
This is a repository copy of Supervised speaker embedding de-mixing in two-speaker
environment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/189097/

Version: Accepted Version

Proceedings Paper:
Shi, Y. and Hain, T. orcid.org/0000-0003-0939-3464 (2021) Supervised speaker
embedding de-mixing in two-speaker environment. In: 2021 IEEE Spoken Language
Technology Workshop (SLT). 2021 IEEE Spoken Language Technology Workshop (SLT),
19-22 Jan 2021, Shenzhen, China. Institute of Electrical and Electronics Engineers , pp.
758-765. ISBN 9781728170671

https://doi.org/10.1109/slt48900.2021.9383580

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SUPERVISED SPEAKER EMBEDDING DE-MIXING IN TWO-SPEAKER ENVIRONMENT

Yanpei Shi, Thomas Hain

Speech and Hearing Research Group

Department of Computer Science, University of Sheffield

{YShi30, t.hain}@sheffield.ac.uk

ABSTRACT

Separating different speaker properties from a multi-speaker

environment is challenging. Instead of separating a two-

speaker signal in signal space like speech source separation,

a speaker embedding de-mixing approach is proposed. The

proposed approach separates different speaker properties

from a two-speaker signal in embedding space. The proposed

approach contains two steps. In step one, the clean speaker

embeddings are learned and collected by a residual TDNN

based network. In step two, the two-speaker signal and the

embedding of one of the speakers are both input to a speaker

embedding de-mixing network. The de-mixing network is

trained to generate the embedding of the other speaker by

reconstruction loss. Speaker identification accuracy and the

cosine similarity score between the clean embeddings and the

de-mixed embeddings are used to evaluate the quality of the

obtained embeddings. Experiments are done in two kind of

data: artificial augmented two-speaker data (TIMIT) and real

world recording of two-speaker data (MC-WSJ). Six different

speaker embedding de-mixing architectures are investigated.

Comparing with the performance on the clean speaker em-

beddings, the obtained results show that one of the proposed

architectures obtained close performance, reaching 96.9%

identification accuracy and 0.89 cosine similarity.

Index Terms— Speaker Embeddings, Speech Source

Separation, Speaker De-mixing, Speaker Identification, Two-

Speaker Signal.

1. INTRODUCTION

In recent years, speech source separation becomes an active

research area. Speech source separation separates mixture

speech signal in signal space. Traditionally, speech source

separation is viewed as a signal processing problem, different

approaches are proposed such as CASA [1]. Matrix factor-

ization methods are also widely used in speech source separa-

tion, such as Non-Negative Matrix Factorization (NMF) [2, 3]

and Independent component analysis (ICA) [4, 5, 6, 7, 8].

With the rapid growth of deep learning, some deep learning

approaches are used to separate speech signals, such as su-

pervised separation [9, 10, 11, 12], deep clustering and deep

attractor network [13, 14, 15].

However, separating speech signal from two-speaker sig-

nal is still a challenging task. Speech signals are high dimen-

sional, and different speaker properties in two-speaker signals

are highly co-related to each other, which would influence the

quality of the output [15, 7].

Instead of separating speech signal in signal space, de-

mixing different speaker properties from two-speaker signal

in embedding space might be more efficient. Speaker em-

bedding is low dimensional, and it can project variable length

acoustic signal into fixed length embedding space [16]. This

property of speaker embedding makes it convenient to be fur-

ther used comparing with that in signal space. The obtained

speaker embeddings might be beneficial for downstream tasks

such as speaker identification [17, 18, 19, 20] and speech

recognition [21, 22].

In this work, a speaker embedding de-mixing approach

for separating speaker embeddings in two-speaker signal is

proposed. The proposed approach contains two steps: in step

one, a residual TDNN network is used to learn high qual-

ity speaker embeddings from clean speech data. After train-

ing, the embedding of each speaker are extracted and col-

lected. In step two, a speaker embedding de-mixing network

is trained. Suppose the input data contains a target speaker

and an interfering speaker. The proposed approach takes the

two-speaker signal as input, as well as the embedding of the

interfering speaker. The output would be the embedding of

the target speaker; or inversely, the proposed approach takes

the two-speaker mixture signal and the embedding of the tar-

get speaker as input, the obtained embedding would be the

embedding of the interfering speakers. When the embedding

of one of the speaker is available, the system will generate

the embedding of the other speaker that appears in the input

signal.

To the best of our knowledge, the proposed approach

is the first that trying to directly de-mix speaker embedding

from two-speaker signal. This is also the main contribution of

this work. The benefits of the proposed approach is manifold:

Suppose in a home device, the embedding of some speakers

might be available. The proposed approach might be ben-

eficial for obtaining the embedding of the other speaker in

two-speaker signal. The de-mixed speaker embedding might

be further used for some downstream tasks, such as speaker

verification [23, 24] and speech recognition [25].

The rest of this report is organized as follow: Section 2

introduces the model architectures in both step one and step

two. Section 3 introduces the experiments design, including

data and use, and experiment setup. In Section 4, results are

shown, followed by discussion and analysis. Section 5 intro-

duces the conclusion and the future work plan.

2. MODEL ARCHITECTURE

In this section, the model structure in this work is introduced,

which consists of two steps. Step one: learning clean speaker

representation; Step two: using the learned speaker embed-

ding to train a speaker embedding de-mixing network. The

goal for step one is to learn high quality embeddings for each

speaker in the dataset. In step two, the two-speaker signal

is firstly projected into embedding space, resulting in mixture

embedding emix. The mixture embedding and the embedding

of one of the speakers e2 are put into a de-mixing function.

The output is the estimation of the embedding from the other

speaker e
′

1
.

2.1. Step One: Learning High Quality Speaker Represen-

tations

In step one, the clean speech signal is input to a speaker

embedding extractor A. After training A, the embedding

for each speaker is extracted from the bottleneck layer of A.

A classifier B is used to evaluate the quality of the learned

speaker embeddings.

Fig. 1. The architecture of speaker embedding extractor A.

Figure 1 and Table 1 show the architecture of A. In or-

der to learn high quality and robust speaker embeddings, A is

designed based on TDNN architecture, as TDNN architecture

shows high robustness and it can better capture time relevant

Fig. 2. Model Architecture of speaker embedding de-mixing

network C. C consists of pre-trained speaker embedding ex-

tractor and the de-mixing function.

information [26]. There are three parts within the architec-

ture of A: frame-level feature extractor, statistics pooling and

segment-level feature extractor.

In frame-level feature extractor, the network consists of

TDNN layers and residual TDNN blocks. The input data is

firstly passed through into two TDNN layers. Then, three

residual TDNN blocks are used. The last TDNN layer trans-

forms the feature dimension into 1500. The use of residual

TDNN blocks instead of using normal TDNN layers like X-

vectors might increase the robustness of the learned embed-

dings [27].

Statistics pooling operation is then used, the output is

feed into the segment-level feature extractor. There are two

fully-connected layers in segment-level feature extractor. The

speaker embedding is extracted from the last fully-connected

layer.

For the architecture of classifier B, a simply architecture

is chosen: a fully connected network with one hidden layer

with 512 nodes.

2.2. Step Two: The De-mixing of Speaker Representa-

tions in Embedding Space

After collecting the high quality embeddings for each speaker

in step one, step two learns the de-mixing function of the mix-

ture embeddings.

Suppose the input data contains two speakers: s1 and s2.

Fig. 3. Different architecture of de-mixing function f : (a) Subtraction; (b) Multiplication; (c) Concatenation with one fully-

connected layer (d) Concatenate with two fully-connected layers; (e) Shared Fully-Connected Layer with Concatenation and

(f) Separated Fully-Connected Layer with Concatenation.

Layer Context Output

TDNN Layer1 [t− 1, t, t+ 1] 512

TDNN Layer2 [t] 512

TDNN-Res1
[t− 2, t− 1, t, t+ 1t+ 2]

512
[t]

TDNN-Res2
[t− 2, t− 1, t, t+ 1, t+ 2]

512
[t]

TDNN-Res3
[t− 2, t− 1, t, t+ 1, t+ 2]

512
[t]

TDNN Layer3 [t] 1500

Statistics Pooling T 3000

Segment-Level
T 512

T 512

Table 1. Architecture of the speaker embedding network A

In step one, both of the high quality embeddings of s1 and

s2 are learned and obtained, which are denoted as e1 and e2.

Given the input mixture data, the speaker de-mixing network

C firstly transforms it in embedding space, results in mixture

embedding emix. Then, a de-mixing function f is learned to

remove the information of the speakers and remains the other.

More specifically, Figure 2 illustrates the architecture of

de-mixing network C. The input mixture data contains s1
and s2. C contains two-parts: the first part contains the pre-

trained speaker embedding extractor in step one, the goal is

to project the input data in embedding space. The output of

the pre-trained speaker embedding extractor is emix, which

consists of the mixture embedding of two speakers: e1 + e2.

Then, emix and the clean embedding e2 (trained and col-

lected from step one) are input to a de-mixing function f

(shows in Equation 1). The output is estimated embedding

of the other speaker e1
′

.

e
′

1
= f(emix, e2) (1)

A reconstruction loss L (shows in Equation 2) is applied

between e
′

1
and e1. In this work, mean absolute error [28] is

applied.

L = ||e1 − e
′

1
|| (2)

2.3. The architecture of the de-mixing function f

The de-mixing function f might have different choices. In

this work, six possible methods are investigated. Figure 3

illustrates the six different methods of f : (a) Subtraction; (b)

Multiplication; (c) Concatenation with one fully-connected

layer (d) Concatenate with two fully-connected layers; (e)

Shared Fully-Connected Layer with Concatenation and (f)

Separated Fully-Connected Layer with Concatenation.

2.3.1. Subtraction

The first one is a subtraction operation of emix and e2 (shows

is Equation 3 and Figure 3 (a)). After subtraction, the sub-

tracted embedding vector is passed through a fully-connected

layer without activation function (could be viewed as a lin-

ear transformation). This method is further referred to “Sub”.

The embedding dimension is denoted as d. W ∈ Rd×d and

b ∈ R1×d are the parameters of the fully-connected layer.

f(emix, e2) = (emix − e2)W + b (3)

2.3.2. Multiplication

Multiplication approach (further referred to “Mul”) is similar

with “Sub” method. The only difference is emix is multiplied

with e2 instead of subtracted. Figure 3 (b) and Equation 4

shows the architecture of “Mul” method. ⊙ denotes element-

wise multiplication.

f(emix, e2) = (emix ⊙ e2)W + b (4)

2.3.3. Concatenate with one fully-connected layer

In the third method, emix and e2 are firstly concatenated to-

gether, and then feeded into a fully connected layer (shows

in Equation 5 and Figure 3 (c)). [emix, e2]
T ∈ R1×2d de-

notes the concatenated vector of emix and e2. This method

is further referred to “Concat1”. W ∈ R2d×d and b ∈ R1×d

are parameters for the fully connected layer, × denotes matrix

multiplication.

f(emix, e2) = [emix, e2]
T ×W + b (5)

2.3.4. Concatenate with two fully-connected layers

The next method is concatenate with two fully-connected lay-

ers. Similar with the previous method, emix and e2 are firstly

concatenated together, and then feed into two fully connected

layers instead of one (shows in Equation 6 and Figure 3 (d)).

The first fully-connected layer uses Relu activation function

while there are no activation function after the second layer.

This method is further referred to “Concat2”. W ∈
R2d×d and b ∈ R1×d are parameters for the fully connected

layer.

f(emix, e2) = Relu(([emix, e2]
T ×W 0 + b0)W 1) (6)

2.3.5. Shared Fully-Connected Layer with Concatenation

The last two methods are different from the above methods.

In the fifth method, emix and e2 are firstly input to two fully

connected layers respectively, the two fully connected layer

share parameters. The output kmix and k2 are then concate-

nated and feed into another fully connected layer (shows in

Equation 7 and Figure 3 (e)). This method is further referred

to “Share-Concat”. W 0 ∈ Rd×d, b0 ∈ R1×d, W 1 ∈ R2d×d

and b1 ∈ R1×d are parameters for the fully connected layers.

f(emix, e2) = Relu([kmix,k2]
TW 1 + b1)

kmix = Relu(emixW 0 + b0)

k2 = Relu(e2W 0 + b0)

(7)

2.3.6. Separated Fully-Connected Layer with Concatenation

The last one is similar with ”Share-Concat” method. emix

and e2 are firstly input to two fully connected layers respec-

tively, the two fully connected layers are separated, which

means they do not share parameters. The output kmix and

k2 are then concatenated and input to another fully connected

layer (shows in Equation 8 and Figure 3 (f)). This method

is further referred to “Separate-Concat”. W 0,0 ∈ Rd×d,

b0,0 ∈ R1×d, W 0,1 ∈ Rd×d, b0,1 ∈ R1×d, W1 ∈ R2d×d

and b1 ∈ R1×d are parameters of the fully connected layers.

f(emix, e2) = Relu([kmix,k2]
TW 2 + b2)

kmix = Relu(emixW 0,0 + b0,0)

k2 = Relu(e2W 0,1 + b0,1)

(8)

3. EXPERIMENTS

3.1. Data

In this work, TIMIT corpus [29] is used. The TIMIT corpus of

read speech is designed to provide speech data for acoustic-

phonetic studies and for the development and evaluation of

automatic speech recognition systems. There are a total of

6300 utterances, 10 sentences spoken by each of 630 speakers

from 8 major dialect regions of the United States. The train

and test set are re-split. Six utterances from each speaker are

randomly selected for training and the other two utterances

are for testing. Hence there are 3780 utterances in the training

set and 1260 utterances in the test set.

In order to evaluate the performance in real world condi-

tions, the multi-channel wall street journal audio visual cor-

pus (MC-WSJ) [30] is also used in this work. MC-WSJ con-

tains a total number of 40 speakers reading WSJ sentences in

three scenarios: single speaker stationary: A single speaker

reading sentences from six positions in a meeting room; Sin-

gle speaker moving: a single speaker moving between six po-

sitions while reading sentences; Overlapping speakers: two

speakers reading sentences from different position. There are

no speaker overlap between these three conditions.

In this work, the overlapping speaker audio scenario is

used. In the overlap version, there are 9 pairs of speakers con-

taining 10 unique speakers. For each speaker pairs, there are

700 utterances in average. There are three different recording

techniques: two microphone arrays, lapel and headset micro-

phones worn on all of the speakers.

For all of the experiments in this work, the 20 dimensional

MFCC features are used [26].

Cosine Similarity Identification Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.22 0.48 0.59 36.5 58.4 72.5

Sub 0.80 0.82 0.84 86.2 89.9 95.2

Mul 0.68 0.73 0.78 83.7 88.8 94.8

Concat1 0.44 0.47 0.52 52.9 56.8 68.8

Concat2 0.51 0.55 0.60 64.5 70.3 88.5

Share-Concat 0.46 0.62 0.69 58.9 86.0 92.9

Separate-Concat 0.78 0.86 0.89 82.5 93.0 96.9

Clean 1.0 98.5

Table 2. The cosine similarity and speaker identification accuracy of using the estimated embedding of target speaker e
′

1
.

Before denotes the cosine similarity or speaker identification directly using emix. Clean denotes the cosine similarity or speaker

identification using e1 that extracted from clean speech.

Cosine Similarity Identification Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.60 0.46 0.28 72.0 58.4 31.7

Sub 0.78 0.74 0.72 95.9 90.0 87.1

Mul 0.70 0.66 0.62 95.5 88.4 83.2

Concat1 0.45 0.42 0.38 65.1 56.0 51.7

Concat2 0.52 0.47 0.42 89.2 70.9 64.1

Share-Concat 0.65 0.53 0.47 93.7 87.0 59.5

Separate-Concat 0.87 0.79 0.70 97.1 93.8 83.6

Clean 1.0 98.5

Table 3. The cosine similarity and speaker identification accuracy of using the estimated embedding of target speaker e
′

2
.

Before denotes the cosine similarity or speaker identification directly using emix. Clean denotes the cosine similarity or speaker

identification using e2 that extracted from clean speech.

3.2. Experiment Setup

For TIMIT experiments, in step one, the speaker embeddings

are learned using clean TIMIT training set. After training

model A, for each speaker, 200 segments are randomly sam-

pled and feeded into A. The clean speaker embeddings are

the average of the embeddings from each segments belonging

to the same speaker. B is trained using the same training data

as A.

In step two, as TIMIT data contains clean speech only,

in order to generate mixture speech signal, each utterance in

TIMIT dataset are randomly mixed with another utterance

from the other speaker. More specifically, when generating

mixture speech signal, one utterance contains target speaker

S1 is chosen, and an utterance from interfering speaker S2 is

randomly chosen. S1 is viewed as the target speaker, and S2

is the interfering speaker. The target speaker and the inter-

fering speaker are mixed with a certain SNR (signal-to-noise

ratio). Training data will only be mixed with training data,

test data will only be mixed with test data. This is to avoid

bias problem, as when training the separation model C, the

model will not get access to any utterances from test set.

TIMIT experiment is separated into two parts: the first

one is to use e2 to obtain e1, in other words, this experiment

using the embedding of the interfering speaker to obtain that

of the target speaker. The second one is using e1 to obtain e2,

which is using the embedding of target speaker to obtain the

embedding of interfering speaker.

For MC-WSJ experiments, in step one, the speaker em-

beddings are learned using the headset recorded audios from

the overlapping speakers scenario. The headset recorded au-

dios are close to the corresponding speaker, as a result, the

audios in this kind of recording has the close quality of the

clean signal [30]. The same technique is used to generated

and collect embedding for each speaker and training of clas-

sifier B. In step two, the model C is trained and tested on

two microphones recorded speech (microphone1 and micro-

phone2). For each speaker pair, 70 utterances are randomly

selected as the test utterances. Speaker identification accura-

cies are computed on this test set.

3.3. Evaluation Metric
In this work, two evaluation metrics are used: speaker identi-

fication accuracy and cosine similarity.

The speaker identification accuracy is obtained from the

classifier B. After training A, B is also trained and the pa-

rameters are fixed. When the de-mixing network C is trained,

the embeddings from the test set are extracted. B is used to

obtain the speaker identification accuracy of the test set.

The cosine similarity score [31] is directly computed be-

tween the clean embedding (e.g. e1) and the de-mixed em-

bedding (e.g. e
′

1
). The final cosine similarity score is com-

puted as the average of the cosine similarity scores for each

sample. There is no post-processing techniques used such as

PLDA [32], as any post-processing technique used might in-

fluence the performance the evaluation process.

3.4. Implementation

In this work, the dimension of all of the fully connected layers

is set to 512. Each layer is followed by a batch normalisation

layer [33] except for the embedding layer. ReLU activation

Cosine Similarity Identification Accuracy (%)

M1 M2 M1 M2

Before 0.46 0.41 52.1 47.1

Sub 0.74 0.69 87.2 83.9

Mul 0.71 0.66 84.4 82.1

Concat1 0.39 0.33 50.2 41.7

Concat2 0.64 0.60 79.1 72.4

Share-Concat 0.60 0.53 65.1 55.4

Separate-Concat 0.83 0.80 91.3 90.9

Headset 1.0 99.1

Table 4. The cosine similarity and speaker identification re-

sults on MC-WSJ dataset.

[34] is used for each layer except for the embedding layer.

The Adam optimiser [35] is used in training, with β1 set to

0.95, β2 to 0.999, and ǫ is 10−8. The initial learning rate is

10−3

4. RESULTS AND DISCUSSION

Table 2 shows the results of using e2 to obtain e1. In Table

2, the cosine similarity and speaker identification results of

all of the six speaker de-mixing functions f in different SNR

levels are shown.

Comparing without using f (directly evaluate on mixture

embeddings emix), most of the architectures of f obtained

better performance. This shows that the speaker de-mixing

process removed some of the influences of the information

from the interfering speakers. The “Separate-Concat” method

obtained the best performance when SNR at 0dB and 5 dB,

which is close to the results of clean speech. Even the SNR is

-5 dB (the power of the interfering speaker S2 is larger than

the target speaker (S1), the “Separate-Concat” method can

still reach 82.5% test accuracy and 0.78 cosine similarity.

The reason of why “Separate-Concat” method worked

better in most of the cases might be the inputs are in different

embedding spaces. e1 and e2 are pre-trained and collected,

and they contain the properties of a single speaker. But emix

contains the properties of two overlapped speakers, so it

contains more complex patterns. “Separate-Concat” method

firstly used different fully-connected layers to transform them

into another embedding space, and then concatenated them.

This operation might make the model to better separate dif-

ferent speaker properties.

“Sub” method obtained best performance when the SNR

is -5 dB. “Sub” method, reaching 86.2% in speaker identifi-

cation and 0.80 cosine similarity score when the SNR is -5

dB. This shows that a simple mathematical operation and a

linear transformation can be applied on the speaker embed-

dings to filter out some information of the interfering speaker.

“Mul” method uses another mathematical operation (multi-

plication), and the performance obtained are still close to the

that of clean speech.

The “Concat1”, “Concat2” and “Share-Concat” methods

obtained lower results. The reason why the “Concat1” and

“Concat2” obtained lower performances might be because di-

rectly concatenating emix and e2 might influence the model

C to distinguish different speaker properties. The low perfor-

mance of “Share-Concat” might have the same reason.

Table 3 shows the results of using e1 and emix to obtain

e2, which is using the embedding of the target speaker to ob-

tain the embedding of the interfering speaker. Note the SNR

value is the signal-to-noise ratio of the target speaker (S1)

and interference speaker (S2). So the results when SNR is

5dB is lower than the results when SNR is -5dB in Table 3.

All of the results of six methods shows lower but close per-

formance of that of using e2 to reconstruct e1. It shows that

the “Share-Concat” and Sub methods also have the ability to

obtain high quality embedding of the interfering speaker from

two-speaker environment.

Table 4 shows the experiments result of microphone1

(M1) and microphone2 (M2) in MC-WSJ dataset. The

“Share-Concat” method obtain the best results, reaching

93.9% and 90.9% test accuracies and 0.83 and 0.80 socine

similarities in M1 and M2. The reason why the results of M2

is lower than that of M1 might be the distance of the speakers

and microphones. The M1 is closer to speakers while M2 is

far from speakers [30].

Comparing with the results of headset recording, which

reaches 99.1% test accuracy, the results obtained by the

“Separate-Concat” method still have a gap. The reason might

be in real world conditions, the two speakers are moving,

the SNR between the target speaker and interfering speakers

might be different at different time. It might be more difficult

for the model to de-mix the embedding of two speakers.

5. CONCLUSION AND FUTURE WORK

In conclusion, in this work, a speaker embedding de-mixing

approach is proposed. The proposed approach reconstructs

the embedding of target speaker from the embedding of in-

terfering speaker and mixture embedding, or inversely, ob-

tain the embedding of interfering speaker from that of tar-

get speaker and mixture embedding. The quality of embed-

dings are evaluated by speaker identification accuracy and

cosine similarity score on the reconstructed embeddings and

the clean embeddings. Results on TIMIT (artificially aug-

mented two-speaker signal) and MC-WSJ (real world two-

speaker signal) datasets show that within the six different de-

mixing architectures, the “Share-Concat” method obtain bet-

ter results, which is close to the results of clean speech.

In this future work, more speaker mixture scenarios will

be investigated, such as three-speaker mixture. Different

model architectures might be investigated, and larger dataset

might be used such as voxceleb1 and 2.

6. ACKNOWLEDGEMENTS

Funding for this research was provided by Huawei Innovation

Research Program (HIRP).

7. REFERENCES

[1] AS Bregman, “Auditory scene analysis: The perceptual

organization of sound. cambridge, ma, us,” 1990.

[2] Kevin W Wilson, Bhiksha Raj, Paris Smaragdis, and

Ajay Divakaran, “Speech denoising using nonnegative

matrix factorization with priors,” in 2008 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing. IEEE, 2008, pp. 4029–4032.

[3] Bhiksha Raj, Tuomas Virtanen, Sourish Chaudhuri, and

Rita Singh, “Non-negative matrix factorization based

compensation of music for automatic speech recogni-

tion,” in Eleventh Annual Conference of the Interna-

tional Speech Communication Association, 2010.

[4] Hiroshi Saruwatari, Satoshi Kurita, Kazuya Takeda,

Fumitada Itakura, Tsuyoki Nishikawa, and Kiyohiro

Shikano, “Blind source separation combining indepen-

dent component analysis and beamforming,” EURASIP

Journal on Advances in Signal Processing, vol. 2003,

no. 11, pp. 569270, 2003.

[5] Michael A Casey and Alex Westner, “Separation of

mixed audio sources by independent subspace analy-

sis.,” in ICMC, 2000, pp. 154–161.

[6] Jen-Tzung Chien and Bo-Cheng Chen, “A new indepen-

dent component analysis for speech recognition and sep-

aration,” IEEE transactions on audio, speech, and lan-

guage processing, vol. 14, no. 4, pp. 1245–1254, 2006.

[7] Soo-Young Lee, “Blind source separation and indepen-

dent component analysis: A review,” Neural Informa-

tion Processing-Letters and Reviews, vol. 6, no. 1, pp.

1–57, 2005.

[8] Shoji Makino, Hiroshi Sawada, and Shoko Araki,

“Frequency-domain blind source separation,” in Blind

Speech Separation, pp. 47–78. Springer, 2007.

[9] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson,

and Paris Smaragdis, “Deep learning for monaural

speech separation,” in 2014 IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2014, pp. 1562–1566.

[10] Jun Du, Yanhui Tu, Yong Xu, Lirong Dai, and Chin-

Hui Lee, “Speech separation of a target speaker based

on deep neural networks,” in 2014 12th International

Conference on Signal Processing (ICSP). IEEE, 2014,

pp. 473–477.

[11] Yanhui Tu, Jun Du, Yong Xu, Lirong Dai, and Chin-

Hui Lee, “Speech separation based on improved deep

neural networks with dual outputs of speech features for

both target and interfering speakers,” in The 9th Inter-

national Symposium on Chinese Spoken Language Pro-

cessing. IEEE, 2014, pp. 250–254.

[12] Jun Du, Yanhui Tu, Li-Rong Dai, and Chin-Hui Lee, “A

regression approach to single-channel speech separation

via high-resolution deep neural networks,” IEEE/ACM

Transactions on Audio, Speech, and Language Process-

ing, vol. 24, no. 8, pp. 1424–1437, 2016.

[13] John R Hershey, Zhuo Chen, Jonathan Le Roux, and

Shinji Watanabe, “Deep clustering: Discriminative em-

beddings for segmentation and separation,” in 2016

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2016, pp. 31–

35.

[14] Zhuo Chen, Yi Luo, and Nima Mesgarani, “Deep attrac-

tor network for single-microphone speaker separation,”

in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2017,

pp. 246–250.

[15] Yi Luo, Zhuo Chen, and Nima Mesgarani, “Speaker-

independent speech separation with deep attractor net-

work,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 26, no. 4, pp. 787–796, 2018.

[16] Yu-An Chung and James Glass, “Speech2vec:

A sequence-to-sequence framework for learning

word embeddings from speech,” arXiv preprint

arXiv:1803.08976, 2018.

[17] David Snyder, Daniel Garcia-Romero, Gregory Sell,

Alan McCree, Daniel Povey, and Sanjeev Khudanpur,

“Speaker recognition for multi-speaker conversations

using x-vectors,” in ICASSP 2019-2019 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2019, pp. 5796–5800.

[18] Herman Kamper, Weiran Wang, and Karen Livescu,

“Deep convolutional acoustic word embeddings using

word-pair side information,” in 2016 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2016, pp. 4950–4954.

[19] David Snyder, Pegah Ghahremani, Daniel Povey, Daniel

Garcia-Romero, Yishay Carmiel, and Sanjeev Khudan-

pur, “Deep neural network-based speaker embeddings

for end-to-end speaker verification,” in 2016 IEEE Spo-

ken Language Technology Workshop (SLT). IEEE, 2016,

pp. 165–170.

[20] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda,

“Attentive statistics pooling for deep speaker embed-

ding,” arXiv:1803.10963, 2018.

[21] Junzo Watada et al., “Speech recognition in a multi-

speaker environment by using hidden markov model

and mel-frequency approach,” in 2016 Third Interna-

tional Conference on Computing Measurement Control

and Sensor Network (CMCSN). IEEE, 2016, pp. 80–83.

[22] Shruti Palaskar, Vikas Raunak, and Florian Metze,

“Learned in speech recognition: Contextual acoustic

word embeddings,” in ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2019, pp. 6530–6534.

[23] Joon Son Chung, Arsha Nagrani, and Andrew Zisser-

man, “Voxceleb2: Deep speaker recognition,” arXiv

preprint arXiv:1806.05622, 2018.

[24] Weidi Xie, Arsha Nagrani, Joon Son Chung, and

Andrew Zisserman, “Utterance-level aggregation for

speaker recognition in the wild,” in ICASSP 2019-2019

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2019, pp.

5791–5795.

[25] Pavel Denisov and Ngoc Thang Vu, “End-to-end

multi-speaker speech recognition using speaker em-

beddings and transfer learning,” arXiv preprint

arXiv:1908.04737, 2019.

[26] David Snyder, Daniel Garcia-Romero, Gregory Sell,

Daniel Povey, and Sanjeev Khudanpur, “X-vectors:

Robust dnn embeddings for speaker recognition,” in

ICASSP. IEEE, 2018.

[27] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel

Matějka, and Oldřich Plchot, “But system description

to voxceleb speaker recognition challenge 2019,” arXiv

preprint arXiv:1910.12592, 2019.

[28] Cort J Willmott and Kenji Matsuura, “Advantages of the

mean absolute error (mae) over the root mean square

error (rmse) in assessing average model performance,”

Climate research, vol. 30, no. 1, pp. 79–82, 2005.

[29] John S Garofolo, Lori F Lamel, William M Fisher,

Jonathan G Fiscus, and David S Pallett, “Darpa timit

acoustic-phonetic continous speech corpus cd-rom. nist

speech disc 1-1.1,” NASA STI/Recon technical report n,

1993.

[30] Mike Lincoln, Iain McCowan, Jithendra Vepa, and

Hari Krishna Maganti, “The multi-channel wall street

journal audio visual corpus (mc-wsj-av): Specification

and initial experiments,” in IEEE Workshop on Au-

tomatic Speech Recognition and Understanding, 2005.

IEEE, 2005, pp. 357–362.

[31] Hieu V Nguyen and Li Bai, “Cosine similarity metric

learning for face verification,” in Asian conference on

computer vision. Springer, 2010, pp. 709–720.

[32] Patrick Kenny, Themos Stafylakis, Pierre Ouellet,

Md Jahangir Alam, and Pierre Dumouchel, “Plda for

speaker verification with utterances of arbitrary dura-

tion,” in 2013 IEEE International Conference on Acous-

tics, Speech and Signal Processing. IEEE, 2013, pp.

7649–7653.

[33] Sergey Ioffe and Christian Szegedy, “Batch normaliza-

tion: Accelerating deep network training by reducing

internal covariate shift,” arXiv:1502.03167, 2015.

[34] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and

Rob Fergus, “Regularization of neural networks using

dropconnect,” in International conference on machine

learning, 2013, pp. 1058–1066.

[35] Diederik P Kingma and Jimmy Ba, “Adam: A method

for stochastic optimization,” arXiv:1412.6980, 2014.

