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A Pruned Deep Learning Approach for Classification of Motor Imagery

Electroencephalography Signals

Jiayang Zhang1 and Kang Li1,∗

Abstract— The Deep Learning (DL) approach has been
gaining much popularity in recent years in the development
of electroencephalogram (EEG) based Motor Imagery (MI)
Brain-Computer Interface (BCI) systems, aiming to improve
the performance of existing stroke rehabilitation strategies. A
complex deep neural network structure has lots of neurons with
thousands of parameters to optimize, and a great deal of data is
often required to train the network and the training process can
take an extremely long time. High training costs and high model
complexity not only have negative impacts on the performance
of the BCI system but also on its applicability to meet the
real-time requirement to support the rehabilitation exercises of
patients. To tackle the challenge, a contribution-based neuron
selection method is proposed in this paper. A Convolutional
Neural Network (CNN) based motor imagery classification
framework is implemented, and a neuron pruning approach
is developed and applied. The temporal and spatial features
of EEG signals are captured by the CNN layers, and then the
fast recursive algorithm (FRA) is applied to prune redundant
parameters in the fully connected layers which reduces the
computation cost of the CNN model without affecting its
performance. The experimental results show that the proposed
method can achieve up to 50% model size reduction and 67.09%
computation savings.

I. INTRODUCTION

Stroke is one of the major causes of long-term disability

among adults and imposes significant socio-economic burden

globally [3]. Stroke frequently results in long-term motor

disabilities such as paralysis of the upper limbs [13]. Post-

operative rehabilitation has a great impact on the normal life

of patients. Therefore, there is a growing demand for better

and efficient rehabilitative interventions. In recent years, the

brain–computer interface (BCI)-based system shows promis-

ing results for post-stroke motor rehabilitation. BCI-based

intervention can lead to swift functional recovery by building

the relationship between motor intention and sensory feed-

back of motor movements. Electroencephalography (EEG),

the measure of the electrical fields produced by the brain

activities, is a brain mapping and neuroimaging technique

widely used inside and outside the clinical domain [4].

Specifically, EEG picks up the electric potential differences,

in the order of tens of µV, that reach the scalp when tiny

excitatory postsynaptic potentials produced by pyramidal

neurons in the cortical layers of the brain are aggregated.

A BCI system enables real-time decoding of brain dynamics
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[5] using EEG signals generated solely by motor imagery

(MI).

EEG signals often contain a vast amount of information

about the functioning of the brain, and hence classification

and evaluation of these signals are of paramount importance

in the intention recognition of patients associated to various

brain activities. Among various classification approaches, the

deep learning (DL), as a family of machine learning tools

for extracting high-level information embedded in data by

applying deep-layered architectures, has been successfully

applied to decode EEG signals in the last few years. In 2017,

Schirrmeister et al created three ConvNets with different

structures, where the number of convolutional layers ranges

from 2 layers in a “shallow” ConvNet over a 5-layer deep

ConvNet up to a 31-layer residual network (ResNet) [6].

Among them, the “Shallow” and “Deep” ConvNet structures

have great influence on the performance of the resultant

models. Lawhern in 2018 purposed a new structure namely

“EEGnet” [7] which can achieve 70% classification accuracy

on BCI competition IV dataset 2a [9]. In 2020, Amin et

al proposed the FBCnet model and the binary classification

accuracy on the Korean Dataset [1] reached 74%. With the

development of new studies on using DL to decode EEG

signals, complex networks with various layers combination

have been proposed, such as the convolutional neural net-

work (CNN), recurrent neural network (RNN), long short-

term memory (LSTM) and fully connected layers network.

For example, Mammone et al [10] use three CNN layers

and two fully connected layers to decode signals. This deep

CNN model can achieve up to 90.3% accuracy rate on

public dataset from the BNCI Horizon 2020 website. Amin

et al further combine four models with different numbers

of layers together to classify four-class tasks [11], achieving

6% higher accuracy than some previous studies. Zhang et

al used a network with three CNN layers and LSTM layers

respectively to achieve a satisfactory accuracy [12]. Although

more complex networks can help improve the classification

accuracy, high training cost and long training time issues

cannot be ignored, especially considering that an useful

BCI system needs to be used in real-time applications.

Meanwhile, the nature of the EEG signals is non-linear,

nonstationary and noisy. This means that a neural network

with many redundant neurons and parameters may has the

overfitting problem and the computational efficiency is also

relatively low.

In this paper, to tackle these challenges, a new framework

is proposed to prune neurons and save computations. The

new framework first begins with the construction of a general



CNN model. In this model, one dimension CNN filter and

depthwise CNN are used in the first two layers for learning

the temporal and spatial features of EEG signals. Then an

average pooling layer and two fully connected layers are used

to combine features and produce final outputs. To reduce

redundant trainable parameters, the fast recursive algorithm

(FRA) [8] is used to calculate the contributions of each

neuron in the last two layers. A threshold is used to ensure

that the outputs after pruning are similar with the original

ones, which implies that the resultant new model will take

much less time to train and test while the model accuracy

is not affected by large. Section III presents the details

of the developed network and the FRA approach, and the

experimental results are given in Section IV. Finally, Section

V concludes the paper and future work is also discussed.

II. MATERIALS

We evaluate our method on a 54 subject MI dataset [1].

The data were collected from 62 Ag/AgCl electrodes with a

sampling rate of 1,000 Hz. The EEG amplifier used in the

experiment was a BrainAmp (Brain Products, Germany). The

channels were nasion-referenced and grounded to electrode

AFz. The dataset consists of binary data of left hand vs

right hand MI. In this work, the data from the first session

consists of 200 EEG trials. Every subject has 3s to prepare

at the beginning of each trial. The center of the monitor

showed a black fixation cross to remind subjects. Afterward,

the subject would conduct an imagery task of grasping for 4s

according to the right or left arrow that appeared as a visual

cue. Each of the 4s in length were used (Fig. 1). According

to [2], this report selected 20 channels in the motor region

for the classification task including the channels FC1-6, Cz,

C1-6, Cpz, and CP1-6. The data is down-sampled by a factor

of 4 to the sampling frequency of 250 Hz.

Fig. 1. Experimental design for binary MI-BCI testing

III. METHODS

A. Deep Neural Network Structure

The model is designed to extract the temporal and spatial

information as signatures of MI. The modeling process has

three main steps. 1) An 1-D CNN filter on each chan-

nel learns the temporal features of the EEG data; 2) The

depthwise 2D convolution (Conv2D) layer extracts spatial

feature based on all 20 channels; 3) The average pooling

layer and final fully connected (FC) layer classify features

from the CNN layer into given classes. The architecture is

illustrated in Fig. 2. Exponential linear units (ELUs) are

used as the activation function in the proposed network

as they can accelerate learning and improve classification

accuracy. To address the overfitting problem, dropout and

batch normalization techniques are used.

Fig. 2. The proposed deep neural network structure

The model developed in this paper has 2 convolutional

layers, 1 average pooling layer, 1 flatten layer and 2 fully-

connected layers with a total of 25,608 parameters. To reduce

the model complexity and the number of parameters, a FRA-

based network pruning method is used to remove redundant

neurons according to the contributions of all neurons to the

outputs. Because more than half of the total parameters of the

CNN model come from the last two fully-connected layers,

the proposed pruning method is therefore applied to these

two layers. The redundant neurons and all the incoming

and outgoing connections associated with these neurons are

removed, leading to significantly reduced memory usage

and computational complexity in online MI-BCI systems.

To calculate the difference between the real output with the

model predicted output after FRA pruning, the root mean

square error is used:

rmse =

√

1

m

m

∑
i=1

(yi − ŷi)
2

(1)

when yi is the output of the FC layer and ŷi is the output

of the new FC layer after pruning. The contribution of each

neuron is calculated until rmse value < 0.01.

B. Pruning

The linear-in-the-parameter model is a model structure

for approximating a large class of nonlinear systems. These

models linearly combine a set of model terms that are non-

linear functions of the system variables. Excessive number of

candidate terms in these models may cause overfitting and

high computational complexity, therefore, model selection

algorithms have been proposed to generate parsimonious

models with a much smaller number of model terms. The

fast recursive algorithm (FRA) [8] was proposed to simul-

taneously select most significant model terms and estimate

model parameters. Suppose a nonlinear dynamic system can

be represented by a linear-in-the-parameters model, which is

identified using N data samples{x(t),y(t)}N
t=1, the linear-in-

the-parameter model can be represented as:

y =ΨΘ +Ξ (2)



where y = [y(1) , ...,y(N)]T ∈ RN denotes the system out-

put, Ψ = [ϕ1, ...,ϕ j, ...,ϕS] ∈ RN×S is the regression ma-

trix that contains all candidate model terms, each term

ϕ j ∈ RN×1, ϕ j = [ϕ j (x(1)) , ...,ϕ j (x(N))]T ( j = 1, ...,S) rep-

resents a nonlinear function of N input samples, Θ =
[θ1, ...,θS]

T
are the unknown parameters to be identified, and

Ξ = [ξ1, ...,ξN ]
T

is the model residual vector. Two recursive

matrixes Mk and Rk, are predefined in FRA to fulfill the

forward model selection procedure as:

Mk =Ψ T
k Ψk (3)

Rk = I −ΨkM−1
k Ψ T

k (4)

where Ψk ∈ RN×K includes the first k columns of the full re-

gression matrix Ψ ,k = 1, ...,S and R0 = I. Thus, when the first

k columns in Ψ are selected, the estimation of parameters

that minimizes the cost function and the associated minimal

cost function can be formulated as:

Θ̂k = M−1
k Ψ T

k y (5)

Ek = yT y−Θ̂ T
k Ψ T

k y (6)

When {ϕ j, j = 1, ...,S} in Ψ are mutually linearly indepen-

dent, the residual matrix Rk has the distinguished properties:

Rk+1 = Rk −
Rkϕk+1ϕT

k+1RT
k

ϕT
k+1Rkϕk+1

,k = 0,1, ...,(S−1) (7)

RT
k = Rk,RkRk = Rk,k = 0,1, ...,S (8)

RkR j = R jRk = Rk,k ⩾ j;k, j = 0,1, ...,S (9)

Rkϕ j = 0, j ∈ {1, ...,k} (10)

Now, Equation (6) can be described as:

Ek = yT Rky (11)

To simplify the formulas and decrease the computational

complexity, three quantities are consequently defined as:


















ϕ
(k)
j ≜ R0ϕ j = ϕ j

ak. j ≜
(

ϕ
(k−1)
k

)T

ϕ
(k−1)
j ,a1, j ≜ ϕT

1 ϕ j

bk ≜
(

ϕ
(k−1)
k

)T

y,b1 ≜
(

ϕ
(0)
1

)T

y = ϕT
1 y

(12)

where j = 1, ...,S and k = 0,1, ...,S. According to the prop-

erties of Rk, the net contribution of a new model term φk+1

to the cost function can be explicitly calculated as:

△Ek+1 =−

(

yT ϕ
(k)
k+1

)2

(

(

ϕ
(k)
k+1

)T

ϕ
(k)
k+1

) =

(

bT
k+1

)2

ak+1,k+1

,k = 0,1, ...,S−1

(13)

By calculating the net contribution of each term, the model

terms with maximum contributions will be selected one by

one. Finally, after all the important model terms have been

selected, the parameter for each selected term is calculated

as:

θ̂ j =
b j −∑

k
i= j+1 θ̂ ja j,i

a j, j

, j = k,k−1, ...,1 (14)

Equations (13) and (14) constitute the main steps of the FRA,

which selects model terms one by one based on (13) and

calculates the model parameters for the resultant model based

on (14). Fig 3 illustrates the flowchart of the whole process.

The main steps are:

• Step 1 - Calculate the contribution of each neuron in

the FC1 layer;

• Step 2 - Rank the neurons based on their contributions,

and then select the highest ranked neuron. The root

mean square error between the new model output Ŷ and

the actual output Y over all the training samples is used

for evaluate if the performance of the pruned model is

not significantly different from the original model;

• Step 3 - Repeat Step 2 until the maximum number of

neurons in the FC1 layer is reached or the rmse is

smaller than the predefined error bound (0.01);

• Step 4 - For the FC2 layer, repeat steps 1-3 to reassign

weights and bias of new neurons.

Fig. 3. Flowchart of the FRA-based neuron pruning process

IV. RESULTS

Although the goal of the paper is not to propose a

new model to improve the classification accuracy, rather

to demonstrate the effectiveness of the proposed network

pruning approach, we compare the performance of other

basic DL models such as EEGNET4-2, EEGNET8-2 [7],

Shallownet [6] on the same dataset. The results are listed

in table I.

TABLE I

COMPARISON WITH OTHER BASIC DL MODEL

EEGNET4-2 Shallownet EEGNET8-2 Purposed model

Accuracy 0.6444 0.6065 0.6585 0.627

The performance of the general DL model developed in

this paper and other models on all 54 subjects is given in

Fig 4. According to Fig 4, it is evident that the individual

differences are huge. The lowest classification accuracy is

only 44% while the highest can reach 95%. The number

of tunable parameters in this general DL model is 25,608.



Fig. 4. The box plot based on results of different models

However, there are lots of redundant neurons in the last two

fully connected layers. After network pruning using the FRA

approach, 17,180 parameters were reduced on average. The

average parameters reduction rate can reach 67.09% and the

model size reduction rate can reach 50% (Table II). To show

TABLE II

THE MODEL SIZE, TOTAL PARAMETERS OF THE GENERAL DL MODEL

BEFORE AND AFTER PRUNED

General model Pruned model Pruned rate(%)

Model size (KB) 372 186 50
Parameter numbers 25608 8428 67.09

the relationship between the accuracy rate and the pruned

rate on each subject, Fig 5 combines two results together.

The coefficient rate p equals to − 0.705 which shows the

model with worse classification performance usually has

more redundant parameters, leading to a higher pruned rate.

Fig. 5. The accuracy rate and pruned rate on all subjects

V. DISCUSSION AND CONCLUSION

In a BCI system, to better identify a stroke patient’s

intention, approaches for classifying EEG signals are im-

portant. Among these methods, deep learning as an end-to-

end process has shown excellent performance in the field

of natural language processing and computer vision. Hence,

DL methods have been widely used MI BCI to achieve

higher classification accuracy in recent years. Complex DL

models structure with more layers can extract and learn more

information from EEG signals. However, huge individual

differences among patients and nonstationary nature of EEG

signals usually cause the overfitting problem. Besides that,

too much parameters will take hours even days to build

a model which is not suitable in a real-time BCI system.

Therefore, it is vital to develop approaches that can reduce

many computation costs while having little influence on

model output accuracy. In this paper, we have proposed a

framework using the FRA method to evaluate the contri-

butions of each neuron in the fully connected layers. Then

eliminate the neurons that contribute the least while ensure

that the difference between the final output of the model

after pruning and the optimized output is less than 0.01.

The results show that this framework can reduce 67.09%

computation cost and 50% model size. The general model

we used in this study is a generic CNN model among MI

decoding models. Therefore, the proposed framework has

a wide range of application fields. Future work will also

investigate the pruning of models with deeper and wider

neural network architectures.

REFERENCES

[1] Lee M H, Kwon O Y, Kim Y J, et al. EEG dataset and OpenBMI tool-
box for three BCI paradigms: an investigation into BCI illiteracy[J].
GigaScience, 2019, 8(5): giz002.

[2] Mane R, Robinson N, Vinod A P, et al. A multi-view CNN with novel
variance layer for motor imagery brain computer interface[C]//2020
42nd Annual International Conference of the IEEE Engineering in
Medicine Biology Society (EMBC). IEEE, 2020: 2950-2953.

[3] Hankey G J. The global and regional burden of stroke[J]. The lancet
global health, 2013, 1(5): e239-e240.

[4] Binnie C D, Prior P F. Electroencephalography[J]. Journal of Neurol-
ogy, Neurosurgery Psychiatry, 1994, 57(11): 1308-1319.

[5] Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain–computer
interfaces for communication and control[J]. Clinical neurophysiology,
2002, 113(6): 767-791.

[6] Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep
learning with convolutional neural networks for EEG decoding and
visualization[J]. Human brain mapping, 2017, 38(11): 5391-5420.

[7] Amin S U, Alsulaiman M, Muhammad G, et al. Deep Learning for
EEG motor imagery classification based on multi-layer CNNs feature
fusion[J]. Future Generation computer systems, 2019, 101: 542-554.

[8] Wang, Y., Li, K., Gan, S., Cameron, C. Missing data imputation with
ols-based autoencoder for intelligent manufacturing, IEEE Transac-
tions on Industry Applications 55 (6) (2019) 7219-7229.

[9] Brunner C, Leeb R, Müller-Putz G, et al. BCI Competition 2008–Graz
data set A[J]. Institute for Knowledge Discovery (Laboratory of Brain-
Computer Interfaces), Graz University of Technology, 2008, 16: 1-6.

[10] Mammone N, Ieracitano C, Morabito F C. A deep CNN approach to
decode motor preparation of upper limbs from time–frequency maps of
EEG signals at source level[J]. Neural Networks, 2020, 124: 357-372.

[11] Amin S U, Alsulaiman M, Muhammad G, et al. Deep Learning for
EEG motor imagery classification based on multi-layer CNNs feature
fusion[J]. Future Generation computer systems, 2019, 101: 542-554.

[12] Zhang R, Zong Q, Dou L, et al. Hybrid deep neural network using
transfer learning for EEG motor imagery decoding[J]. Biomedical
Signal Processing and Control, 2021, 63: 102144.

[13] Kasadha B. Reducing the risk of stroke: looking beyond lifestyle
changes[J]. British Journal of Healthcare Management, 2021, 27(9):
241-243.

[14] Dobkin B H. Strategies for stroke rehabilitation[J]. The Lancet Neu-
rology, 2004, 3(9): 528-536.


