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Abstract

The parietal cortex (PC) is implicated in a confusing myriad of different cognitive processes/tasks. Consequently,

understanding the nature and organization of the core underlying neurocomputations is challenging. According to the

Parietal Unified Connectivity-biased Computation model, two properties underpin PC function and organization. Firstly, PC

is a multidomain, context-dependent buffer of time- and space-varying input, the function of which, over time, becomes

sensitive to the statistical temporal/spatial structure of events. Secondly, over and above this core buffering computation,

differences in long-range connectivity will generate graded variations in task engagement across subregions. The current

study tested these hypotheses using a group independent component analysis technique with two independent functional

magnetic resonance imaging datasets (task and resting state data). Three functional organizational principles were

revealed: Factor 1, inferior PC was sensitive to the statistical structure of sequences for all stimulus types (pictures,

sentences, numbers); Factor 2, a dorsal–ventral variation in generally task-positive versus task-negative (variable)

engagement; and Factor 3, an anterior–posterior dimension in inferior PC reflecting different engagement in verbal versus

visual tasks, respectively. Together, the data suggest that the core neurocomputation implemented by PC is common across

domains, with graded task engagement across regions reflecting variations in the connectivity of task-specific networks

that interact with PC.

Key words: angular gyrus, numerical processing, parietal, semantic, sequence processing

Introduction

A long history of neuropsychology and functional neuroimaging

has implicated the parietal lobe in a confusing myriad of differ-

ent cognitive processes and tasks. There is currently little clarity

about the underlying core parietal neurocomputations. In a

recent large-scale meta-analysis, we investigated the functional

organization of the inferior parietal cortex (IPC) across multiple

cognitive domains (Humphreys and Lambon Ralph 2015), reveal-

ing dorsal–ventral and anterior–posterior organizational graded

variations in the types of task that engage IPC. Moreover, each

subregion is engaged by multiple diverse tasks indicating that

the region is not tessellated into distinct task-specific modules

but rather the areas support domain-general computations that

are called upon by different activities. Based on these results,

we proposed a unifying model of parietal function, the Parietal

Unified Connectivity-biased Computation (PUCC). Here, we test

some of the central tenants of themodel using two independent

functional magnetic resonance imaging (fMRI) datasets as well

as meta-analytic connectivity modeling.

There are three core assumptions of the PUCC model.

The first proposes that the core local computation of the IPC

supports online, multimodal buffering. Any time-extended

behavior, whether verbal or nonverbal relating to internal or

external cognition, requires some kind of internal representa-

tion of “the state of play.”Without a reliable representation of the

current state, it is impossible to check that that the state of the

world has changed in the expected manner following the last

action, to program the next appropriate steps in the sequence

toward the final goal, or to check that the state of the world

has not changed dramatically in the interim such that a whole
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new goal needs to be instituted. Both automatized and exec-

utively guided behaviors require access to an online buffered

representation of the “state of affairs.” A second key notion

relates to the possible broader computational differentiation

across ventral (primarily temporal lobe) and dorsal (parietal)

pathways. Specifically, the ventral processing routes generalize

information across repeated episodes and input modalities,

leading to context-independent representations. For example, in

the case of semantic memory, multiple instances of a particular

exemplar are generalized across time and contexts, thereby

allowing it to be recognized in highly variable situations and

for information to be generalized across instances and contexts

(Lambon Ralph et al. 2010; Buzsaki and Moser 2013; Lambon

Ralph 2014). In contrast, the opposite is true for the parietal

route, which appears to collapse information across items (i.e.,

statistically orthogonal to the ventral pathways) extracting

item-independent time- and space-varying structures (Buck-

ner and Carroll 2007; Kravitz et al. 2011; Ueno et al. 2011;

Bornkessel-Schlesewsky and Schlesewsky 2013). These two

proposed features of the IPC—online buffering and extraction

of item-independent time-/space-related statistics—can arise

from the same computational process. For example, parallel

distributed processing (PDP) models have demonstrated that

through repeated buffering of sequential input, the system

becomes sensitive to the regularities of sequential information

(McClelland et al. 1989; Botvinick and Plaut 2004, 2006; Ueno et al.

2011). In the action domain, these statistical structures would

support action schema; in the language domain, it might result

in the knowledge regarding phoneme or word order (depending

on the time resolution over which statistics are computed) as

well as number and spatial codings in other domains. A key

prediction to be tested in this study was that in such models it

is easier to process and buffer sequences that are typical of the

domain in question. Accordingly, we would expect activation in

IPC to be (a) sensitive to sequential violations and (b) to do so

across multiple domains.

There are already hints from past studies that parietal cor-

tex (PC) is sensitive to the temporal structure of events. For

instance, IPC has been shown to respond when a word in a sen-

tence is unexpected (Kuperberg et al. 2003; Hoenig and Scheef

2009), when ordering pictures into the correct sequence (Tinaz

et al. 2006; Melrose et al. 2008; Tinaz et al. 2008), to scrambled

motor sequences compared with learned sequences (Gheysen

et al. 2010), to the oddball task (Stevens et al. 2005; Ciaramelli

et al. 2008), or to violations in an expected visual sequence

(Bubic et al. 2009). Furthermore, the notion that PC buffers

context-dependent information is in accordance with several

more domain-specific theories. For instance, IPC has been pro-

posed as an “episodic buffer” of multimodal episodic infor-

mation (Wagner et al. 2005; Vilberg and Rugg 2008; Shima-

mura 2011), and others suggest that IPC acts as a phonological

buffer/sensorimotor interface for speech (Baddeley 2003; Hickok

and Poeppel 2007; Rauschecker and Scott 2009). While domain-

specific theories have been useful to account for findings from

that domain of interest, they fail to explain how and why dis-

parate cognitive domains coalesce in IPC subregions and thus

what types of domain-general neurocomputations underlie pro-

cessing across tasks (Corbetta and Shulman 2002; Humphreys

and Lambon Ralph 2015, 2017).

A third assumption in the PUCCmodel is that, although there

might be a commonoverarching parietal neurocomputation,dif-

ferent parietal subregions show variations in processing based

on graded variations in long-range connectivity. Indeed, a large

body ofwork has shown that the IPC shows a reliable response to

narratives when the content is intact, compared with narrative

stimuli that have been temporally scrambled across multiple

domains of input, for example, language or vision (Hasson et al.

2008; Lerner et al. 2011). Previous computational models have

demonstrated that, even when the units in the layer of a model

have the same core computation, differences in long-range con-

nectivity generate graded variations in emergent function (Plaut

2002). Such connectivity variations might explain differences

in the locus of activation in task-based studies (Bzdok et al.

2013; Humphreys and Lambon Ralph 2015). For example, tasks

involving tool use have been shown to overlap with numerous

other tasks in dorsal PC (top-down attention, executive seman-

tics, phonology, numerical calculation), yet the center of mass

of this cluster spreads toward motor and somatosensory areas

(Humphreys and Lambon Ralph 2015). Thus, although theremay

be a high degree of overlap across tasks, the spread of activation

for each will vary depending on the task-specific networks that

connect to PC.

Such connectivity variations across parietal subdivisions

have been demonstrated using structural and functional

connectivitymeasures.Angular gyrus (AG), supramarginal gyrus

(SMG), and intraparietal sulcus/superior parietal lobule (IPS/SPL)

have been shown to engage partially distinct neural networks:

The AG forms part of the default mode network (DMN), the

SMG forms part of a cingulo-opercular system, and IPS/SPL is

part of a fronto-parietal control system (Vincent et al. 2008;

Spreng et al. 2010; Uddin et al. 2010; Cloutman et al. 2013;

Power and Petersen 2013). There is some evidence that the

transition between regions in terms of their connectivity profile

is graded, rather than sharp in nature (Daselaar et al. 2013). Such

connectivity-driven variations in function might also explain

differences found between anatomically proximate subregions

(Uddin et al. 2010; Caspers et al. 2011; Cloutman et al. 2013):

Dorsal AG has been found to show positive activation for tasks

involving semantic decisions on words and pictures, whereas

middle AG is deactivated by both tasks, and ventral AG is

activated by pictures but not words (Seghier et al. 2010).

In the current study, three independent datasets and a

combination of methods were used to investigate these three

core assumptions of the PUCC model. The first method used

task-based fMRI. If there is a generalized local buffering

computation, then the IPC should activate more for sequential

violations. To test this, sequences of items were presented

with either a regular structure or one where the structure

was violated. Also, the model assumes that, over and above

the generalized buffering mechanism, graded task differences

will follow from the known variations in connectivity. To test

this hypothesis, different types of sequences were presented:

comprising words, pictures, or numbers. To test our predictions

in more detail, the data were analyzed using a group spatial

independent component (ICA). ICA has the advantage of

being a data-driven method which can separate signal from

noise components associated with movement or physiological

fluctuations. As a result, ICA has been shown to possess

increased sensitivity compared with standard generalized

linear model (GLM) techniques (McKeown et al. 2003). An

additional advantage is that ICA can distinguish between

distinct components with partial spatial overlap based on

variations in time courses (Leech et al. 2011). This point is

significant because if subdivisions are graded, we expect some

degree of spatial overlap across subregions. Therefore, task

ICA was used to investigate the functional networks involved
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in processing sequence violations across domains. After

establishing the presence of distinct functional PC networks

using the task data, an independent resting state dataset was

used to independently verify the results.

Methods

fMRI Task Data

Participants

Twenty participants took part in the study (average age=24.4,

standard deviation [SD] = 4.79; # females = 16). All participants

were native English speakers with no history of neurological or

psychiatric disorders and normal or corrected-to-normal vision.

Task Design

The participants completed three experimental tasks (sentence

task, picture task, and number task) in separate scan sessions,

the order of which was counterbalanced across subjects. In each

task, on a given trial, a sequence of items (words, pictures, or

numbers) was visually presented one item at a time with either

a familiar structure (normal sequences) or a violated structure

in which the final item from each sequence was taken from a

different item. The participants’ task was to determine if the

sequence was coherent. The sequences were selected from the

most accurate subset from a pilot experiment. Since this is the

first study of its kind to examine sequence violations across

the language, pictorial, and number domain using a shared

paradigm, we sought to maximize any potential effect by using

a highly unexpected sequence ending and an explicit task in

which participants were instructed to focus on the coherence

of the sequences. An example trial from each task is shown in

Figure 1. The items were counterbalanced such that the same

participant did not see both the normal or violated versions of

the same item.

Sentence task: to ensure a high degree of statistical regularity,

sentences were selected in which the final word in the sentence

had ahigh cloze probability andwas thus highly predictable (e.g.,

“He loosened the tie around his neck”). The stimuli were a subset

of the high cloze probability items included in Block and Baldwin

(2010) (average cloze probability = 0.94, SD=0.01). The sentence

length varied from 6 to 10 words (average length=8.4 words,

SD=1.0).

Picture task: a series of four color pictures depicted the occur-

rence of real-life, everyday events with a clear causal structure,

that is, the events could not plausibly occur in a different order

(e.g., a banana being peeled, a house being built, etc.). The images

consisted of stills taken from freely available short online video

clips downloaded from youtube.com. In each case, the event

of interest was the central focus of the videos, and there was

minimal distracting background information.

Number task: a series of four numbers involving low-digit

multiplication (e.g., 2 4 6 8) or addition (e.g., 1 2 3 4). Low-digit

multiplication and addition have been shown to be automated

skills, the solutions to which can be easily retrieved from mem-

ory (Simon et al. 2002; Dehaene et al. 2003). Note that the high

accuracy scores for the task (see Results section) confirm that

the sequences were easily recognizable.

Task Procedures

There were 42 items per condition presented using an event-

related design with the most efficient ordering of events deter-

mined using Optseq (http://www.freesurfer. net/optseq). Null

time was intermixed between trials and varied between 2 and

18 s (average=4.59 s, SD=3.06) during which a fixation cross

was presented. For the picture and number task, each of the

four items in the sequence was presented for 900 ms (total

length=3.6 s). The word sequences in the sentence task con-

tained between 6 and 10 words presented at a rate of one word

every 360ms such that themaximum trial durationmatched the

picture and number task. Every item was followed by a “?” for

1.4 s at which point the participants provided a YES/NO button

response.

Task Acquisition Parameters

Imageswere acquired using a 3 T PhilipsAchieva scanner using a

dual gradient-echo sequence, which is known to have improved

signal relative to conventional techniques, especially in areas

associated with signal loss (Halai et al. 2014). Thirty-one axial

slices were collected using a TR=2.8 seconds, TE=12 and 35 ms,

flip angle = 95◦, 80 × 79 matrix, with resolution 3 × 3 mm, slice

thickness 4 mm. Across all tasks, 918 volumes were acquired in

total, collected in 6 runs of 428.4 s each. B0 images were also

acquired to correct for image distortion.

Task Data Analysis

Preprocessing

The dual-echo imageswere first B0 corrected and then averaged.

Data were analyzed using SPM8. After motion correction images

were coregistered to the participants T1. Spatial normaliza-

tion into MNI space was computed using DARTEL (Ashburner

2007), and the functional images were resampled to a 3 × 3 ×

3 mm voxel size and smoothed with an 8-mm full-width at half

maximum (FWHM) Gaussian kernel.

General Linear Modeling

The data were filtered using a high-pass filter with a cutoff

of 190 s and then analyzed using a GLM. At the individual

subject level, each condition for each task was modeled

with a separate regressor (normal, violated) with time and

dispersion derivatives added, and events were convolved

with the canonical hemodynamic response function. Each

sequence was modeled as a single event. Motion parameters

were entered into the model as covariates of no interest. To

investigate the effect of violation, the contrast of violation

sequences > normal sequences was computed in a whole-

brain analysis (uncorrected, P< 0.001), with a significant cluster

extent estimated using AlphaSimwith α <0.05 and a brainmask

applied (https://afni.nimh.nih.gov/pub/dist/doc/program_help/

AlphaSim.html). More targeted analyses were also conducted

using the parameter estimates. Both GLM and ICA methods

have advantages and disadvantages, and thus we performed

both here. While GLM is a highly informative fMRI analytic

approach, ICA has been shown to reveal a wider task-related

network compared with GLM analyses (Robinson et al. 2013), as

well as the potential to show distinct yet spatially overlapping

functional networks (Xu et al. 2013, 2016). On the other hand,

GLM has other advantages including the ability to explore BOLD

time courses across longer trials than those used in the current

study (e.g., van der Linden et al. 2017).

Task Group Spatial ICA

The preprocessed fMRI data were analyzed in a group spatial

ICA using the GIFT toolbox (http://mialab.mrn.org/software/gift)

(Calhoun et al. 2001) to decompose the data into its components,
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5642 Cerebral Cortex, 2020, Vol. 30, No. 11

Figure 1. Top panel: An example from one trial for each of the tasks. Bottom panel: The task-general and task-specific ICA components (cluster corrected, P< 0.05).

separately for each task. GIFT was used to concatenate the sub-

jects’ data and reduce the aggregated dataset to the estimated

number of dimensions using PCA, followed by an ICA analysis

using the infomax algorithm (Bell and Sejnowski 1995). There

were found to be nine non-noise components for the number

task, 11 for the picture task, and 13 for the sentence task. One-

sample t-tests were used to identify areas that significantly

contributed to each component (cluster corrected, P< 0.05). The

thresholded t-maps were then inspected, and verbal labels were

assigned to each network, where possible labels were used

which were consistent with those used frequently elsewhere

in the literature (e.g., DMN, motor network, visual network,

language network, saliency network) (Power et al. 2011; Lee et al.

2012; Yeo et al. 2013).

Certain components were found to be common to all

tasks (see Supplementary Material, Fig. S1), we shall therefore

refer to these as task-general networks. We defined task-

general networks based on the degree of spatial overlap across

components (all comparisons had a Dice coefficient>0.7,which

is considered a high degree of spatial overlap). These closely

resemble those that are commonly labeled as a DMN component

and a fronto-parietal executive control component (described in

detail in Results section). An additional network resembling

that commonly referred to as the saliency network was also

present which included the temporo-parietal junction (TPJ);

however this component was found to be insensitive to any

task manipulation and was therefore not included in further

analyses (no task modulated TPJ activation relative to rest
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[all ts<1.3, ps> 0.2], nor was there any modulation based on

violation [all ts<1.4, ps>0.2]). We have now measured this was

similarly the case for the executive network components (Dice

coefficient> 0.7 in all pair-wise comparisons).

In addition to the task-general components, we also identi-

fied two task-specific left parietal components (i.e., components

which were not common to each task); a network that we

have labeled as the “language component” from the sentence

task and a “visual-parietal component” from the picture task

(described in detail in Results section).

In order to interrogate the cognitive signature of each compo-

nent, 12-mm spheres were defined around the peak coordinates

from all components of interest, and these were used as regions

of interest (ROIs) to test for significant effects of conditions.

Finally, we also examined how parietal networks might interact

with one another or with other networks in the brain (e.g.,

visual or auditory) by performing a crosscorrelation analysis

of the average time-series for these components (parietal or

nonparietal).

Resting State Data

Participants, Procedures, and Acquisition Parameters

Seventy-eight participants completed the resting state scan

(average age=25.23, SD=5.55; # females = 57). During the scan,

the participants were instructed to keep their eyes open and

look at the fixation cross. The data acquisition parameters for

the resting state scan were identical to the experimental task.

The scan consisted of a single 364-s scan session of 130 volumes.

Data Analysis

Preprocessing: Preprocessing was performed using SPM8 and

the Data Processing Assistant for Resting State fMRI (DPARSF

Advanced Edition, V2.3) toolbox (Chao-Gan and Yu-Feng 2010).

Compared with the task data, additional preprocessing steps

were carried out on the resting state data to minimize the

influence of distance-dependent increases in correlations due to

motion, which are considered problematic in resting state data.

Thus, several procedures were adopted: censoring, global signal

regression, 24 motion parameter regression, and scrubbing of

high motion time points. These methods have been shown to

greatly reduce the effects of motion (Weissenbacher et al. 2009;

Van Dijk et al. 2012; Yan et al. 2013; Power et al. 2014).

The images were first slice-time corrected, realigned, and

coregistered to the subjects T1 using SPM.Censoringwas applied

using a threshold of greater than 3mmof translation or 1 degree

of rotation. This resulted in the exclusion of six participants

from further analysis. Using DPARSF, images were normalized

using DARTEL, smoothed with a 8-mm FWHM Gaussian kernel,

and filtered at 0.01–0.08 Hz (Satterthwaite et al. 2013). Nuisance

covariates were regressed out. These included covariates for 24

motion parameters, white matter, CSF, and global tissue signal

and also the performance of linear detrending. The 24 motion

parameters were calculated from the six original motion param-

eters using Volterra expansion (Friston et al. 1996) and have

been shown to improvemotion correction comparedwith the six

parameters alone (Yan et al. 2013; Power et al. 2014). Additional

covariates were included for outlier time points with a with a z-

score >2.5 from themean global power or >1-mm translation as

identified using the ARtifact detection Tools software package

(ART; www.nitrc.org/projects/artifact_detect).

Resting state ICA: The goal of the resting state ICA analysis

was to use an independent dataset to verify the AG functional

subdivisions identified by the task ICA. The ICA was carried out

on the preprocessed resting state data using the same method

as the task data. This analysis identified five AG components,

the significance of which was tested using one-sample t-tests

(cluster corrected, P<0.05). These five AG subdivisions were

then used as ROIs for the task data to test for effects of violation

and task. The spatial similarity of the parietal ROIs defined

using the task ICA versus the resting state ICA and observed

Dice coefficients varying from 0.2 to 0.6 (dorsal PGa=0.4, mid-

PGp=0.4, ventral PGa=0.6, and ventral PGp=0.2). This is a good

level of overlap when considering that the components were

identified using different fMRI techniques (resting state vs. task

fMRI) and using different subjects.

Results

Behavioral Results

Task performance was highly accurate across all experimental

tasks (sentence task=97%, SD=3.3; picture task=93%, SD=5.8;

number task=91%, SD=8.1). Nevertheless, there were some task

differences: The sentence task was found to be significantly

more accurate than the number task (t(19) = 3.17, P=0.005,

d=0.71) and marginally more accurate than the picture task

(t(19) = 2.52, P=0.02, d=0.71), which does not survive Bonferroni

correction. The picture task was marginally more accurate than

the number task (t(19) = 2.17, P=0.04, d=0.49), which does not

survive Bonferroni correction.

In terms of reaction time, a 3 × 2 within-subjects ANOVA

found a significant effect of task (F(38) = 18.13, P = 0.001,

ηp2 =0.49), violation (F(38) = 7.71, P = 0.01, ηp2 =0.29) and a

significant task × violation interaction (F(38) = 22.09, P = 0.001,

ηp2 =0.54). Paired t-tests showed that responses to the sentence

task were slower compared with the picture task (t(19) = 6.35,

P=0.001, d>1.75) and the number task (t(19) = 5.35, P=0.001,

d=1.36) which did not differ (t(19) = 1.06, P=0.30). The interaction

can be explained by an effect of violation in the picture task

(t(19) = 5.75, P=0.001, d=1.28), but no significant difference for

the sentence task or number task (all ts<2 ps> 0.05).

GLM Analysis

Compared with the normal sequences, the violation sequences

elicited greater activation within IPC for all tasks (see Supple-

mentary Material, Fig. S2 and Table S1), with overlap in medial

posterior AG (PGp). There was some overlap in the violation

> normal contrast in the DLPFC, although this cluster did not

survive the cluster correction for the number task. No parietal

voxels showed the opposite pattern (normal > violation), even

at a very lenient threshold (all ts< 1). Some task differences

were found to be significant. The violation effect was found to

be significantly larger for the sentence task compared with the

other two tasks combined (Sentences > Pictures + Numbers) in

the anterior AG (PGa), left lateral frontal areas (inferior frontal

gyrus [IFG] and precentral gyrus), and right superior temporal

gyrus. The left posterior middle temporal gyrus was also more

strongly recruited for the sentence task; however, this did not

survive the cluster correction. The violation effect for the picture

task was found to be greater than the sentence and number

tasks combined (Pictures > Sentences + Numbers) in a network

of bilateral visual areas (fusiform gyrus and visual cortex). There

were no regions more responsive to the number task compared

with the other two tasks. Therefore, these analyses support
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the hypothesis that IPC, especially AG, is sensitive to sequence

violations but also suggests that there may be task differences

in the full network recruited.

Task ICA Analysis

Task-General Networks

Certain parietal components were found to be largely over-

lapping across tasks (task-general networks). These resemble

a DMN component (bilateral posterior AG, precuneus [PCC],

medial frontal, mid-middle temporal gyrus [MTG]), a fronto-

parietal executive control component (referred to as the execu-

tive network from here on, including left lateral frontal, AG/IPS,

pMTG, and posterior superior frontal gyrus [SFG]). The DMN and

executive control network overlapped in AG; however the peak

for the executive control network was found to be more dorsal,

approaching IPS. Both networks also overlapped in IFG and SFG,

although the peak activation was more dorsal for the executive

control network (Fig. 1).

There were two parietal components that were task-specific

in nature (see Fig. 1). First, there was a visual–parietal network

that involved visual cortex, SPL, and PGp, which was present in

the picture task alone. Second, therewas a component identified

from the sentence task data that clearly resembled what is often

referred to as the language network (left IFG, MTG, anterior AG)

(Vigneau et al. 2006).

Sensitivity of task-general and task-specific networks to violation. In

order to examine the cognitive signatures of each identified

component, spheres were defined around the peak coordinates

from the task-general (DMN, executive network, and saliency

network) and task-specific networks (language, visual–parietal,

and IPS number), and these were used as ROIs to test for effects

of violation.

Task-General Parietal ROIs

The AG ROI for the executive network was more dorsal (in PGa,

here on referred to as dorsal PGa) compared with the DMN

ROI, which was in central AG (in PGp) (here on referred to

as mid-PGp). Both ROIs showed an overall effect of violation,

which did not interact with task: Within the DMN, mid-PGp

showed a significant effect of violation (F(1,19) = 5.73, P=0.03,

ηp2 =0.23) but no effect of task (F(2,38) = 1.75, P=0.19) and no

task x violation interaction (F(2,38) = 0.01, P=0.99). Within the

executive network, the dorsal PGa ROI showed a significant

effect of violation (F(1,19) = 18.63, P=0.001, ηp2 =0.55), a marginal

effect of task (F(2,38) = 3.01, P=0.06, ηp2 =0.14), but no task x

violation interaction (F(2,38) = 1.96, P=0.16). The effect of task

reflected moderately stronger activity for the picture compared

with number tasks; however, this did not survive a Bonferroni

correction (t(19) = 2.23, P=0.04).

Despite the AG components of the executive network and

DMN showing similar task-general sensitivity to sequence viola-

tions, the two subregions exhibited opposing directions of acti-

vation relative to fixation; activation for the executive network

was significantly greater than zero for each condition (one-

sample t-test, all ts> 3.49, ps<0.002, ds> 0.78), whereas the

DMN elicits significant negative activation for each condition

(one-sample t-test, all ts> −3.68, ps< 0.002, ds>1.01, although

the sentence violation condition only trended after Bonferroni

correction was applied (t(19) =−2.8, P=0.01, d=0.6). This sug-

gests that while both areas show a similar effect of violation,

the underpinning function of each subdivision is likely to dif-

fer, perhaps reflecting the fact that the dorsal PGa is part of

the task-positive executive network, whereas the mid-PGp is

part of the DMN which often shows a task-negative response.

These results from all regions are presented in Figure 2 (and see

Supplementary Material, Fig. S3 for an alternative view of the

ROIs).

Task-General Nonparietal ROIs

Given that the AG component of the executive and DMN were

both sensitive to sequence violations, further analyses were

conducted on the nonparietal components of the networks so

as to determine whether the effect was AG-specific or general

to the whole of the network (see Fig. 3).

Within the DMN, no other region was found to be sensitive

to violation. There were no significant effects for ventral IFG

or PCC (all Fs< 2.58, ps>0.13). Mid-MTG and medial frontal

showed a significant effect of task but no effect of violation and

no interaction (mid-MTG, task F(2,38) = 18.95, P=0.001, ηp2 =0.55,

condition F(1,19) = 0.30, P=0.59, interaction F(2,38) = 0.47, P=0.63;

Medial frontal task, F(2,38) = 5.35, P=0.009, ηp2 =0.22, condition

F(1,19) = 0.08, P=0.78, interaction F(2,38) = 0.85, P=0.44). For mid-

MTG, sentences elicited greater activity compared with pictures

(t(19) = 5.45, P=0.001, d=1.22) and numbers (t(19) = 4.28, P=0.001,

d=0.96), which did not differ (t(19) = 1.58, P=0.13). Within the

medial frontal ROI, numbers elicited greater activity compared

with pictures (t(19) = 3.52, P=0.002, d=1.01). Therefore, the AG is

the only DMN area to respond to sequence violations.

Unlike the DMN, all regions of the executive network showed

task-general sensitivity to violation, with stronger activation for

the violation condition compared with the normal sequences.

Within the dorsal IFG, there was a significant effect of task

(F(2,38) = 6.27, P=0.004, ηp2 =0.25), violation (F(1,19) = 14.60,

P=0.001, ηp2 =0.44), but no significant task × violation inter-

action (F(2,38) = 0.20, P=0.82). The task effect reflects greater

activity for sentences compared with numbers (t(19) = 3.10,

P=0.006, d=0.69) and pictures (t(19) = 2.46, P=0.02, d=0.55).

Similarly, within posterior MTG there was a significant effect

of task (F(2,38) = 18.11, P=0.001) and violation (F(1,19) = 13.55,

P=0.002) and no significant task × violation interaction

(F(2,38) = 2.54, P=0.09). The task effect reflected reduced for

numbers compared with pictures (t(19) = 5.74, P=0.001, d=1.28)

and sentences (t(19) = 4.56, P=0.001, d=1.01).

Task-Specific Parietal ROIs

Language network: The anterior ventral AG (here on referred to

as ventral PGa) showed a significant effect of task (F(2,38) = 26.92,

P=0.001, ηp2 =0.59), violation (F(1,19) = 10.75, P=0.004, ηp2 =0.39),

and a significant task × condition interaction (F(2,38) = 5.93,

P=0.006, ηp2 =0.24). The task effect reflects stronger activation

for the sentence task comparedwith the picture task (t(19) = 6.15,

P=0.001, d=1.37) and the number task (t(19) = 7.32, P=0.001,

d=1.64). The interaction can be explained by a stronger effect

of violation in the sentence task compared with the picture task

(t(19) = 3.12, P=0.006, d=0.70) and the number task (t(19) = 2.92,

P=0.009, d=0.65). One-sample t-tests were used to examine

whether the activation differed significantly from zero and if so

in which direction. This showed significantly positive activation

for the sentence conditions only (ts> 4.72, ps< 0.001, d=1.01),

with the picture and number conditions showing no difference

from zero (ts<0.92, ps> 0.37). Therefore,while this area is sensi-

tive to violation overall, the effect is larger in the sentence task,

which is also the only task to positively activate this region. This

difference is likely explained by the fact that this region forms
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Figure 2. Percent signal change for the violation and normal sequences for each task within the task ICA ROIs and resting state ICA ROIs. The results show the same

pattern for both methods.

part of the language network and hence responds strongly to

linguistic stimuli. These results are presented in Figure 2 (see

Supplementary Material, Fig. S3 for an alternative anatomical

view of the ROIs).

Visual–parietal network: The posterior ventral AG (here on

referred to as ventral PGp) was specifically sensitive to the

picture task. The results showed a significant effect of task

(F(2,38) = 50.86, P=0.001, ηp2 =0.73), violation (F(1,19) = 23.69,

P=0.001, ηp2 =0.56), but no task × violation interaction (F(2,38) =

1.16, P=0.33). The picture task elicited stronger activation than

the number task (t(19) = 10.02,P=0.001,d=2.24) and the sentence

task (t(19) = 7.62, P=0.001, d=1.70), which differed marginally in

favor of the sentence task after applying Bonferroni correction

(t(19) = 2.20, P=0.04, d=0.02). Examinations of the direction
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Figure 3. Percent signal change for the violation and normal sequences for each task within the executive network and default mode network. The regions to show a

significant effect of violation are highlighted in red.

of activation revealed significantly positive activation for

the picture task only (ts> 6.35, ps< 0.001, d=1.42), with no

modulation of the sentence and number tasks (ts<2, ps> 0.05).

Therefore, while this area is sensitive to violation overall, it

shows a task-specific response to picture task likely due to the

fact that this region is part of a visual processing network. These

results are presented in Figure 2 (see Supplementary Material,

Fig. S3 for an alternative anatomical view of the ROIs).

Crosscorrelations

We examined how parietal networks might functionally relate

to one another and also to the nonparietal neural networks by
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Figure 4. The crosscorrelation with the average time course of the executive

network.

measuring the crosscorrelations between each network’s time-

series (Bonferroni corrected). Besides the networks mentioned

above, we additionally included in this analysis the task-general

auditory (bilateral auditory cortex) and visual networks (bilateral

visual cortex) in order to have a common comparison across

tasks and test whether each task differentially engaged each

modality (e.g., picture tasks might correlate more strongly with

visual components). Interestingly, like in the analyses described

above, there was a dissociation in responses for the picture task

compared with the sentence task (Fig. 4). These showed a strong

anticorrelation between the executive network (and related net-

works) and the DMN for both tasks, thus suggesting that activa-

tion of the executive network may relate to suppression in the

DMN.

For the sentence tasks, the executive network showed a sig-

nificant positive correlation with the language network and also

the auditory network (even though the sentences were visually

presented) (r=0.52, r=0.20, respectively, ps<0.01), but a negative

correlation with visual networks and DMN (r=−0.22, r=−0.30,

respectively, ps<0.001).Whereas, in the picture task, the execu-

tive network instead correlated positively with visual networks

(rs = 0.54, ps< 0.001) and negatively with auditory networks and

DMN (r=−0.34, r=−0.42, respectively, ps< 0.001). This suggests

that while the executive network is task-general, there is a

shift in the networks that interact with it based on the varying

demands of each task. Furthermore, when a network is not

required for that particular task, it becomes anticorrelated with

the executive network. (Note, we dropped the number task from

this analysis because a “number network” is notwell established

in the literature.Without a well-established network to identify,

it is not clear how to select a “number ICA component” for use

in the crosscorrelation analysis. In contrast, visual and auditory

components are well established and could be easily identified.)

Summary

The task ICA results suggest that IPC as a whole is sensitive

to sequence violations. However, IPC subregions appear to be

organized along dorsal–ventral and anterior–posterior dimen-

sions. Specifically, dorsal PGa andmid-PGp showed task-general

responses, yet the time-series of the two networks were anticor-

related and the subregions had opposing activation directions

relative to rest: Dorsal PGa was positively activated by all tasks,

whereas ventral mid-PGp was deactivated.

Whereas these areas showed a task-general response

to violation, anterior and posterior portions of ventral IPC

showed task-specific responses. Specifically, ventral PGa was

only positively activated by sentence tasks, whereas ventral

PGp responded positively to picture tasks alone. This pattern

mirrors the variations in the networks that correlate with each

subregion. Specifically, ventral PGa is part of the language

network and hence is positively activated for sentence tasks,

whereas ventral PGp is part of a visual network and hence

responds to picture tasks. There was also a dynamic, task-

specific switching between the executive network and the

other networks; for the sentence, task the executive network

correlated with language and auditory networks and was

anticorrelated with visual areas, but for the picture tasks the

opposite pattern was found.

Resting State ICA

The resting state ICA analysis was used to verify the presence of

the functional subdivisions using an independent dataset and in

the absence of a task. This ICA revealed five components which

involved IPC. Components 1 and 2 engaged partially overlapping

regions of dorsal PGa. Component 1 included a similar network

as the executive component from the task ICA analysis (lateral

frontal, dorsal PGa, and pMTG), while component 2 was more

restricted in size but still recruited lateral frontal and dorsal

PGa. Component 3 engaged mid-PGp region and was similar

to the DMN identified in the task ICA analysis. Component 4

engaged ventral PGa and resembled the language network from

the previous analysis. Finally, component 5 engaged ventral

PGp and included a network of superior parietal and higher-

level visual areas which included some of the same regions as

the visual/SPL network from the task ICA analyses. Thus, there

appeared to be strong correspondence between the networks

identified in the task-based and resting state ICA analyses (see

Fig. 5).

The five rs-fMRI–derived IPC subdivisions were used as ROIs

for the task data to examine whether they showed a similar

pattern of sensitivity to violation across tasks as those regions

defined by the task ICA (see Fig. 2; Supplementary Material,

Fig. S3). Responses within components 1 and 2 were found to

be similar to the dorsal PGa region from executive network in

the task ICA data. Both components 1 and 2 showed a signif-

icant effect of violation (component 1, F(1,19) = 13.13, P=0.002,

ηp2
> 0.41; component 2, F(1,19) = 15.13, P=0.001, ηp2

> 0.44) but

no effect of task (component 1, F(2,38) = 1.57, P=0.22; component

2, F(2,38) = 1.36, P=0.87) and no task × condition interaction

(component 1, F(2,38) = 1.98, P=0.15; component 2, F(2,38) = 0.94,

P=0.40). Activation was also found to be significantly positive

comparedwith zero across all conditions (all ts>3.81, ps< 0.002,

ds>1.38).

Responses within component 3 resembled those of mid-

PGp DMN in the task data. There was a significant effect of

violation (F(1,19) = 10.10, P=0.005, ηp2
>0.35) but no effect of

task (F(2,38) = 2.76, P=0.08) and no task × condition interaction

(F(2,38) = 0.142, P=0.87). Responses tended to be negative relative

to zero (all ts>2.53, ps<0.01, ds>0.57) except for the picture

violation and sentence violation conditions which did not differ

from zero (t<1.81, P>0.09).

The responsewithin components 4 and 5 resembled the task-

specific responses found for the language network and visual–

parietal network from the task data, respectively. Specifically, for

component 4 therewas a significant effect of task (F(2,38) = 22.54,
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Figure 5. The correspondence between the task ICA and resting state ICA analyses.

P=0.001, ηp2
> 0.67), violation (F(1,19) = 7.67, P=0.01, ηp2

> 0.29),

and a significant task × violation interaction (F(2,38) = 4.86,

P=0.01, ηp2
>0.34). Paired t-tests showed greater activation for

the sentence task compared with the number task (t(19) = 4.97,

P=0.001, d>1.11) and picture task (t(19) = 5.83, P=0.001, d> 1.30)

and greater activation for the number task compared with

the picture task (t(19) = 2.62, P=0.02, d>0.58). Also, the effect

of violation was significantly larger in the sentence task

compared with the picture task (t(19) = 2.97, P=0.008, d> 0.66)

or the number task (t(19) = 2.44, P=0.02, d>0.55), although this

was trending using a Bonferroni correction. Compared with

zero, responses were significantly positive or trending for the

sentence conditions (all ts>2.34, ps<0.03, ds> 0.55), did not

differ from zero for the number conditions (all ts<0.34, P> 0.74),

and were negative for the picture conditions (all ts> 2.52,

P<0.02, ds>0.57).

For component 5, there was a significant effect of violation

(F(1,19) = 19.83, P=0.001, ηp2
>0.51) and task (F(2,38) = 57.46,

P=0.001, ηp2
> 0.82) but no task × condition interaction

(F(2,38) = 0.60, P=0.55). Paired t-tests showed that the picture

task elicited significantly greater activation compared with the

sentence task (t(19) = 8.09,P=0.001,d> 1.81) and the number task

(t(19) = 8.95, P=0.001, d>2.00), which did not differ (t(19) = 0.93,

P=0.37). Against zero, activation was positive for the picture

condition (all ts> 4.70, ps< 0.001, ds>1.10), did not differ from

zero for the sentence conditions (all ts< 2.1, P> 0.05), and was

negative or trending for the number condition (all ts>1.87,

P< 0.08, ds> 0.42).
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Discussion

The multimethod approach used in this study revealed several

key findings with regard the function of the IPC. Aligning with

the predictions of the PUCCmodel (see Introduction section), the

highly convergent results can be summarized in terms of three

contributing factors.

Factor 1: sensitivity to violation—multiple parts of IPC and

the whole executive network are sensitive to sequence violation

across domains; they respond more strongly to sequences in

which the statistical regularity is violated comparedwith regular

sequences. Despite this general property, the IPC has graded

functional subdivisions as observed in the task ICA and repli-

cated using the independently defined ROIs from the resting

state ICA. Together these ROI analyses plot out two primary axes

of IPC organization (described next).

Factor 2: A dorsal–ventral difference was established with

more dorsal areas of AG that approach the IPS (dorsal PGa),

forming part of the executive network and responding with

positive activation to sequences in a domain-general fashion. In

contrast,more ventral areas (mid-PGp) formpart of theDMNand

are deactivated by all tasks (though mid-PGp was the only part

of the DMN that was sensitive to sequential violation). More-

over, the executive network and DMN showed anticorrelated

time-series. Together these results suggest that activation of

the top-down executive network relate to suppression of the

DMN.

Factor 3: the final factor to influence the results was an

anterior–posterior dimension of organization within ventral

IPC. Ventral PGa formed a part of the language network and

hence responded specifically to linguistic material (sentences),

whereas ventral PGp was part of the visual/SPL network and

hence only responded positively to pictorial material. Also the

language and visual–parietal networks selectively correlated

with the executive network only when their preferred task was

performed. This suggests task-dependent dynamic flexibility

in the regions in their interaction with the core, multidemand

executive network.

The results show that IPC, together with the executive net-

work, responded to task-general sequence violations. The PUCC

model proposes that the IPC may form a neuroanatomically

graded multimodal buffer, thereby supporting a dynamic repre-

sentation of the changing internal and external “state of affairs.”

As a by-product of repeated events, this system will become

sensitive to the temporal and spatial regularities (Plaut 2003).

Accordingly, sequence violations are more effortful to process

and thus elicit greater activation.The current data are consistent

with existing studies finding that IPC responds to the regulari-

ties of meaningful (words/picture sequences) and meaningless

events (motor/visual sequences) (Kuperberg et al. 2003; Tinaz

et al. 2006; Melrose et al. 2008; Tinaz et al. 2008; Bubic et al. 2009;

Hoenig and Scheef 2009; Gheysen et al. 2010). Indeed, there is a

growing body of evidence that IPC formspart of a context-related

processing network. For instance, it responds more strongly to

images with strong rather than weak contextual associations

(Bar et al. 2008), or when subjects remember contextual asso-

ciates of an item (Fornito et al. 2012), and is sensitive to event

occurrence frequency (d’Acremont et al. 2013). Future studies

will be able to explore how these increased IPL activations relate

to the underlying processes/computations (e.g., prolonged pro-

cessing, transient reorienting of attention, transient/sustained

control mechanism, etc.) and their exact timings. Such inves-

tigations may require formal computational models of these

processes and descriptions of the resultant temporally varying

neural signatures.

IPC responses were found to be task-general with some vari-

ations around the anterior and posterior edges. This supports

the notion that there is a core underlying IPC neurocomputation

which is common across tasks (Walsh 2003; Cabeza et al. 2012;

Humphreys and Lambon Ralph 2015) and argues against a highly

“fractionated” or modular pattern of organization (Nelson et al.

2012). Indeed, the current data appear inconsistent with any

domain-specific theories of IPC function which, for example,

suggest specialization for semantic memory (Geschwind 1972;

Binder et al. 2009), episodic memory (Wagner et al. 2005; Vil-

berg and Rugg 2008; Shimamura 2011), or numerical process-

ing (Arsalidou and Taylor 2011). We consider briefly how each

domain-specific theory might address the results of this and

other studies. In doing so, we note that these authors might

not have intended their theory to provide explanations for data

from other cognitive domains, as each theory typically focusses

on the primary domain of interest. Most IPC semantic mod-

els would predict stronger activation for words and pictures

compared with numbers and (presumably) positive activation

over and above “rest.” The current data clearly do not support

this prediction. With regard to episodic-related proposals, there

is some convincing evidence that the mid-PGp region is often

positively engaged during episodic fMRI tasks (Humphreys and

Lambon Ralph 2015) and also shows structural and functional

connectivity with other parts of the episodic network including

precuneus and hippocampus (Uddin et al. 2010). The experi-

mental manipulation used in the current experiment places

limited demands on episodic memory retrieval. Since the task

does not require episodic retrieval, this could perhaps explain

the consistent deactivation of PGp across domains since the

region is not required for this cognitive activity. Nevertheless,

any proposal suggesting that the IPC only supports episodic

functions could not account for the overall pattern of activation

found in the current study, for instance, the anterior–posterior or

the dorsal–ventral gradient. Finally, with regard to attention the-

ories of IPC function, direct comparisons between the attention-

reorienting literature and those that relate to the DMN and the

current paradigm have shown that attentional reorientation is

associatedwith responseswithin the TPJ (and saliency network),

which is anterior to the AG and does not overlap with the

current areas of interest (Humphreys and Lambon Ralph 2015).

Indeed, the TPJ (and wider saliency network) was found to be

entirely insensitive to any manipulation in the current study.

Nevertheless, while the posterior IPL is not typically implicated

in attention-reorienting functions, one cannot entirely exclude

the possibility that the key differences between the current

and previous studies might have caused a posterior shift of

reorienting-related activity. If this hypothesis is correct, then one

must consider what function “triggers” the reorienting mecha-

nism. Indeed, in the current context, the reorientingmechanism

must be triggered from a signal derived during sequential pro-

cessing, which would necessitate a form of temporal buffering,

such as that proposed here. Overall, together with previous

crossdomain explorations of IPC function (Cabeza et al. 2012;

Humphreys et al. 2015; Humphreys and Lambon Ralph 2015,

2017), the current data are more consistent with the notion of a

domain-general process but with graded differences in function

based on variations in connectivity to different AG subregions.

The ventral PC is involved in bottom-up/stimulus-driven and

automatic task components (Cabeza et al. 2012; Humphreys and

Lambon Ralph 2015). For instance, AG shows stronger activation
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for faster reaction times (Hahn et al. 2007) and is sensitive to a

range of tasks with more automated tasks compared with exec-

utively demanding tasks, for example, numerical fact retrieval

versus numerical calculation, or making semantic decisions on

concrete versus abstract words (Humphreys and Lambon Ralph

2015). In contrast, the executive network including dorsal IPC

subregions (including dorsal AG and IPS) is known to be involved

in top-down processing, responding more strongly to difficult

decisions or task demands across diverse domains and task

types (Fedorenko et al. 2013; Noonan et al. 2013; Humphreys

and Lambon Ralph 2017). The relationship between the bottom-

up and top-down networks is unclear, but it is possible that

when currently buffered information cannot be automatically

processed by the ventral IPC subregions and their connected

networks (as in the case of sequence violations), then this trig-

gers the involvement of top-down executive processing systems

(see Humphreys and Lambon Ralph 2015 for further discussion).

Indeed, this is akin to the notion of a “circuit breaker” proposed

by Corbetta and Shulman (2002) in which the stimulus-driven

network acts as an alerting system for top-down processing.

Two anatomical gradients of organization were identified

within IPC: dorsal–ventral and anterior–posterior. The fact that

dorsal (IPS/SPL) and ventral parietal (AG/SMG) areas are func-

tionally dissociable has been recognized by several models of

parietal function (Corbetta and Shulman 2002; Cabeza et al.

2008; Humphreys and Lambon Ralph 2015). Indeed, dorsal and

ventral PC connect with distinct cortical areas: Central AG forms

part of the DMN, whereas IPS/SPL is part of a fronto-parietal

control system (Vincent et al. 2008; Spreng et al. 2010; Uddin

et al. 2010; Cloutman et al. 2013; Power and Petersen 2013).

fMRI studies have also shown that dorsal IPC is associated

with task-positive activation, whereas ventral IPC is typically

associated with task-negative activation (Fox et al. 2005). The

current findings demonstrate that, rather than a sharp disso-

ciation between dorsal (IPS/SPL) and ventral (AG/SMG) areas,

there is a graded shift in activation even within the AG: Regions

toward IPS become positively activated and relate more strongly

to the executive network compared with the DMN. The current

results are consistent with a similar graded shift from negative

to positive activation in AG observed for semantic tasks (Seghier

et al. 2010), though the current study shows that this pattern is

not specific to semantic tasks but rather a task-general feature.

The results also showed that the executive network andDMN

had anticorrelated time-series. Likewise, resting state studies

have frequently shown that these networks are anticorrelated

(Fox et al. 2005; Hampson et al. 2010); nevertheless there is

evidence to show this dynamic interplay during task perfor-

mance (Sestieri et al. 2010; Spreng et al. 2010). Future studies

are needed to answer the subsequent questions that arise from

this repeated observation (see also Humphreys and Lambon

Ralph 2015). First, why are any brain regions deactivated at

all? Two important possibilities include the observation that

rest is not a neutral condition but rather allows in-scanner

spontaneous cognition and internal processes and thus “deac-

tivation” might reflect the fact that some active fMRI tasks do

not share these cognitive processes (Buckner and Carroll 2007;

Raichle and Snyder 2007; Binder et al. 2009; Andrews-Hanna

2012).Another possibility relates to the fact that regions tuned to

task-irrelevant functionsmight be deactivated to savemetabolic

energy (Attwell and Laughlin 2001; Humphreys et al. 2015). This

second possibility is consistent with the results found here for

the anterior–posterior changes in function across the ventral IPC

(and other findings, see Humphreys and Lambon Ralph 2017).

Ventral PGa is tuned more toward language, while ventral PGp

for visual tasks. When the active task matches their function,

then these regions exhibit positive activation, whereas during

other types of tasks, they actually deactivate.

A second puzzle is why the executive and DMN are often

(though not always) anticorrelated, with the degree of DMN

deactivation and executive network activation both correlated

with task/item difficulty, regardless of task (Fedorenko et al.

2013; Humphreys and Lambon Ralph 2017). The PUCC model

suggests that the two networks are often counterpointed

because ventral IPC buffering for automatic activities, by

definition, does not require working memory or “problem-

solving” mechanisms, whereas when an ongoing task becomes

problematic, the executive network is engaged and ongoing

automatic buffering may be counterproductive for problem-

solving and thus the buffering is temporarily suspended or

suppressed. These notions are similar to previous suggestions

for a “safety break” mechanism formed through the dynamic

interplay between IPS and IPC and triggered when an unex-

pected event or stimulus is encountered in the ventral network

(Corbetta and Shulman 2002).

The third question relates to what types of task generate

task-positive activation in ventral IPC regions and by extension

the DMN. These regions are most often associated with task-

related deactivation, and thus, understanding the conditions

underwhich task-positive responses are observedmight provide

critical clues about these regions’ core function. This study and

related investigations (e.g., Humphreys and Lambon Ralph 2017)

provide the first evidence for modality-related variations of pro-

cessingwithin AG,which is frequently considered as amodality-

general processing area (Binder and Desai 2011) and align with

recent proposals that the DMN,more generally, is a multifaceted

entity which fractionates depending on the nature of the task

that is compared with rest (Buckner et al. 2008; Humphreys et al.

2015; Axelrod et al. 2017). The current study observed this type of

fractionation along the ventral IPC region (see also Humphreys

et al. 2017): Ventral PGa exhibited deactivation in all conditions

except for the language sequences when it was positively acti-

vated; ventral PGp showed exactly the reverse pattern. Such

results run counter to any single cause or domain-general rea-

son for deactivation but are consistent with notions that areas

unnecessary for the current task are deactivated, perhaps to

minimize cognitive interference and/or to savemetabolic energy

(Attwell and Laughlin 2001; Humphreys et al. 2015; Humphreys

and Lambon Ralph 2015). The mid-AG remains something of a

mystery in that it deactivated across all conditions (albeit being

sensitive to sequence violations like the entire IPC region) and is

one of the areas consistently associated with the DMN (Buckner

et al. 2008). Future crossdomain comparative fMRI studies are

required to establish which subtypes of task generate positive

activations in the mid-AG and whether these tasks are selective

to this IPC subregion, as ventral PGa and PGp appear to be

for language and visual tasks, respectively. Possibilities include

mind-wandering or other forms of internally directed cognition

(Andrews-Hanna 2012), vivid episodic/autobiographical recall

(Wagner et al. 2005; Vilberg and Rugg 2008), or future thinking

(Buckner and Carroll 2007).

The final question to be considered here pertains to what

drives these graded anterior–posterior and superior–ventral

graded functional variations across the IPC region? The PUCC

model, like other proposals (Cabeza et al. 2012), assumes that,

while the IPC might have a core basic neurocomputation (e.g.,

buffering of current information), subregions come to exhibit
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gradedly different responses depending on their pattern of

long-range connectivity. This computational principle has

been demonstrated previously for PDP models of semantic

representation (Plaut 2002). In terms of the anterior–posterior

AG gradient, ventral PGa responded positively to the sentence

task presumably due to input from the verbally related posterior

temporal (STS/MTG) areas, whereas ventral PGp exhibited

activation for the picture task, perhaps reflecting greater

connectivity to visually related occipital/occipitoparietal regions

(Ruschel et al. 2014). In a similar vein, the strong dorsal–ventral

IPC variation is likely to reflect differential connectivity, with

stronger connections from dorsal AG/IPS regions to DLPFC, thus

forming the foundation for themultidemand, executive network

(Uddin et al. 2010; Yeo et al. 2011).

To conclude, the IPC exhibits crossdomain sensitivity to

sequence violation, consistent with a multimodal buffering

computation. This generalized function is conditioned across

dorsal–ventral and anterior–posterior dimensions in keeping

with variations in long-range connectivity.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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