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ABSTRACT

End-to-End automatic speech recognition (ASR) models aim

to learn generalised representations of speech. Popular ap-

proaches for End-to-End solutions have involved utilising

extremely large amounts of data and large models to im-

prove recognition performance. However, it is not clear if

these models are generalising the training data or memorising

the data. This paper combines the power of a mixture of

experts (MoE) models, which is referred to as multi-band,

multi-channel, with a popular model for ASR, the CNN-

transformer, to capture longer-term dependencies without

increasing the computational complexity of training. The

goal is to investigate how the transformer models adapt to

these different input representations of the same data. No

external language models were used to remove the impact

of external language models during inference. Although the

proposed multi-band transformer shows performance gain,

the main finding of this paper is to show the adaptive memo-

risation nature of transformers and the neural representations

of transformer embedding. Using the statistical correlation

index SVCCA, comparative discussion of the neural repre-

sentations of the proposed model and transformer approach

is provided, with key insights into the distinct learned struc-

tures.

Index Terms— end-to-end, automatic speech recogni-

tion, transformer, interpretability, convolutional neural net-

works

1. INTRODUCTION

In recent years, the main approaches for automatic speech

recognition (ASR) solutions have been hand-crafted deep

neural networks (DNNs) combined with Hidden Markov

models (HMMs) and End-to-End models, which train all

modules jointly in a globally optimised method. The per-

formance of the End-to-End approaches are now level to

DNN-HMM models when a sufficient amount of training

data is utilised [1]. However, the performance of End-to-End

models is still comparatively worse on lower resource tasks

or with particularly challenging data.

This work was partly supported by Voicebase Inc. at the Voicebase Re-

search Center

Particular focus of current developments with attention-

based models have involved data augmentation techniques

[2], [3], [4] and vastly increasing model depths [5], [6] in an

attempt to provide richer neural representations. However, it

is not always clear whether these models are generalising or

memorising the data and the performance improvements are

not attributed to the structures within the actual model archi-

tecture. A current state-of-the-art approach [7] utilises the

combination of convolutional neural networks (CNNs) and a

transformer to provide further improved ASR performance. It

is hypothesised that this is due to the ability of CNNs to cap-

ture richer local feature representations while the transformer

is better able to capture global context. The Linformer model

[8] attempted to approximate the information in the attention

matrix of the original transformer model. This was done by

linearly scaling the attention by projecting the embedding

matrix into lower dimension space then computing the inner

product. A further attempt from [9] aimed to remove the inde-

pendence assumptions during modelling to capture long-term

context dependencies for End-to-End models. This approach

used a “knowledge distillation” technique, where a hierar-

chical transformer model handles utterance level contextual

information and discourse level information independently,

while sharing the learned dependencies.

This paper explores the implementation of scalable multi-

band CNN models to capture longer-term dependencies, in-

spired by a mixture of experts (MoE), which has been shown

to be effective in NLP [10] [11] and vision domains [12].

This approach aims to retain the model representation capac-

ity while keeping the inference cost constant by applying a

subset of parameters to each sample.

Furthermore, building upon previous work from [13], the

neural representations of the multi-band model are compared

to observe the interaction between the developed structures

and the data. SVCCA has been used previously [14] to com-

pare DNN representations. This work aims to provide fur-

ther insights on the similarity of the learned structures across

training and provide a discussion on the distinct representa-

tions that occur within convolutional-transformer models and

the adaptive memorisation capability of the transformers.



2. MODEL ARCHITECTURE

Recently CNNs have been shown to improve ASR model per-

formance when combined with transformer models compared

to recurrent based models as they are able to capture local fea-

ture information progressively, while the transformer is better

able to handle the longer range global context. Variations of

this approach, such as [7], combine the convolutions with the

self-attention mechanism of the transformer to achieve state-

of-the-art results on ASR tasks.

2.1. Multi-Band and Multi-Channel Convolutions

As convolutional networks process the entire spectogram of

the audio signal with the same time-frequency resolutions,

number of filters, and dimensionality reduction, previous

work [15] has shown that higher resolution features can be

extracted if the lower frequency bands are processed with

high frequency resolution filters and high frequency bands

with high time resolution filters. This is due to there being

more “voice information” in the lower frequency bands than

the higher bands. Furthermore, [16] found that deeper trans-

former layers dilute audio features, and that the distinction is

more profound with spontaneous conversational speech.

The multi-band features f are defined as having N sub-

bands, with filterbanks over C channels. The ith filterbank of

the jth band of the frame of speech can be described by:

f
(j)
i = WT

C,ix
(j)
C (1)

where WC,i is the discrete cosine transform function:

WC,i =

√

2

C
cos

[

(k − 0.5)
iπ

C

]

(2)

and where k is the channel energy amplitude.

By modifying the fully-connected convolutional layers

with separate filters, features can be extracted at multiple lev-

els of the frequency spectrum. The output layers can then be

concatenated together. The proposed architecture is described

by Figure 1.

Along a similar methodology, a multi-channel (mchan)

approach takes the entire input into parallel convolutional

blocks, in an attempt to learn different representations of the

same acoustic signal. The representations are then aggre-

gated using mixture of experts in the same method as the

multi-band approach. Instead of taking the frequency bands

as different streams, as shown by Figure 1, the whole input is

taken in multiple streams.

2.2. Encoder-Decoder Transformer

Transformer models are currently the predominant choice for

a multitude of domains, such as image recognition and speech

recognition. The model published in [17] has especially been

utilised for End-to-End speech recognition due to its ability to

create a more accessible parallel training method which has

allowed End-to-End solutions to make use of larger amounts

of data. The main component of the transformer model is

the attention module, which measures the similarity of pair-

wise positions for a window of the input sequence. The trans-

former model has an encoder-decoder structure with stacked

self-attention and point-wise, fully connected layers. Each

of the blocks has a multi-head self-attention layer and feed-

forward layer.

The positional encoder takes the filtered output of the con-

volutional layers to determine the context based on the po-

sition of features in the embedding space. The context em-

bedding is then passed to the encoder block, where it is fed

through a multi-head attention layer and feed forward layer.

The self-attention mechanism aims to attend across a window

of the input with reference to the rest of the input. Each at-

tention vector is then finally passed through a feed-forward

layer to continue the sequence of encoder blocks. The out-

put of the encoder is then passed to a decoder block where

a self-attention layer produces another attention vector over

these embedding vectors. These embeddings are then passed

to another attention block to determine the relationship be-

tween the input and output sequences. Finally, the embedding

is then passed through a final feed-forward unit to expand the

dimensions into the target output size and normalised, typi-

cally with a softmax function.

3. NEURAL INSIGHTS WITH SVCCA INDEX FOR

END-TO-END ASR

The task of End-to-End ASR is to identify the acoustic se-

quence X = {x1, ..., xT } for time T as the output label se-

quence Y = {y1, ..., yN} of length N to map the posterior

p(Y |X). Using a statistical correlation method such as singu-

lar value decomposition with canonical correlation analysis

(SVCCA) [14], two sets of observations can have their cor-

relation relationship measured. For the dataset X and neu-

ron i in layer l, the activation output can be defined as zli =
(zli(x1), ..., z

l
i(xT )). In this case, SVCCA is used to find the

two bases w and s, such that when the original matrices are

projected onto them, the correlation is maximised:

wT
∑

XY s
√

wT
∑

XX w
√

sT
∑

Y Y s
(3)

where
∑

XX ,
∑

XY ,
∑

Y Y are the covariance and cross-

covariance respectively. The projections of the layers l1 and

l2 are then pruned to the top 99% representative dimensions.

The correlation is then calculated by maximising the corre-

lation of the projections of the linear transformations of the

layers l′1, l′2:

ρ =
⟨wT l′1, s

T l′2⟩

||wT l′1|| ||s
T l′2||

(4)



Fig. 1: Structure of multi-band CNN architecture: frequency filters applied in parallel through CNN layers

Put simply, the correlations between the neural representa-

tions will be higher when they have more similar information

encoded within them.

To analyse the neural representations of the CNN layers

and transformer layers, the activation embeddings of each

neuron, at each epoch were extracted using a separately de-

veloped pipeline. To ensure consistency, this was done by

passing a controlled input of 100 speech frames through each

trained model, and extracting the activation output at each

neuron. To aggregate the correlation coefficiency across lay-

ers, the spatial dimensions of the activation output vectors

were flattened, which provided spatial representation of each

neuron.

4. EXPERIMENTS

4.1. Data

The models were trained with the Switchboard dataset [18]

with 300 hours of transcribed speech and evaluated on the

Hub5’00 and RT03 test sets. 80-dimension filterbanks were

extracted from 25ms windows with a stride of 10ms.

4.2. Multi-band CNN-Transformer

All models were compiled with the ESPRESSO frame-

work [19]. The baseline model has a multi-layer stacked

2-dimensional CNN with pyramidal structure from 1 to 128

dimensions, with kernel size 3 x 3 and stride 1 and batch

normalisation between each CNN layer [20]. The final con-

volutional layer is then projected to a transformer encoder-

decoder model, described in [17]. The transformer model has

stacked encoder layers with embedding dimensions of 512 x

2048 and 6 decoder layers with positional embeddings.

As can be observed in Table 1, the multi-band and multi-

channel CNN models perform comparatively well to the base-

line model on the Hub5’00 test sets despite not being fully

optimised parameter-wise. The multi-band model achieves a

lower word error rate (WER) on the Switchboard test set but

slightly worse on all other test sets, while the multi-channel

model performs slightly worse on both test sets. A multi-band

Table 1: CNN-transformer architectures performance on

Hub5’00 Switchboard and Callhome test sets

Model Swbd Clhm

CNN + transformer 10.7 20.2

Mchan CNN + transformer 10.4 20.4

Mband CNN + transformer 10.5 20.5

Mband CNN + dropout + transformer 10.6 20.2

Table 2: CNN-transformer architectures performance on

RT03 Switchboard and Fisher test sets

Model RT03 S RT03 F

CNN + transformer 21.2 13.3

Mchan CNN + transformer 23.5 15.2

Mband CNN + transformer 23.3 14.9

Mband CNN + dropout + transformer 23.5 15.5

model with dropout regularisation of 0.1 for each band was

also included, in an attempt to improve the generalisation of

the network. While this proved to improve the performance

on the Callhome test set, the Switchboard set showed no im-

provement.

Furthermore, as can be observed in Table 2, the perfor-

mance of the multi-band and multi-channel approaches are

both also worse on the RT03 test sets.

Figure 2 displays the WER over the validation set across

epochs. It can be observed that, initially there is a large spike

in WER on all models, although this is significantly higher on

the baseline CNN-transformer model. The multi-band with

dropout and multi-channel models had the smallest spikes in

WER during training, which can be partly attributed to the

regularisation effect of the dropout parameter. Despite the

multi-band models displaying significantly more stability of

error rates during training over the initial epochs, all models

converged to roughly the same error rate by epoch 12.



Fig. 2: Validation set word error rate across models during

training on Switchboard data

(a) CNN-transformer

(b) Multi-band CNN transformer

(c) Multi-channel CNN Transformer

Fig. 3: Transformer models correlation coefficients through

time as performance converges; the darker colour gradients

are higher layer representations, while the lighter the gradient

the deeper the layer.

5. DISCUSSION

The graph in Figure 3(a) shows the neural representation co-

efficiency across the layers of the baseline CNN-transformer

model through training. There is a distinct hierarchical be-

haviour observed without clear convergence even in the ear-

lier layers of the network, represented by the darker lines.

The uncertainty of the attention mechanism has been high-

lighted by the pathology across the epochs, which could sug-

gest that parameter re-weighting for the context information

is occurring in the deeper layers, represented by the lighter

lines. Very similar patterns can be observed through Figures

3(b) and 3(c) as both present the same instability of the deeper

layers throughout the epochs during training. However, one

of the only distinctions is that the convergence of the earlier

layers appears to occur earlier, at epoch 20, with the multi-

band model. Despite these small representational differences

in the neural representations across the earlier layers of each

model, they performed similarly on the Hub5’00 test set.

Furthermore, the experiment scenarios in this paper are

set with CNNs, multi-channel CNNs, and multi-band CNNs

to explicitly distinguish the input layers for the following

encoder-decoder transformer layers. The multi-band CNN

model explicitly modeled different frequency bands of the

acoustic signal separately and aggregated them together. The

multi-channel CNN model learned different representations

of the same acoustic signal with a mixture of experts ap-

proach to aggregate these representations. Although there

was a difference in convergence speed during training, the

overall representation learning and performance remain simi-

lar on the Switchboard train set. Thus it can be hypothesised

the transformer layers adapted different types of input repre-

sentations to a similar average representational space, which

highlights the memorisation capability of the transformers

rather than the generalisation. The performance of the CNN,

multi-channel CNN and multi-band CNN varied in the Call-

home and RT03 test sets. As the models were trained with

Switchboard data, if the transformer layers had generalised

the input acoustic signal and the target categorical lexicon dis-

tribution mapping, the result patterns on other test sets should

have been similar. These empirical results indicate that the

transformers do more memorisation than generalisation with

the training data.

6. CONCLUSION

Multi-band and multi-channel models have been imple-

mented for an End-to-End ASR task, with comparable results

to the baseline CNN-transformer approach on in-domain data

but worse on the out-of-domain data. The analysis of neural

representations within the models provided insight into the

potential memorisation behaviour of the transformer archi-

tecture. An extension to this work would be the analysis

of neural representations within End-to-End models on aug-

mented or noisy data to observe the properties of different

layers. These insights can be beneficial for few-shot learning

model development in the ASR domain.
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