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Abstract—Speech dereverberation is often an important re-
quirement in robust speech processing tasks. Supervised deep
learning (DL) models give state-of-the-art performance for single-
channel speech dereverberation. Temporal convolutional net-
works (TCNs) are commonly used for sequence modelling in
speech enhancement tasks. A feature of TCNs is that they have a
receptive field (RF) dependent on the specific model configuration
which determines the number of input frames that can be
observed to produce an individual output frame. It has been
shown that TCNs are capable of performing dereverberation of
simulated speech data, however a thorough analysis, especially
with focus on the RF is yet lacking in the literature. This paper
analyses dereverberation performance depending on the model
size and the RF of TCNs. Experiments using the WHAMR corpus
which is extended to include room impulse responses (RIRs)
with larger T60 values demonstrate that a larger RF can have
significant improvement in performance when training smaller
TCN models. It is also demonstrated that TCNs benefit from a
wider RF when dereverberating RIRs with larger RT60 values.

Index Terms—speech, dereverberation, temporal convolutional
network, enhancement, sequence modelling, tasnet

I. INTRODUCTION

In far-field recording environments, reverberation affects the

quality and intelligibility of the recorded audio signal [1]. This

remains a problem for many domains in speech technology

[2], [3]. Dereverberation of speech signals has been studied

thoroughly over the past decades [4], [5] based on machine

learning models and signal processing (SP) techniques [2], [6].

Most SP approaches model reverberant speech as a mixture

of the anechoic speech signal summed with delayed, expo-

nentially decaying weighted sums of itself. The sequence of

weights used in this summation is commonly referred to as the

RIR, which is typically modelled in three parts: the direct path,

the early reflections (ERs) and the late reflections (LRs) [6].

ERs in speech are typically assumed to occur within the first

50 ms after the direct path. SP methodologies for suppressing

reverberant content in speech signals range from a number of

techniques with the most prominent approaches in recent work

using spectral suppression or linear predictive modelling [7],

[8].

DL models have mostly surpassed pure SP approaches for

enhancing reverberant speech signals on objective measures

such as word error rate (WER) or perceptual evaluation of
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speech quality (PESQ) [9]–[11]. Time-domain audio sepa-

ration networks (TasNets) [12] were proposed for speech

separation which were later applied also to dereverberation

[13]. Convolutional TasNets (Conv-TasNets) [14] replace the

BLSTM network of TasNets with a fully convolutional model

using a TCN [15]. TCNs have also shown to be effective

at more general speech enhancement tasks including derever-

beration [16]. A dereverberation network using a TCN with

self attention was proposed in [11] which demonstrated that

TCN models give competitive results with other state-of-the-

art techniques such as deep neural network (DNN) weighted

prediction error (WPE) models.

In this work, Conv-TasNets are analysed for application

to monaural dereverbation of speech. The main focus is to

analyse the interplay between RF, model size and RIR length

on the capability of Conv-TasNets to dereverb speech.

The remainder of the paper proceeds as follows, Section II

describes the signal model, in Section III Conv-TasNet is

formulated as a denoising autoencoder (DAE), in Section IV

the data and experimental setup are discussed, in Section V

results are presented and Section VI concludes the paper.

II. SIGNAL MODEL

A discrete single channel reverberant speech signal

x[i] = h[i] ∗ s[i] = sdir[i] + srev[i] (1)

for discrete time index i can be decomposed into direct-path

signal sdir[i] = αs[i − i0], with a delay i0 and possible

attenuation by a factor α, and reverberant part srev[i]. In (1),

h[i] is the RIR and ∗ denotes the convolution operation. The

signal of length Ls can be split into Lx blocks of length LBL

with a 50% overlap and block index ℓ defined as

xℓ = [x[0.5(ℓ− 1)LBL], . . . , x[0.5(1 + ℓ)LBL − 1]] (2)

The aim of this paper is to estimate the values of sdir =
[sdir[0], . . . , sdir[Ls− 1]] denoted as ŝ = [ŝ[0], . . . , ŝ[Ls − 1]].

III. DEREVERBERATION NETWORK

The dereverberation network is based on reformulating

Conv-TasNet [14] as a DAE composed of an encoder, a mask

estimation network and a decoder. The audio blocks xℓ are

encoded into feature vectors wℓ. The mask estimation network

produces a sequence of masks from the encoded signal. The

masks mℓ are then multiplied with the encoded features wℓ to

produce a sequence of output features that are decoded back

into the time domain signal by the decoder.



A. Encoder

The input signal blocks xℓ ∈ R
1×LBL are encoded by a

1D convolutional layer with a rectified linear unit (ReLU)

activation function, Henc, such that

wℓ = Henc (xℓB) , (3)

where B ∈ R
LBL×N is a matrix of trainable weights and wℓ

is the encoded feature vector for the ℓth signal block.

B. TCN Mask Estimation Network

The mask estimation network produces a mask mℓ for every

block ℓ. The encoded features wℓ are first normalized using

channelwise layer normalization [17]. The normalized features

are transformed by a pointwise convolutional layer [14] which

reduces the feature dimension from N to B. The sequence

of features is then processed by a stack of X convolutional

blocks (CBs) with increasing the dilation f of a factor of two

per CB, i.e. f ∈ {1, . . . , 2X−1}. Each CB is comprised of

a pointwise convolutional layer, a parametric ReLU (PReLU)

activation function, global layer normalization (gLN) [14], and

a depthwise separable convolutional layer [14]. The pointwise

convolutional layer has B input channels and H output chan-

nels. The depthwise separable convolutional layer has H input

channels and B output channels. The X CBs of increasing

dilation is repeated R times. This repetition widens the RF of

the network to a lower degree than continuing to increase the

dilation whilst also producing a deeper layered network with

more parameters per second of the RF. The RF of the TCN,

measured in seconds, is defined as

R(LBL, R,X, P )=
LBL

2fs

(

1+R(P−1)

X
∑

i=1

2X−i

)

(4)

where P is the kernel size in the CB and fs defines the

sampling rate in Hz. Proceeding the CBs is a PReLU activation

function, followed by a pointwise convolutional layer which

transforms the feature dimension from B to N . A ReLU

activation function is used to produce a set of non negative

masks defined as mℓ ∈ R
1×N .

C. Decoder

The decoder is a transposed 1D convolutional layer that

decodes the masked encoded mixture vℓ = mℓ ⊙wℓ back

into the time domain. The operator ⊙ denotes the Hadamard

product. The transposed convolutional operation is defined as

ŝℓ = (mℓ ⊙wℓ)U = vℓU (5)

where U ∈ R
N×LBL and ŝℓ is the decoded time domain block.

D. Objective Function

The scale-invariant signal-to-distortion ratio (SISDR) ob-

jective function [18] is used for training the DAE network.

To use SISDR as an objective function, the negative SISDR

is computed such that the network is optimized to maximize

the SISDR of the estimated speech signal. The SISDR loss

function is defined as

LSISDR(ŝ, sdir) := −10 log10

∥

∥

∥

⟨ŝ,sdir⟩sdir
∥sdir∥2

∥

∥

∥

2

∥

∥

∥
ŝ− ⟨ŝ,sdir⟩sdir

∥sdir∥2

∥

∥

∥

2
. (6)

IV. DATA AND EXPERIMENTS

A. Data

WHAMR [16], a monaural noisy reverberant two speaker

speech corpus, and an extension of WHAMR, denoted as

WHAMR ext in the following, are used for all experiments.

Only the first speakers’ audio clips are used since the focus

is on single speaker dereverberation. The RIRs are generated

using the pyroomacoustics [19] software framework. RT60

values for the RIRs are randomly generated between 0.1s and

1s in WHAMR. To create WHAMR ext, reverberant speech

with larger RT60 values between 1s and 3s were simulated

following the same routine as for WHAMR. Scripts to recreate

WHAMR ext can be found on github1.

An 8kHz sample rate is used for all audio. For each corpus,

WHAMR and WHAMR ext, the training set is comprised of

20,000 speech examples. For training, audio clips are truncated

or padded to 4 seconds, resulting in a total of 22.22 hours of

data being used. This approach is used to address signal length

mismatches in batches during training [16]. For validation

5000 audio examples are used resulting in 14.65 hours of

speech and for testing 3000 audio examples are used, i.e. 9

hours of speech. All models are evaluated on the test set.

B. Training Configuration

All experiments are done using the speechbrain speech

processing software framework [20]. Training is performed

over 100 epochs with an initial learning rate set to 10−3 that

is halved if there is no improvement in the average SISDR

over the validation set after 3 epochs.

The number of blocks, X , in the dilated stack of the TCN

was varied from 1 to 10 and the number of repeats, R, of

the stack itself was varied from 1 to 8. The rest of the

network’s configuration is fixed. The encoder has LBL = 16
input channels and N = 512 output channels. The TCN is

configured such that there are B = 128 output channels from

the bottleneck layer and each CB has H = 512 internal

convolutional channels and a kernel size P = 3.

C. Evaluation Metrics

A number of metrics were considered for evaluating the

dereverberation performance objectively [21]. SISDR is re-

ported for all experiments. In addition PESQ [22], extended

short-time objective intelligibility (ESTOI) [23] and speech-

to-reverberation modulation energy ratio (SRMR) [24] are

reported for some models. PESQ is an objective measure of

speech quality. ESTOI is an objective measures of speech

intelligibility. SRMR is a non-intrusive measure of reverber-

ation energy. ∆-measures show the improvement over the

reverberant speech, x[i].

1Mixing script available online at https://github.com/jwr1995/WHAMR ext



V. RESULTS

a) ∆ SISDR on WHAMR and WHAMR ext: The

∆ SISDR results for the models trained and evaluated on

the WHAMR dataset can be seen in Table I for varying X

and R. These parameters are varied such that they change

the receptive field and model size of TCNs where X has

more effect on the RF (cf. Eq. (4)) and both increase the

number of layers in the network but R has more effect on

the temporal parameter density, i.e. number of parameters

per second of the receptive field. Note that one CB has

BH +H +HP +HB = 133, 120 parameters.

TABLE I: ∆ SISDR in dB for all TCN configurations trained

and evaluated on WHAMR, best performing model for number

of CBs (X ·R) in TCN shown in bold.

X

1 2 3 4 5 6 7 8 9 10

1 1.88 2.61 3.32 4.05 4.66 5.09 5.41 5.65 5.67 5.68
2 2.48 3.58 4.45 5.25 5.92 6.26 6.47 6.45 6.60 6.63
3 2.95 4.08 4.94 5.94 6.43 6.80 6.88 6.94 7.02 7.01
4 3.28 4.46 5.47 6.53 6.97 7.01 7.16 7.23 7.14 7.11
5 3.54 4.82 5.86 6.70 7.06 7.31 7.29 7.32 7.42 7.44
6 3.74 4.99 6.16 6.87 7.25 7.37 7.45 7.51 7.47 7.40

R

8 4.09 5.55 6.44 7.12 7.44 7.63 7.59 7.54 7.48 7.40

Results in Table I show that for smaller models (≲ 2M

parameters) it is preferable to have a larger RF, i.e. a higher X

value, than a deeper network per the RF, i.e. a higher R value.

For example, for a model with 12 CBs the best performing

model configuration is (X,R) = (6, 2) where X = 6 is the

largest possible value for the 4 possible TCN configurations,

{(X,R)} = {(4, 3), (3, 4), (6, 2), (2, 6)}. The importance of

widening the receptive field is also apparent in the first row of

Table I where R = 1 remains constant for best performance for

the first 9 CBs. This importance of having X > R disappears

as the number of CBs surpasses 36 (X = 6, R = 6) at which

point the best performance is gained by models with R > X ,

i.e. more importance is given to a deeper network than a wider

receptive field.

TABLE II: ∆ SISDR in dB for all TCN configurations trained

and evaluated on WHAMR ext, best performing model for

number of CBs (X ·R) in TCN shown in bold.

X

1 2 3 4 5 6 7 8 9 10

1 3.04 3.85 4.67 5.79 6.84 7.68 8.09 8.55 8.69 8.69
2 3.65 4.76 6.11 7.44 8.56 9.19 9.52 9.64 9.76 9.79
3 4.06 5.44 6.98 8.42 9.29 9.83 10.13 10.19 10.21 10.15
4 4.45 6.10 7.62 8.96 9.68 10.11 10.41 10.42 10.42 10.47
5 4.70 6.51 8.21 9.36 10.01 10.37 10.60 10.62 10.54 10.50
6 4.96 6.85 8.48 9.63 10.15 10.49 10.74 10.77 10.67 10.60
7 5.29 7.14 8.75 9.71 10.34 10.61 10.72 10.68 10.76 10.70

R

8 5.45 7.44 9.03 10.02 10.49 10.80 10.81 10.67 10.68 10.57

Comparing the best performing models for increasing the

number of CBs (X · R) trained on WHAMR (cf. Table I)

and WHAMR ext (cf. Table II) indicates that for a dataset

containing only larger RT60 values between 1s and 3s it is

more preferable to increase the model’s RF as the number of

CBs in the TCN increases up to 42, i.e. (X,R) = (7, 6).

For RT60 values between 0.1s and 1s (WHAMR corpus,

Table I) the model only benefits from putting more emphasis

when expanding the RF up to 36 CBs.

Table III shows the best performing models in terms of

SISDR, trained on each training set and evaluated on each

test set. These results show that performance improvements in

SISDR are similarly replicated in SRMR PESQ and ESTOI

measures and thus correspond to an objective improvement in

perceived reverberation, quality and intelligibility of speech.

Tables I and II have been calculated also for SRMR, PESQ

and ESTOI, which show similar trends. Table III also shows

that when evaluated on WHAMR the model that was trained

on WHAMR ext gives better dereverberation performance (in

SRMR) but was more distorted (in SISDR), c.f. SISDR and

SRMR results in rows 1 & 3. It is however expected that

training on both WHAMR and WHAMR ext jointly would

lead to further generalisation improvements on the WHAMR

test set.

(a) Trained on WHAMR.

(b) Trained on WHAMR ext.

Fig. 1: SISDR depending on logarithmic RF. Circles and

squares indicate evaluation on WHAMR and WHAMR ext

test sets, respectively. Maximum RT60s of WHAMR and

WHAMR ext are shown by dashed lines. Colour scale in-

dicates the number of model parameters.

b) RF and model size: Figure 1 shows the results for

models trained on WHAMR (upper panel) and WHAMR ext

(lower panel) depending on the RF and model size. Note

that the SISDR measure is used here, as opposed to the ∆



train eval X R # params R (s) SISDR ∆ SISDR PESQ ∆ PESQ ESTOI ∆ ESTOI SRMR ∆ SRMR

WHAMR WHAMR 6 8 6.6M 1.02 12.03 7.63 3.46 0.91 0.93 0.15 8.7 2.26

WHAMR WHAMR ext 8 8 8.8M 4.09 5.89 9.64 2.3 0.94 0.74 0.35 8.48 5.72

WHAMR ext WHAMR 6 8 6.6M 1.02 10.79 6.39 3.24 0.69 0.92 0.14 8.81 2.36

WHAMR ext WHAMR ext 7 8 7.7M 2.04 7.07 10.81 2.46 1.11 0.81 0.42 9.18 6.42

TABLE III: Best performing models for models trained on WHAMR and WHAMR ext evaluated on each test set.

Fig. 2: RFs for the best performing models in Tables I and

II shown by increasing model size measured in number of

CBs (one CB is 133,120 parameters). Line colour and style

indicates the training and test set used.

SISDR measure, because it is later compared with SRMR

in this section. In terms of model size, the SISDR perfor-

mance that can be achieved by TCNs alone saturates as the

number of parameters approaches 6M, for both WHAMR and

WHAMR ext when evaluated on WHAMR. For evaluation

on WHAMR ext, the SISDR performance also saturates as it

approaches 6M parameters but the results for the model trained

on WHAMR in Table III indicate it may benefit from the larger

model size when having to dereverb larger reverberation times

especially when trained only with smaller RT60s. Figure 1

further illustrates that the SISDR performance saturates before

the RF reaches 1s for models trained on WHAMR, i.e. the

highest occurring RT60 in WHAMR. The RFs of the best

performing models can be seen in Table III. The best model

trained and evaluated on WHAMR in terms of SISDR has

an RF of 1.02s. Analysing the same models but evaluated

on WHAMR ext the best SISDR performance is attained

with an RF of 4.09s. For models trained on WHAMR ext

the optimal model evaluated on WHAMR has an RF of

1.02s and an RF of 2.04s when evaluated on WHAMR ext.

Figure 2 analyses the best performing models on each of

the two datasets by their RFs depending on model size (i.e.

number of CBs). This indicates that for larger RT60 values

TCNs benefit from having a larger RF as most of the best

performing models evaluated on WHAMR ext have a larger

RF than the best performing models evaluated on WHAMR.

The SISDR of the estimated signal improves even with RT60s

larger than the RF as can be seen in Figure 1. This implies

the network learns how to estimate masks that suppress the

characteristic of reverberation, as opposed to trying to perform

a blind convolution operation based on an estimated RIR

representation in the network. As such, it should be possible

to dereverb RIRs of any RT60 value regardless of RF but

Table III indicates that having an RF close to the maximum

RT60 value is optimal.

(a) Trained on WHAMR.

(b) Trained on WHAMR ext.

Fig. 3: SRMR depending on logarithmic RF. Circles and

squares indicate evaluation on WHAMR and WHAMR ext

test sets, respectively. Maximum RT60s of WHAMR and

WHAMR ext are shown by dashed lines. Colour scale in-

dicates the number of model parameters.

c) SRMR vs SISDR: Comparing results of SISDR (Fig-

ure 1) with SRMR (Figure 3) indicates that with sufficiently

large model sizes (≳ 4M parameters) much of the residual

distortions in the signal are artifacts introduced by the network

and not reverberation itself. This also indicates that the larger

the reverberation time, the more residual distortions are present

in the estimate clean speech signal. Audibly, the distortions

present in RT60s ≲ 1 were not particularly noticeable however

as the RT60 approaches 3s they become more noticeable as

informal listening tests showed. The performance of SRMR

also saturates slightly earlier than that of SISDR similarly

implying that some of the gain from increasing the model size

has more correlation to reducing artefact distortions in ŝ[i] than

any residual reverberant effects. This is an argument in favour

of using the SISDR function over a pure reverberation based

measure like SRMR as the loss function because SRMR is



more agnostic to general distortions in the signal.

Fig. 4: ∆ SRMR for model trained on WHAMR depending

on logarithmic RF. Circles and squares indicate evaluation on

WHAMR and WHAMR ext test sets, respectively. Maximum

RT60s of WHAMR and WHAMR ext are shown by dashed

lines. Colour scale indicates the number of model parameters.

d) Improvement on WHAMR vs WHAMR ext: The

∆ SRMR results in Figure 4 demonstrate that greater re-

verberation improvement can be attained on the more re-

verberant WHAMR ext dataset but that larger model sizes

(≳ 4M parameters) are required to fully capitalize on this.

Also for both WHAMR ext evaluation there is much broader

distribution of values as the receptive field increases. This is

related to the R variable in the TCN, in other words using a

deeper network leads to a more significant improvement when

evaluating SRMR improvement on larger RT60s.

VI. CONCLUSION

In this paper TCNs were analysed for their application in

dereverberation tasks. It was found that for smaller models

more emphasis should be put on widening the RF of the

network than using more layers in a network. The model

performance in both SISDR and SRMR starts to saturate

around a model size of 4M parameters. It was shown that the

for larger RT60 values there is strong evidence that having

a wider receptive field is important for achieving optimal

performance. This is especially true when the model is trained

on smaller RT60s. It was found that SRMR performance was

fairly agnostic to the variation in RT60 values but SISDR

performance was significantly impacted. This indicates that

much of the distortion remaining in the signal maybe mod-

elling errors as opposed to reverberant effects.
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