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LIFTING CONGRUENCES TO HALF-INTEGRAL WEIGHT

NEIL DUMMIGAN

Abstract. Given a congruence of Hecke eigenvalues between newforms f and
g of odd, square free level, and weight 2κ− 2, with even κ ≥ 6, we show that,
under weak conditions, there is a congruence of Fourier coefficients between
corresponding newforms of half-integral weight.

1. Introduction

Shimura [Sh1] gave a way of associating, to a Hecke eigenform of half-integral
weight, a Hecke eigenform of integral weight. This is in general many-to-one, but by
imposing a condition on the half-integral weight form, Kohnen made it one-to-one
(up to scaling). For precise definitions we refer the reader to his paper.

Theorem 1.1. (Kohnen, [Ko1]) Suppose M is odd and squarefree, κ ≥ 2 an inte-
ger. For each normalised newform f ∈ S2κ−2(Γ0(M)), there is a unique (up to scal-

ing) f̃ ∈ S+,new
κ−(1/2)(Γ0(4M)) such that for any fundamental discriminant (−1)κ−1D

with D > 0,

L(s− (κ− 2), χ(−1)κ−1D)

∞
∑

n=1

aDn2(f̃)n−s = aD(f̃)

∞
∑

n=1

an(f)n
−s,

where f =
∑∞

n=1 an(f)q
n and f̃ =

∑∞
n=1 an(f̃)q

n.

The “+” means that am(f̃) = 0 unless (−1)κ−1m ≡ 0 or 1 (mod 4), and

χ(−1)κ−1D =
(

(−1)κ−1D
·

)

is the quadratic character associated to the extension

Q(
√

(−1)κ−1D)/Q.
The Hecke eigenvalues ap(f) for T (p) on f are the eigenvalues for half-integral

weight Hecke operators T (p2) on f̃ , but it is evident from the above formula that

the ap(f) determine only ratios aDn2(f̃)/aD(f̃) of certain Fourier coefficients for

f̃ . They say nothing about ratios aD′(f̃)/aD(f̃) for different fundamental dis-
criminants (−1)κ−1D′ 6= (−1)κ−1D. The problem of what the full set of Fourier
coefficients tells us is addressed by the following explicit version of a theorem of
Waldspurger. (The case M = 1 was an earlier result of Kohnen and Zagier.)

Theorem 1.2. (Kohnen, [Ko2, Corollary 1, Remark]) With f, f̃ as above, and any
fundamental discriminant (−1)κ−1D with D > 0 such that χ(−1)κ−1D(q) = ǫq(f)
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2 NEIL DUMMIGAN

(the Atkin-Lehner eigenvalue for f) for all primes q | M ,

aD(f̃)2

〈f̃ , f̃〉
= 2ω(M) (κ− 2)!

πκ−1
Dκ−(3/2)L(κ− 1, f, χ(−1)κ−1D)

〈f, f〉 .

Furthermore, aD(f̃) = 0 if χ(−1)κ−1D(q) = −ǫq(f) for some prime q | M .

A problem raised by Hida is whether, given a congruence between newforms of
integral weight, there is a non-trivial congruence of Fourier coefficients between
forms of half-integral weight mapping to them via the Shimura lift. Bearing in
mind the above, whereas a congruence of Hecke eigenvalues in half-integral weight
is a triviality (because they are the same eigenvalues as in integral weight), a con-
gruence of Fourier coefficients is something much stronger, and not at all obvious.
Maeda [Ma] proved one instance of this, where the newforms are in S8(Γ0(26)) and
the modulus is a divisor of 433. Since here M is even, Theorem 1.1 does not apply.
In [DK], under certain hypotheses (including an assumption on the linear indepen-
dence mod λ of certain ternary theta series arising from quaternion algebras), we
proved a fairly general result on lifting congruences from weight 2 to weight 3/2.
The main result of this paper uses a completely different method, but does not
apply to either of these situations, since the weight has to be at least 10.

Theorem 1.3. Let f, g ∈ S2κ−2(Γ0(M)), with M odd and squarefree, be normalised
newforms, with even κ ≥ 6 (so 2κ − 2 ≥ 10, twice an odd number), and λ | ℓ a
prime divisor in a number field K containing all the Hecke eigenvalues of f and g.
Suppose the following.

(1) ρf,λ(Gal(Q/Q)) contains SL2(Fℓ), where ρf,λ is the 2-dimensional λ-adic
Galois representation attached to f by Deligne [De2], and ρf,λ is a residual
representation. (Thanks to the condition, it is irreducible and therefore
well-defined up to isomorphism.)

(2) ℓ ∤ (2κ− 2)!M
∏

prime q|M (q2 − 1).

(3) There exists a fundamental discriminant −D < 0 such that
(

−D
p

)

= ǫp(f)

for all primes p | M , and an even character χ of conductor N > 1, with
M | N and ℓ ∤ N , such that

ordλ

(

LN (3− κ, χ)LN
alg(1, f, χ)L

N
alg(2, f, χ)Lalg(κ− 1, f, χ−D)

[Γ
(2)
0 (M) : Γ

(2)
0 (N)]

)

≤ 0.

(See below for the definitions of these algebraic parts, and the next section

for the definition of Γ
(2)
0 (M). The superscript N on an L-function indicates

that Euler factors at p | N are omitted.)
(4) ordλ(L

M (κ, f)/L(κ, f)) = 0.
(5)

ap(f) ≡ ap(g) (mod λ) for all primes p,

and g is the only Hecke eigenform in S2κ−2(Γ0(M)), not a multiple of f ,
satisfying this congruence for all p ∤ M .

Let f̃ , g̃ ∈ S+
κ−(1/2)(Γ0(4M)) be images of f and g respectively under Kohnen’s

correspondence (Theorem 1.1). Then f̃ , g̃ may be scaled in such a way that

(1) the Fourier coefficients of f̃ are in K, all integral at λ, but not all divisible
by λ, and likewise for g̃.
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(2) There is a congruence of Fourier coefficients

an(f̃) ≡ an(g̃) (mod λ)

for all n ≥ 1.

The important condition is of course the last one, the existence of the congruence
between f and g. The rest, despite their number and complexity, are fairly weak,
as the example in ➜3 will illustrate.

For integers 1 ≤ t ≤ 2κ− 3 the algebraic parts are defined by

Lalg(t, f) :=
L(t, f)

(2πi)tω(−1)t
, Lalg(t, f, χ−D) :=

L(t, f, χ−D)

i
√
D(2πi)tω(−1)t−1

,

where ω+ and ω− are canonically scaled Deligne periods as in [Du1, ➜5] (where I
called them Ω+ and Ω−). These algebraic parts belong to K.

Here we are using integral premotivic structures Mf,dR and Mf,B , and a com-
parison map I∞ : Mf,dR ⊗ C → Mf,B ⊗ C, as in [DFG, ➜1.2.4, ➜1.6.2]. The

restriction of I∞ to Filk−1Mf,dR⊗C yields isomorphisms I∞ : Filk−1Mf,dR⊗C ≃
M±

f,B ⊗ C, and ω± are the determinants with respect to the integral structures

Filk−1Mf,dR = 〈f〉 and M±
f,B . Note that although the definition of Deligne peri-

ods in [De1] would be in terms of (I∞)−1 : M±
f,B⊗C → (Mf,dR/Fil

k−1Mf,dR)⊗C,

using [De1, Lemma 5.1.6, (5.1.7)] one may show that they are the same.

Lemma 1.4. The map I∞ : Cf → M±
f,B ⊗ C coincides with Kato’s map perf ,

referred to in [Kato, Proposition 14.21], defined in his ➜➜6.3, 4.10, 4.5.

This is justified by a close comparison of [Kato, ➜4.10] and [DFG, ➜1.2.4]. In
particular, coLie(E)⊗(k−2) in [Kato, (4.10.2)] is Fk

dR in [DFG, ➜1.2.4], and the res-
olution referred to in the last paragraph of [DFG, ➜1.2.4] is the result of tensoring
[Kato, (4.10.3)] with (the left hand side of) [Kato, (4.10.2)]. Using this, the relation-
ship between our ω± and the periods Ω (which depend on r) in [Kato, Proposition
14.21] is that

ω(−1)r = (2πi)1−kΩ.

(The factor (2πi)1−k is accounted for by its appearance in the trivialisation on the
line preceding [DFG, (4) in ➜1.2.4].) Hence Kato’s

(2πi)r−1L(k − r, f)

Ω
= (2πi)k−1L(k − r, f)

(2πi)k−rΩ
=

L(k − r, f)

(2πi)k−rω(−1)k−r

is our Lalg(k− r, f). Note that for us, the “associated” Oλ-lattices T and D in the
λ-adic and crystalline realisations, required by [Kato, Proposition 14.21], will be
those coming from the integral premotivic structures in [DFG].

To prove Theorem 1.3, we shall consider Siegel modular forms f̂ and ĝ (Saito-

Kurokawa lifts) of genus 2 and weight κ, for a congruence subgroup Γ
(2)
0 (M). The

Fourier coefficients of f̂ are intimately related to those of f̃ , and it will suffice

to prove a congruence of Fourier coefficients between f̂ and ĝ (with appropriate

scaling). To prove the congruence, we find multiples of f̂(Z)f̂(W ) and ĝ(Z)ĝ(W )
in a formula for the restriction of a certain genus 4 Eisenstein series from H4 to

H2 × H2. We need the coefficient of f̂(Z)f̂(W ) to have λ in the denominator. For

this we use a formula of Agarwal and Brown expressing 〈f̂ , f̂〉 (which naturally
appears in the denominator of an expression for the coefficient) as a multiple of
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〈f, f〉L(κ, f). A theorem of Hida and Ribet, that the congruence prime λ appears

in the numerator of a ratio of periods 〈f,f〉
iω+ω− , then shows that the first factor 〈f, f〉

contributes a factor of λ. We also need to apply elements of the Hecke algebra to kill

all but the f̂(Z)f̂(W ) and ĝ(Z)ĝ(W ) terms without cancelling the λ. For this we

use the uniqueness of g to rule out congruences of Hecke eigenvalues between f̂ and

other Saito-Kurokawa lifts. Any congruences of Hecke eigenvalues between f̂ and
non-lifts produce elements in a certain Selmer group, by a Ribet-style construction
used in [AB1]. By a theorem of Kato, its “order at λ” is bounded by that of
LM
alg(κ, f), and any power of λ introduced by killing the non-lift terms is soaked up

by the L(κ, f) factor in 〈f̂ , f̂〉.
We make much use of the work of Agarwal and Brown [AB1], [AB2], but they

do not prove congruences of Fourier coefficients between Hecke eigenforms. Their
concern is to prove congruences of Hecke eigenvalues between Saito-Kurokawa lifts
and non-lifts (and hence construct elements in Selmer groups), by limiting those
between different Saito-Kurokawa lifts. By contrast, ours is to limit congruences
of Hecke eigenvalues between lifts and non-lifts (using Kato’s theorem to bound
Selmer groups) enough to allow the deduction of congruences of Fourier coefficients
between different Saito-Kurokawa lifts. The way in which the congruence between f

and g implies that between f̂ and ĝ is, as outlined above, quite subtle, starting with
the Hida-Ribet theorem about congruence primes appearing in Petersson norms,
which depends on congruences being cohomological.

In [Du2] we looked at congruences between newforms of different weights, in a
Hida family, and showed that sometimes they can be lifted to half-integral weight.
Using Theorem 1.2, it follows that when one twisted L-value vanishes, the other
has algebraic part divisible by λ. We made an application to the Bloch-Kato
conjecture, especially in the case when the smaller weight is 2. This theme was
further developed by McGraw and Ono [MO]. The theorem in this paper is not so
suitable for such applications, since heuristics from random matrix theory suggest
that for f of weight 2κ− 2 ≥ 6, at most finitely many of the twisted L-values will
vanish [CKRS].

Questions by Tobias Berger and Narasimha Kumar during a seminar, and com-
ments by Masataka Chida, Hidenori Katsurada and an anonymous referee, led to
improvements to earlier versions of this paper. All data generated or analysed
during this study are included in this published article .

2. Congruences between Saito-Kurokawa lifts

Let Sp2(Z) :=

{

g ∈ M4(Z) : gt
(

0 −I
I 0

)

g =

(

0 −I
I 0

)}

, and

Γ
(2)
0 (M) :=

{(

A B
C D

)

∈ Sp2(Z) : C ∈ M M2(Z)

}

.

Consider any Siegel cusp form F ∈ Sκ(Γ
(2)
0 (M)), so F is holomorphic,

F ((AZ +B)(CZ +D)−1) = det(CZ +D)κF (Z)
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for all Z ∈ H2 := {Z ∈ M2(C) : tZ = Z, Im(Z) > 0} and

(

A B
C D

)

∈ Γ
(2)
0 (M),

with a vanishing condition at cusps. There is a Fourier expansion

F (Z) =
∑

S

a(F, S)e2πitr(SZ),

where S =

(

a b/2
b/2 c

)

, with a, b, c ∈ Z, a > 0, disc(S) := b2 − 4ac < 0.

Following Agarwal and Brown [AB2, ➜3] we summarise how one obtains (along
the lines of Manickam, Ramakrishnan and Vasudevan [MRV]) a Saito-Kurokawa

lift f̂ ∈ Sκ(Γ
(2)
0 (M)) of the normalised newform f ∈ S2κ−2(Γ0(M). (Note that

at the bottom of [AB2, p. 646], “(2n − j2)” should be “(2n − j)2”.) First one

takes an f̃ ∈ S+
κ−(1/2)(Γ0(4M)), determined only up to scaling, using Kohnen’s

correspondence (Theorem 1.1). Next one applies an isomorphism

J : S+
κ−(1/2)(Γ0(4M)) → Jc

κ,1(Γ0(M)J)

to a space of Jacobi cusp forms of weight κ and index 1. Then

f̂(Z) = f̂

((

τ z
z τ ′

))

:=
∑

m≥1

Vm(J (f̃))e2πimτ ′

,

where Vm : Jc
κ,1(Γ0(M)J) → Jc

κ,m(Γ0(M)J) are certain index-shifting operators.

As in [AB2, Theorem 3.2, Corollary 3.4], if the Fourier coefficients of f̃ are
in K, all integral at λ, then it is immediate from the explicit formulas defining

J and the Vm that the same is true of J (f̃) and f̂ . We actually need to go in

the opposite direction. Choosing a scaling of f̃ and choosing a scaling of f̂ are

equivalent. By a theorem of Shimura [Sh2], Sκ(Γ
(2)
0 (M)) has a basis comprising

forms with rational Fourier coefficients. For each prime p ∤ M the Hecke operator

T (p) on Sκ(Γ
(2)
0 (M)) preserves rationality of Fourier coefficients. Its eigenvalue on

f̂ is ap(f) + pκ−2 + pκ−1. Taking the intersection of the kernels of T (p)− (ap(f) +
pκ−2 + pκ−1) for sufficiently many primes p, we arrive at a 1-dimensional space

spanned by an f̂ with coefficients in K. If −D < 0 is a fundamental discriminant
then the formulas show that for any r, a ∈ Z with a ≥ 1 and r2 − 4a = −D (one

can always choose either r = 0 or r = 1), the coefficient of e2πi(aτ+τ ′+rz) in f̂ is

c(D), i.e. a

(

f̂ ,

(

a r/2
r/2 1

))

= c(D), where f̃ =
∑

n≥1 c(n)q
n. Hence c(D) ∈ K

for all such D.
By the formula in Theorem 1.1, all the c(n) are determined by the c(D) for

fundamental−D, in such a way that if we scale f̃ so that the minimum of ordλ(c(D))
(with −D fundamental) is 0, then all the c(n) belong to K, all integral at λ, not all

divisible by λ. Clearly all the Fourier coefficients a(f̂ , S) are integral at λ, not all

divisible by λ. Furthermore, given how the c(n) can be recovered from the a(f̂ , S)
and the am(f), to prove Theorem 1.3 it now suffices to prove the following.

Proposition 2.1. Let f, g ∈ S2κ−2(Γ0(M)), with M odd and squarefree, be nor-
malised newforms, with even κ ≥ 6, and λ | ℓ a prime divisor in a number field K
containing all the Hecke eigenvalues of f and g. Suppose the following.

(1) ρf,λ(Gal(Q/Q)) contains SL2(Fℓ).

(2) ℓ ∤ (2κ− 2)!M
∏

prime q|M (q2 − 1).
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(3) There exists a fundamental discriminant −D < 0 such that
(

−D
p

)

= ǫp(f)

for all primes p | M , and an even character χ of conductor N > 1, with
M | N and ℓ ∤ N , such that

ordλ

(

LN (3− κ, χ)LN
alg(1, f, χ)L

N
alg(2, f, χ)Lalg(κ− 1, f, χ−D)

[Γ
(2)
0 (M) : Γ

(2)
0 (N)]

)

≤ 0.

(4) ordλ(L
M (κ, f)/L(κ, f)) = 0.

(5)

ap(f) ≡ ap(g) (mod λ) for all primes p,

and g is the only Hecke eigenform in S2κ−2(Γ0(M), not a multiple of f ,
satisfying this congruence for all p ∤ M .

Let f̂ , ĝ ∈ Sκ(Γ
(2)
0 (M)) be Saito-Kurokawa lifts of f and g respectively. Then

f̂ , ĝ may be scaled in such a way that

(1) the Fourier coefficients of f̂ are in K, all integral at λ, but not all divisible
by λ, and likewise for ĝ.

(2) There is a congruence of Fourier coefficients

a(f̂ , S) ≡ a(ĝ, S) (mod λ)

for all S.

Proof. By [AB1, Lemma 6.3],

EM (Z,W ) =
m+r
∑

i=1

ciFi(Z)F c
i (W ),

for Z,W ∈ H2. Here EM (Z,W ), the restriction to H2 × H2 of some Eisenstein
series of weight κ on H4 (for which we need κ ≥ 6) has rational Fourier coefficients,
integral at ℓ (using ℓ ≥ 5 and ℓ ∤ M), {F1, . . . , Fm+r} is an orthogonal basis for

Sκ(Γ
(2)
0 (M)), all Hecke eigenforms (for all T (p) with p ∤ M), and F c(W ) := F (−W ).

For 1 ≤ i ≤ m (and only for those i), Fi belongs to the Saito-Kurokawa subspace,
meaning that

T (p)(Fi) = (ap(hi) + pκ−2 + pκ−1)Fi, for all primes p ∤ M,

for a newform hi of weight 2κ − 2 and level Γ0(M
′) for some M ′ | M , cf. [AB1,

Definition 5.3]. Note that F c
i = Fi for all 1 ≤ i ≤ m. We choose h1 = f and h2 = g.

First we have to eliminate the possibility that hi = f or g for some 3 ≤ i ≤ m,
by checking the proof of [AB1, Theorem 5.4]. As in [DPSS, ➜3.1], we may assume
that the adelization of Fi generates an irreducible automorphic representation of
GSp2(A), type IIb at primes p ∤ N and type VIb at p | N . (That it is necessarily
non-spherical, hence VIb rather than IIb, at p | N , follows from [P-S, Theorem
2.4(2)].) Now that the local components of the automorphic representation are
uniquely determined, it then follows from [Sc, Theorem 5.2(ii)] that Fi is a scalar
multiple of F1 or F2, which is a contradiction.

By assumption (the uniqueness in (5)), for each 3 ≤ i ≤ m there exists a prime
qi ∤ M such that aqi(hi) 6≡ aqi(f) (mod λ). (We temporarily extend K to contain
all the Hecke eigenvalues for F1, . . . , Fm+r.) It follows that if µp(Fi) denotes the
eigenvalue of T (p) acting on Fi then

µqi(Fi) 6≡ µqi(F1) (mod λ), for 3 ≤ i ≤ m.
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Let T be an algebra of Hecke operators, with coefficients in the localisation

OK,(λ), acting on Sκ(Γ
(2)
0 (M)), cf. [AB1, ➜4.2, ➜7.3]. (Though they use more, T (p)

for p ∤ M would suffice.) Let TX and TY be the quotients through which T acts on

the subspaces X := Cf̂ and Y := 〈Fm+1, . . . , Fm+r〉C, with surjective restriction
homomorphisms πX : T → TX and πY : T → TY , kernels IX and IY respectively.
Using the elementary isomorphisms

TX

πX(IY )
≃ T

IY + IX
≃ TY

πY (IX)
,

there exists an element t ∈ T such that t(Fi) = 0 for all m + 1 ≤ i ≤ m + r, and

t(f̂) = αf̂ , where ordλ(α) = ordλ

(

Fitt
(

T
Y

πY (IX)

))

.

For every 3 ≤ i ≤ m, there exists a prime qi ∤ M such that

µqi(Fi) 6≡ µqi(F1) (mod λ).

Recall that

EM (Z,W ) =

m+r
∑

i=1

ciFi(Z)F c
i (W ).

Now apply t
∏m

i=3(T (qi)− µqi(Fi)) to both sides (in the variable Z). This kills all
the terms for i ≥ 3 on the right hand side. If we further take a partial Fourier
coefficient of e2πiTr(SW ), with disc(S) = −D a fundamental discriminant, we get

F(Z) = b1f̂(Z) + b2ĝ(Z),

where the Fourier coefficients of F are integral at λ and

b1 = c1c(D)α

m
∏

i=3

(µqi(F1)− µqi(Fi)),

so that if we choose D with ordλ(c(D)) = 0 then

ordλ(b1) = ordλ(c1) + ordλ

(

Fitt

(

TY

πY (IX)

))

.

We aim now to show that ordλ(b1) < 0. According to [AB1, Theorem 6.2] (and
with a less peculiar normalisation of the standard L-function),

c1 = Bκ,M
LM (3− κ, f̂ , st, χ)

π3〈f̂ , f̂〉
,

with Bκ,M = ±22κ−3

3[Sp2(Z):Γ
(2)
0 (N)]

. By [AB1, Theorem 5.8], which is also [AB2, Corollary

4.7],

〈f̂ , f̂〉 = Aκ,M
c(D)2

Dκ−3/2

L(κ, f)

πL(κ− 1, f, χ−D)
〈f, f〉,

with Aκ,M =
MκζM (4)ζM (1)2(κ−1)

∏
p|M (1+p2)(1+p−1)

2ω(M)+3[Γ0(M):Γ0(4M)][Sp2(Z):Γ
(2)
0 (M)]

. Here, ζM (s) is a product of

Euler factors just for primes p | M . Also, looking at [AB2, Theorem 4.1], −D < 0

is a fundamental discriminant such that
(

−D
p

)

= ǫp(f) for all primes p | M (which

therefore ought to be a condition in [AB1, Theorems 5.8, 6.5]). Note that in their

citation of [Ko2, Corollary 1], it is not necessary to view f̃ as a Shintani lift.
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Using the conditions on ℓ, the fact that [Γ0(M) : Γ0(4M)] = 6, and that

L(s, f̂ , st) = ζ(s)L(s+ (κ− 2), f)L(s+ (κ− 1), f), we need to show that

ordλ

(

αDκ−3/2

c(D)2
LN (3− κ, χ)LN (1, f, χ)LN (2, f, χ)L(κ− 1, f, χ−D)

π2L(κ, f)〈f, f〉[Γ(2)
0 (M) : Γ

(2)
0 (N)]

)

< 0.

Multiplying both the numerator and the denominator by (2πi)κ+2
√
−Dω−(ω+)2,

and using the hypothesis (3) of the proposition, it is good enough to show that

ordλ

( 〈f, f〉
iω+ω−

)

+ ordλ

(

Lalg(κ, f)

α

)

> 0.

As in [Du1, (4)], using work of Hida [Hi1, ➜6], the ratio 〈f,f〉
iω+ω− is, up to S-units

(where S is the set of primes dividing (2κ− 2)!M), an integral cohomological con-
gruence ideal ηf . A good additional reference is [Hi2, (5.18)]. The 〈ζ+, ζ−〉 in [Hi2,
Theorem 5.16] is our ηf . A useful alternative reference is [Be, Theorem 5.4.13(a)],
though note that in the proof, his (Ω+

f Ω
−
f )

2 should be (Ω+
f Ω

−
f ). Here, as in [Hi1],

a map defined using integration takes the place of our I∞ (cf. Lemma 1.4), in
the definition of the periods. They are presumably the same, but in any case the
computation is formally identical, to prove the same relation for our periods. The
necessary compatibility between cup-product and Petersson norm, expressed in [Be,
Lemma 5.3.26], may be replaced by the version in [DFG, ➜1.5.1].

It follows from a theorem of Ribet [Ri2, Theorems 1.3, 1.4] (which removes an
ordinarity assumption from an earlier theorem of Hida) that, since λ is a “congru-
ence prime” for f (and ℓ ∤ k!N), λ divides ηf , which helps. (Although Hida and
Ribet worked with rational coefficients, combining Galois orbits of newforms, this
is not necessary.)

To obtain ordλ(b1) < 0, it remains to show that

ordλ

(

Fitt

(

TY

πY (IX)

))

≤ ordλ(Lalg(κ, f)).

The left hand side measures mod λ congruences of Hecke eigenvalues between f̂
and the non-lifts Fm+1, . . . , Fm+r. Suppose that m+ 1 ≤ j ≤ m+ r and that

µq(Fj) ≡ µq(F1) (mod λ), for all primes q ∤ M.

By [AB1, Theorem 7.3, Theorem 7.4, Corollary 7.5], using that

ℓ ∤ (2κ− 2)!M
∏

prime q|M

(q2 − 1),

Fj is not a weak endoscopic lift, and since also it does not belong to the Saito-

Kurokawa subspace, the 4-dimensional λ-adic representation ρFj ,λ of Gal(Q/Q)
associated with Fj by Weissauer [We] must be irreducible, cf. [AB1, beginning of
➜7].

The congruence of Hecke eigenvalues (viewed as traces of Frobenius elements)
implies that a residual representation ρFj ,λ has composition factors ρf,λ and the

Tate twists Fλ(1−κ),Fλ(2−κ) of the trivial representation. Using the irreducibility
of ρFj ,λ, and adapting an argument used by Ribet [Ri1] it is possible to choose a

Gal(Q/Q)-invariant lattice for ρFj ,λ whose reduction provides a non-split extension
of Fλ(2− κ) by ρf,λ, hence of Fλ by ρf,λ(κ− 2). As in the proof of [AB1, Theorem

8.8], one can show that this gives a non-zero class in H1(Q,Wf,λ(κ−2)), where ρf,λ
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is on a space Vf,λ, with Gal(Q/Q)-invariant lattice Tf,λ, and Wf,λ := Vf,λ/Tf,λ.
Furthermore, this class satisfies the Bloch-Kato local conditions at all primes p ∤ M ,
including p = ℓ. In the notation of [AB1], it gives us a non-zero element of the
Selmer group Sel{p|ℓM}({p | M},Wf,λ(κ− 2)).

In fact, Theorem 8.8 in [AB1] gives us something stronger, that

ordλ

(

Fitt

(

TY

πY (IX)

))

≤ ordλ
(

Fitt
(

Sel{p|ℓM}({p | M},Wf,λ(κ− 2))
))

.

Letting k = 2κ − 2, r = κ − 2, k − r = κ, T = Tf,λ(κ − 2) in [Kato, Proposition
14.21(2)], (where S(T (r)) should be S(T ) on the left hand side), it would say that
ordλ (Lalg(κ, f)) is what the Bloch-Kato conjecture [BK] predicts it should be, as
long as (in his notation) µ = 1, cf. the end of [Kato, ➜14.5]. (Recall that our
Deligne period ω+ is (2πi)1−kΩ in [Kato, Proposition 14.21].) Using the condition
that ρf,λ(Gal(Q/Q)) contains SL2(Fℓ) (which implies the condition [Kato, (12.5.2)]
by [Se, ➜3.4, Lemma 3]), it follows from [Kato, Theorem 14.5(3)] and its proof that
ordλ(µ) ≥ 0. Hence [Kato, Proposition 14.21(2)] says that ordλ (Lalg(κ, f)) is at
least what the Bloch-Kato conjecture predicts it should be. Since the truth of the
Bloch-Kato conjecture is invariant under relaxing local conditions and dropping
Euler factors at a finite set of primes, this implies that

ordλ
(

Fitt
(

Sel{p|ℓM}({p | M},Wf,λ(κ− 2))
))

≤ ordλ
(

LM
alg(κ, f)

)

.

Using hypothesis (4), this gives us the desired

ordλ

(

Fitt

(

TY

πY (IX)

))

≤ ordλ(Lalg(κ, f)).

To complete the proof, recall the equation

F(Z) = b1f̂(Z) + b2ĝ(Z),

where F(Z) has integral Fourier coefficients, and we now know that ordλ(b1) < 0.
Dividing both sides of the equation by b1, we see that there is a congruence of

Fourier coefficients of f̂ and the re-scaled (b2/b1)ĝ. Note that f̂ is scaled as in the
statement of the proposition, and the congruence forces (b2/b1)ĝ to be likewise. �

Remark 2.2. More generally, if f and g are congruent modulo λs with s > 0, one
may prove similarly a congruence mod λs between f̃ and g̃.

3. An example

The 34-dimensional space S10(Γ0(35)) contains normalised newforms

f = q + 28q2 − 116q3 + 272q4 + 625q5 + . . .

and

g = q + (−12 +
√
2)q2 + (−87 + 108

√
2)q3 + (−360− 48

√
2)q4 + 625q5 + . . . ,

among other newforms with coefficient fields of degrees 4, 5 and 6. According to the
computer algebra package Magma [BCP], the q-expansions of f and g are congruent

modulo λ = (199,
√
2 − 20), with K = Q(

√
2) and ℓ = 199, at least as far as the

coefficients of q100. We check that all the conditions of Theorem 1.3 are satisfied
by this example.



10 NEIL DUMMIGAN

(1) We apply a theorem of Billerey and Dieulefait [BD, Introduction, Square-
free level case]. Since 199 ∤ 35, 199 > 4(10) − 3, and none of 58, 510, 78

or 710 is congruent to 1 modulo 199, ρf,199 is irreducible and has image of
order divisible by 199. By a theorem of Dickson[Di], the image of ρf,199
in PGL2(F199) contains PSL2(F199). If the image of ρf,199 (in GL2(F199))
does not contain diag(−1,−1) then every element of SL2(F199) is uniquely
±1 times something in this image, giving a well-defined character from
SL2(F199) to {±1}. Since SL2(F199) has no non-trivial abelian character
(the smallest degree of an irreducible character being 199−1

2 ), it follows that
the image of ρf,199 contains SL2(F199). (This argument was inspired by the
proof of (3.1) in [Ri3].)

(2) 199 ∤ 10!(35)(52 − 1)(72 − 1), whose prime divisors are 2, 3, 5 and 7.
(3) We take N = M , and χ quadratic of conductor 5. It is easy to check that

ord199(L
N (−3, χ)) = 0, using Bernoulli polynomials. Using the Magma

command LRatio(f, 6), where

f := NewformDecomposition(CuspidalSubspace(ModularSymbols(35, 10)))[1],

we find LRatio(6, f) = 24843/2, which factorises as 3 · 72 · 132/2, implying
that ord199(Lalg(6, f)) = 0. We don’t really need that, but it shows that in

this example there are no congruences of Hecke eigenvalues between f̂ and
non-lifts.

Since
(

−8
5

)

=
(

−8
7

)

= ǫ5(f) = ǫ7(f) = −1, we let −D = −8, and aim to
show that ord199(Lalg(5, f, χ−8)) = 0. Letting f be a 2-dimensional space of
modular symbols created in Magma as above, and φ := IntegralMapping(f)
a projection into this space, if we apply φ to the winding elementX5Y 3{0,∞}
then we get (24843, 0). The 24843 recovers what we obtained earlier using
LRatio(6, f). Applying φ instead to a twisted winding element

(8X + Y )4Y 4{−1/8,∞}+ (8X + 3Y )4Y 4{−3/8,∞}
−(8X − 3Y )4Y 4{3/8,∞}− (8X − Y )4Y 4{1/8,∞},

we get (−13829760, 0). The 0 is a check on the correctness of the computa-
tion, and up to small prime factors, the −13829760 = −27 · 32 · 5 · 74 gives
us Lalg(5, f, χ−8), by [MTT, (8.6), ➜3(i)].

If we plug in XaY 8−a{0,∞} with 0 ≤ a ≤ 8 and a even, we always
get a multiple of (−781, 1). So the ±-parts under the natural complex
conjugation action must be spanned by v+ := (1, 0) and v− := (−781, 1).
Applying φ to the twisted winding elements

Y 8{−1/5,∞}+ Y 8{−4/5,∞}− Y 8{−2/5,∞}− Y 8{−3/5,∞}
and

(5X + Y )Y 7{−1/5,∞}+ (5X + 4Y )Y 7{−4/5,∞}
−(5X + 2Y )Y 7{−2/5,∞}− (5X + 3Y )Y 7{−3/5,∞},

we obtain 211 ·32 ·54 ·74 ·11v+ and 23 ·55 ·74 ·13 ·1511v−, respectively. This
shows that ord199(Lalg(1, f, χ)) = ord199(Lalg(2, f, χ)) = 0. The factors
by which these are multiplied to get LN

alg(1, f, χ) and LN
alg(2, f, χ) are 1 +

747−1 = 23 · 43 and 1 + 747−2 = 2 · 52.
(4) The ratio LM

alg(6, f)/Lalg(6, f) is a product of factors (1−5−2) = − 23·3
52 and

(1− 7−2) = − 24·3
72 .
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(5) Since the Sturm bound [St] is 10
12 · 35 ·

(

1 + 1
5

) (

1 + 1
7

)

= 40, the congru-
ence already observed experimentally between f and g actually holds for
all coefficients. The uniqueness of g is easily verified using the command
Reductions(g, 199) in Magma.
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