒𝑖𝜔1+𝜔3𝑡𝐻2(𝜔1, 𝜔3)∆𝐲(𝜔1 + 𝜔3)

+ 6𝑒𝑖𝜔1+𝜔2+𝜔3𝑡𝐻3(𝜔1, 𝜔2, 𝜔3)∆𝐲(𝜔1 + 𝜔2 + 𝜔3)

(B.30)

𝐱𝑝 = 𝑒𝑖𝜔1𝑡∆𝐱(𝜔1) + 𝑒𝑖𝜔2𝑡∆𝐱(𝜔2) + +𝑒𝑖𝜔3𝑡∆𝐱(𝜔3) (B.31)

Substituting these into (B.11) and considering terms up to third order that can generate coefficients of 𝑒𝑖(𝜔1+𝜔2+𝜔3)𝑡 results in
a very large expression, the solution of which for 𝐻3(𝜔1, 𝜔2, 𝜔3) gives an expression with fourteen terms in the numerator. The
solution is,

𝐻3(𝜔1, 𝜔2, 𝜔3) =

∑14
𝑖=1

𝑁𝑖

𝐷 − 1
(B.32)

where,

𝑁1 = −
1

6
𝐻1(𝜔1)𝐻1(𝜔2)𝐻1(𝜔3)[

(∆𝐲(𝜔1)𝑉 )◦(∆𝐲(𝜔2)𝑉 )◦(∆𝐲(𝜔3)𝑉 )

− ∆𝐲(𝜔1)𝑉∆𝐲(𝜔2)
𝖳
∆𝐲(𝜔3) −∆𝐲(𝜔2)𝑉∆𝐲(𝜔3)

𝖳
∆𝐲(𝜔1) −∆𝐲(𝜔3)𝑉∆𝐲(𝜔1)

𝖳
∆𝐲(𝜔2)

]
𝐀𝖳

(B.33)

𝑁2 = −
1

6
𝐻1(𝜔2)𝐻1(𝜔3)[

(∆𝐱(𝜔1)𝑈 )◦(∆𝐲(𝜔2)𝑉 )◦(∆𝐲(𝜔3)𝑉 ) −∆𝐱(𝜔1)𝑈∆𝐲(𝜔2)
𝖳
∆𝐲(𝜔3)

]
𝐀𝖳

(B.34)

𝑁3 = −
1

6
𝐻1(𝜔1)𝐻1(𝜔3)[

(∆𝐲(𝜔1)𝑉 )◦(∆𝐱(𝜔2)𝑈 )◦(∆𝐲(𝜔3)𝑉 ) −∆𝐱(𝜔2)𝑈∆𝐲(𝜔1)
𝖳
∆𝐲(𝜔3)

]
𝐀𝖳

(B.35)

𝑁4 = −
1

6
𝐻1(𝜔1)𝐻1(𝜔2)[

(∆𝐲(𝜔1)𝑉 )◦(∆𝐲(𝜔2)𝑉 )◦(∆𝐱(𝜔3)𝑈 ) −∆𝐱(𝜔3)𝑈∆𝐲(𝜔1)
𝖳
∆𝐲(𝜔2)

]
𝐀𝖳

(B.36)
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𝑁5 = −
1

3
𝐻1(𝜔1)𝐻2(𝜔2, 𝜔3)[

(∆𝐲(𝜔1)𝑉 )◦(∆𝐲(𝜔2 + 𝜔3)𝑉 ) −∆𝐲(𝜔1)
𝖳
∆𝐲(𝜔2 + 𝜔3)

]
𝐀𝖳

(B.37)

𝑁6 = −
1

3
𝐻1(𝜔2)𝐻2(𝜔1, 𝜔3)[

(∆𝐲(𝜔2)𝑉 )◦(∆𝐲(𝜔1 + 𝜔3)𝑉 ) −∆𝐲(𝜔2)
𝖳
∆𝐲(𝜔1 + 𝜔3)

]
𝐀𝖳

(B.38)

𝑁7 = −
1

3
𝐻1(𝜔3)𝐻2(𝜔1, 𝜔2)[

(∆𝐲(𝜔3)𝑉 )◦(∆𝐲(𝜔1 + 𝜔2)𝑉 ) −∆𝐲(𝜔3)
𝖳
∆𝐲(𝜔1 + 𝜔2)

]
𝐀𝖳

(B.39)

𝑁8 = −
1

3
𝐻2(𝜔2, 𝜔3)[

(∆𝐱(𝜔1)𝑈 )◦(∆𝐲(𝜔2 + 𝜔3)𝑉 )
]
𝐀𝖳

(B.40)

𝑁9 = −
1

3
𝐻2(𝜔1, 𝜔3)[

(∆𝐱(𝜔2)𝑈 )◦(∆𝐲(𝜔1 + 𝜔3)𝑉 )
]
𝐀𝖳

(B.41)

𝑁10 = −
1

3
𝐻2(𝜔1, 𝜔2)[

(∆𝐱(𝜔3)𝑈 )◦(∆𝐲(𝜔1 + 𝜔2)𝑉 )
]
𝐀𝖳

(B.42)

𝑁11 = −
1

6
𝐻1(𝜔1)[

(∆𝐲(𝜔1)𝑉 )◦(∆𝐱(𝜔2)𝑈 )◦(∆𝐱(𝜔3)𝑈 ) −∆𝐲(𝜔1)𝑉∆𝐱(𝜔2)
𝖳
∆𝐱(𝜔3)

]
𝐀𝖳

(B.43)

𝑁12 = −
1

6
𝐻1(𝜔2)[

(∆𝐱(𝜔1)𝑈 )◦(∆𝐲(𝜔2)𝑉 )◦(∆𝐱(𝜔3)𝑈 ) −∆𝐲(𝜔2)𝑉∆𝐱(𝜔1)
𝖳
∆𝐱(𝜔3)

]
𝐀𝖳

(B.44)

𝑁13 = −
1

6
𝐻1(𝜔3)[

(∆𝐱(𝜔1)𝑈 )◦(∆𝐱(𝜔2)𝑈 )◦(∆𝐲(𝜔3)𝑉 ) −∆𝐲(𝜔3)𝑉∆𝐱(𝜔1)
𝖳
∆𝐱(𝜔2)

]
𝐀𝖳

(B.45)

𝑁14 = −
1

6

[
(∆𝐱(𝜔1)𝑈 )◦(∆𝐱(𝜔2)𝑈 )◦(∆𝐱(𝜔3)𝑈 )

− ∆𝐱(𝜔1)𝑈∆𝐲(𝜔2)
𝖳
∆𝐱(𝜔3) −∆𝐱(𝜔2)𝑈∆𝐱(𝜔3)

𝖳
∆𝐱(𝜔1) −∆𝐱(𝜔3)𝑈∆𝐱(𝜔1)

𝖳
∆𝐱(𝜔2)

]
𝐀𝖳

(B.46)

𝐷 =
[
∆𝐲(𝜔1 + 𝜔2 + 𝜔3)𝑉

]
𝐀𝖳 (B.47)
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