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ABSTRACT

Anomalous audio in speech recordings is often caused by

speaker voice distortion, external noise, or even electric inter-

ferences. These obstacles have become a serious problem in

some fields, such as recording high-quality music and speech

processing. In this paper, a novel approach using a tempo-

ral convolutional attention network (TCAN) is proposed to

tackle this problem. The use of temporal conventional net-

work (TCN) can capture long range patterns using a hierarchy

of temporal convolutional filters. To enhance the ability to

tackle audio anomalies in different acoustic conditions, an

attention mechanism is used in TCN, where a self-attention

block is added after each temporal convolutional layer. This

aims to highlight the target related features and mitigate the

interferences from irrelevant information. To evaluate the

performance of the proposed model, audio recordings are

collected from the TIMIT dataset, and are then changed by

adding five different types of audio distortions: gaussian

noise, magnitude drift, random dropout, reduction of tem-

poral resolution, and time warping. Distortions are mixed

at different signal-to-noise ratios (SNRs) (5dB, 10dB, 15dB,

20dB, 25dB, 30dB). The experimental results show that the

use of proposed model can yield good classification perfor-

mances and outperforms some strong baseline methods, such

as the LSTM and TCN based models, by about 3∼ 10%

relatively.

Index Terms— Audio anomaly classification, temporal

convolutional network, self-attention

1. INTRODUCTION

Assessing the quality of audio signals is an important con-

sideration in many audio and multimedia applications, such

as speech recognition, high-quality music recording, and ma-

chine fault detection. By now, there have been some studies

in audio quality assessment [1, 2, 3, 4]. Fu et al.[2] devel-

oped a non-intrusive speech quality evaluation model to pre-

dict PESQ scores using a BLSTM model. Avila et al., [3]

investigated the applicability of three neural network-based

approaches for non-intrusive audio quality assessment based

on mean opinion score(MOS) estimation [5]. These previous

studies mainly focused on quality estimations of audio record-

ings by predicting a quality score. To our knowledge, few in-

vestigated how to identify what type an anomalous distortion

is. Moreover, identifying the type of audio anomalies will

be useful to anomaly detection and audio quality enhance-

ment, which could benefit various fields in industry. To tackle

the audio anomalies classification, it is highly desirable not

only to find out whether there exist audio anomalies in audio

recordings, but also to identify which type an audio distortion

belongs to.

In this work, a Temporal Convolutional Attention Net-

work [6] is proposed and investigated. This is because TCNs

have advantages in two aspects. Firstly, TCNs use 1D di-

lated convolutions [7] to flexibly enlarge their receptive field

through increasing their dilation rate. This enables TCN to

process long-term sequences by using a wider part of the in-

put data to contribute to the output [8]. Secondly, unlike the

RNN-based methods, its computation is performed layer-wise

and its weights at every time-step are updated simultaneously

[6]. By now, there have been already some applications of

TCN in activity detection [9, 10], language processing [11]

and event detection [12]. However, it was found in our ex-

periments that the use of TCN did not show satisfying per-

formances on audio anomalies classification in some condi-

tions, e.g. the SNR of distortion corrupted signals is relatively

low or high. For this reason, an attention mechanism is inte-

grated into TCN, as attention [13, 14, 15] exhibits a better

balance between the ability to model long-range dependen-

cies and the computational and statistical efficiency. Unlike

a previous study [16] using an attention block after a TCN

block, our work goes deeper into the TCN block by inserting

a self attention layer after each 1D conventional layer. The re-

lated details of our model will be introduced in the following

sections.

The rest of paper is organised as follows: Section 2 in-

troduces the proposed model architecture in detail. Section

3 depicts the used dataset and experimental set up. Section

4 presents and analyses the obtained results, and finally the

conclusion and future work are given in Section 5.
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Fig. 1: Architecture of the Temporal Convolutional Attention Network (TCAN): (a) A 3-layer dilated causal convolution; (b)

The basic structure of TCAN; (c) Self-attention block.

2. MODEL ARCHITECTURE

Given an input audio feature sequence x = {x0, · · · , xT },

our aim is to identify the type of audio anomalous distortions

A = {ai, · · · , aM} in recordings, and M is the number of

distortion classes. As aforementioned in Section 1, the use

of TCN is to collect dependencies over long spans using di-

lated convolutional layers. Figure 1 shows the architecture

of proposed approach using the temporal convolutional atten-

tion network. Figure 1(a) illustrates the structure of a dilated

causal convolution with dilation factors d = {1, 2, 4} and fil-

ter size k = 3. Figure 1(b) shows the temporal convolutional

attention networks expanded by inserting an attention block

between two convolutional layers of a TCN, and Figure 1(c)

shows the structure a self-attention block.

2.1. Temporal Convolutional Network

As shown in Figure 1(a), the TCN relies on 1D dilated con-

volutional layers stacked hierarchically. For a 1D sequence

input x ∈ ℜn and a filter f : {0, · · · , k − 1} → ℜ, the di-

lated convolution operation F on element s of the sequence is

defined as:

F (s) = Σk−1

i=0
f(i) · xs−d·i (1)

where d is the dilation factor, k is the filter size, and s− d · i
accounts for the direction of the past[6]. It is clear that the

TCN is controlled by two parameters, dilation factor (d) and

filter size (k). Dilation is equivalent to introducing a fixed

step between every d adjacent filter taps. Increasing its value

can lead to the increment of the depth of the network (i.e.,

d = O(2i) at level i of the network). When d = 1, a dilated

convolution reduces to a regular convolution. Using larger

dilation enables an output at the top level to represent a wider

range of inputs, thus effectively expanding the receptive field

of convolutional layers[6]. For choosing larger filter sizes k,

the effective history of one such layer is (k−1)d. With above

designs, the TCN model is thus able to take similar inputs and

produce similar outputs as RNNs while it is efficient taking

advantage of convolution architectures.

2.2. Temporal Convolutional Attention Network

In comparison with the basic structure of TCN, the TCAN

aims to find which features are more relevant to the recogni-

tion target and which are less or not when search through ob-

served long data streams. As shown in figure 1(b), the basic

TCN structure is expanded by adding a self-attention block

after a 1D dilated convolutional layer.

The architecture of the used self-attention unit [17] is

shown in Figure 1(c). The input features are transformed into

G and H via 1D convolution, and then generate the attention

weights W from G and H by

W = fsoftmax(G
TH) (2)

where fsoftmax denotes the softmax function. After that, the

weighted features WTK are obtained, where K is another set

of features transformed from 1D convolution. The output fea-

tures is the sum of the weighted features and original inputs.

3. DATA AND EXPERIMENTAL SET UP

3.1. Data

In our experiments, the TIMIT dataset [18] was used. 3436

recordings, longer than 2.5 seconds, were selected from the

original TIMIT training set and utilized as the training data

in this paper. Meanwhile, 600 recordings selected from the

original TIMIT test set in the same condition were used for

evaluation. The audio anomalous distortion classes were gen-

erated by changing the original signals in five ways [19],

Random time warping (Class1): The time warping is con-

trolled by the number of speed changes and the maxi-

mal ratio of max/min speed.

Pooling time series (Class2): Reduce the temporal resolu-

tion without changing the length.

Dropouting values of time series (Class3): Some random

time points in time series are dropped out.



(a) SNR=5dB (b) SNR=10dB (c) SNR=15dB

(d) SNR=20dB (e) SNR=25dB (f) SNR=30dB

Fig. 2: Accuracy comparisons of audio anomalous distortion classification when implementing TCAN and four baseline meth-

ods in the condition of different SNRs.

Drifting the value of time series (Class4): The values of

time series are drifted from its original values ran-

domly and smoothly.

Adding random noise to time series (Class5): The noise

added to every time point of a time series is indepen-

dent and identically distributed.

As the work in this paper focuses on the distortions as-

sumed to be caused by speakers, external natural sounds were

not used as noise signals. The four distortion classes (Class 1

∼ 4) except Class5 are made by only changing the characters

of audio signals, such as temporal resolution and speaking

speed. In order to evaluate the robustness of the proposed

approach, the recordings corrupted by the five types of distor-

tions are generated at six signal-to-noise ratio (SNR) levels

(5dB, 10dB, 15dB, 20dB, 25dB, 30dB). The larger SNR is,

the more difficult it is to identify audio anomalies.

In all experiments, filter-bank vectors are used to repre-

sented input audio features. 2-second audio data is selected

from each audio recording and segmented using a 32-ms slid-

ing window with a 16-ms shift. After conducting a 512-point

FFT, each segment is converted into a 40D vector with filter

banks.

3.2. Structure Configuration and Implementation

In the experiments, the proposed model architecture contains

two parts. The first nine layers consisting of 1D dilated CNN

and attention layers are used to build TCAN, and the last two

layers are fully connected layers used as a classifier. The di-

mension of input frame vector is 40, and 64 kernels (k =6)

are used in four 1D dilated CNN layers with d = {1, 2, 4, 8}.

As a comparison, besides the proposed approach (TCAN),

the related experiments were also conducted using another

four baseline methods: TCN parallel[16], TCN[6], CNN[20],

and, LSTM att[21]. The method of TCN parallel connects

three temporal convolutional networks (TCNs) in parallel.

Each of TCN is followed by an attention layer and their output

are then concatenated before sending to a MLP based classi-

fier. The dilation value (d) and kernel size (k) in TCN parallel

are set to 8 and 6, respectively. The TCN baseline is imple-

mented relying on the model structure given in [6], where its

d and k are set to be 32 and 6, respectively. The baseline

method of LSTM att makes use of the Bi-directional LSTM

[22] and an attention mechanisms to capture the long-term

dependencies. The dimensionality of the output space of the

LSTM att is 200. The baseline method of CNN, originally

used for sentence classification, is used for audio recording

distortion classification, and its filter number is set to 64.

In all experiments, Adam [23] was used as an optimiser

and the initial learning rate was set to 0.001 with 0.95 de-

cay every epoch. Classification accuracy is used as a metric

in all experiments to evaluate performances of the proposed

approach and four baseline methods.

4. RESULTS ANALYSIS

Figure 2(a)∼2(f) show audio distortion recognition using the

proposed approach (TCAN) and four baseline methods in the

condition of six SNR. Figure 2(f) only shows the accuracy

curves obtained using TCAN and TCN parallel when SNR is



Fig. 3: Confusion matrix for audio anomalies classification

using TCAN and TCN parallel when SNR is 5dB and 25dB.

30dB. This is because other methods have failed to recognise

the type of audio distortions when SNR is 25dB, and it is thus

unnecessary to run them again when SNR is 30dB. By the first

five figures, it can be found that the use of TCAN can clearly

outperform LSTM att and CNN in all SNR conditions. This

might be related to the following factors. The CNN relies on

kernel size and focuses more on local dependencies in com-

parison with the use of TCN. Although the LSTM takes into

account long spans, the currently observed signals still play

relatively important roles than historical observations. The

structure of TCN tries to mitigate this impact by viewing all

features in a data stream more equally. Moreover, the use of

dilation can further expand the search for longer dependen-

cies, and the learned information can be passed to a classifier

from bottom to top via a hierarchical structure. This might

be effective to enable the TCN to capture both long and short

term dependencies of data streams.

In addition, compared to TCN, the proposed approach can

yield better performances for most SNR cases. The possible

reason is the use of an attention mechanism. The structure of

TCN aims to collect long range features, but not all the col-

lected features are useful to the task. Some of them might be

irrelevant features and even interferences. The use of atten-

tion mechanism can mitigate this impact by allocating differ-

ent weights to target relevant and irrelevant features.

In comparison with TCN parallel, it seems that TCAN

works better when SNR is increased. The reason might be

related to where to use attention mechanism. As audio distor-

tions become quite weak in the condition of high SNR (e.g.

SNR=25dB), highlighting target relevant information as early

as possible might be useful to mitigate the interferences from

strong speech signals. Following the assumption, the use of

TCAN can go deeper than TCN parallel to search for target

relevant features to reduce possible information loss.

Figure 3 illustrates four confusion matrix tables ob-

tained by using TCAN and TCN parallel in the conditions

of SNR=5dB and SNR=25dB, respectively. In the condition

of 5dB, both methods can yield good and similar recognition

performances. In the condition 25dB, TCAN can better dis-

tinguish the five types of audio distortions than TCN parallel.

When SNR is 25dB, the anomalous distortions in recordings

are much smaller than those at 5dB. This makes class1(C1) be

more easily classified as incorrect classes, such as class3(C3)

and class4(C4), than that at 5dB. In the same condition, both

methods can well recognise two types of audio distortions,

class2(C2) and class4(C4), but failed to recognise class1(C1).

For the two cases, the possible reason might be related to

what parts of input audio signals are changed. For the au-

dio distortion caused by ”random time warping(C1)”, it has

mainly effect on some specific frequencies. This case might

also occur within an utterance if the tune of words or phrases

is normally changed by a speaker. This might bring some ex-

tra interferences and make it difficult to learn distinct features

when speech signals are dominant. For “pooling time se-

ries(C2)” and “adding random noise(C5)”, both of them can

add distortions on the whole data sequence, and thus change

the feature values in both time and frequency domains simul-

taneously. The changes caused by the two types of distortion

might be relatively easy to find.

d=1 d=2 d=4 d=8 d=16 d=32 d=64

48.6 54.3 52.3 53.6 55.3 56.3 52.3

Table 1: Classification accuracy (%) with different dilation

values (SNR=25dB, k=6).

Table 1 shows the change of classification accuracy when

different dilation (d) is set. It seems that there is a weak ten-

dency that accuracy is slightly better when increasing d. The

possible reason might be larger d is able make the model learn

information from a longer range.

5. CONCLUSION AND FUTURE WORK

A novel structure for audio distortion classification was de-

signed by using the temporal convolutional attention network

(TCAN). It can well distinguish five different types of audio

distortions in condition of different SNRs. Moreover, the ob-

tained results have shown its robustness to in comparison with

several strong baseline methods, especially when SNR is rel-

atively low (5dB) or high (25dB).

In future, work in three aspects will be taken into account.

Firstly, some advanced neural network technologies will be

used to assess audio quality. Secondly, the classification tech-

nologies will be evaluated on large-sized speech datasets and

in various acoustic conditions. Thirdly, more audio distortion

types and model configurations will be also evaluated to make

the system work in some practical applications.
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