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ABSTRACT

We present a short account of our work to provide quantum electrodynamics (QED) with a product picture. We aim to complement the longer
exposition in a recent paper in Foundations of Physics and to help to make that work more accessible. The product picture is a formulation of
QED, equivalent to standard Coulomb gauge QED, in which the Hilbert space arises as (a certain physical subspace of) a product of a Hilbert
space for the electromagnetic field and a Hilbert space for charged matter (ie., the Dirac field) and the Hamiltonian arises as the sum of an
electromagnetic Hamiltonian, a charged matter Hamiltonian, and an interaction term. (The Coulomb gauge formulation of QED is not a
product picture because, in it, the longitudinal part of the electromagnetic field is made out of charged matter operators.) We also recall a
“Contradictory Commutator Theorem” for QED, which exposes flaws in previous attempts at temporal gauge quantization of QED, and we
explain how our product picture appears to offer a way to overcome those flaws. Additionally, we discuss the extent to which that theorem may
be generalized to Yang-Mills fields. We also develop a product picture for nonrelativistic charged particles in interaction with the
electromagnetic field and point out how this leads to a novel way of thinking about the theory of many nonrelativistic electrically charged
particles with Coulomb interactions. In an afterword, we explain how the provision of a product picture for QED gives hope that one will be
able likewise to have a product picture for (Yang Mills and for) quantum gravity—the latter being needed to make sense of the author’s matter-
gravity entanglement hypothesis. Also, we briefly discuss some similarities and differences between that hypothesis and its predictions and ideas
of Roger Penrose related to a possible role of gravity in quantum state reduction and related to cosmological entropy.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0085813

I. INTRODUCTION: COULOMB GAUGE QED AND ITS
AESTHETICALLY UNPLEASANT FEATURES

Let me begin by recalling the standard Coulomb gauge formula-
tion for a charged Dirac field, i, in interaction with the quantum elec-
tromagnetic field. The Hamiltonian is

1 1
Hgomb — JE"M +5 (VX A) + 97y (—iV — ed)y
+ ml//*volp d’x + VCoulomb @)

where

e J J VY Y ()

VCoulomb == 47I|x — y‘ ded3y

2

is the standard Coulomb action-at-a-distance electrostatic potential
energy of the Dirac charge density

p(x) = e (x)yh(x). @

Here, e is the charge on the electron, A is the vector potential for the
magnetic field satisfying the Coulomb gauge condition, V - A = 0, and
nt is (minus) the transverse part (satisfying V - 7 = 0) of the electric
field.

This is to be supplemented with the commutation and anticom-
mutation relations

47|x — y|
(W), 9" ()} = 8 (x —y), ©)

while the commutators of A;(x) with A;(y), m;-(x) with 7rjL (»), and of

A;(x) and 7 (x) with y(y) and " (p) vanish, and also the anticom-
mutators of Y (x) with y(y) and of " (x) with y*(y) vanish.

While it leaves unaddressed many questions of mathematical
rigor (and the related difficulties of renormalization), the Hamiltonian
(1) together with the commutation and anticommutation relations (3)
provides us with a suitable starting definition for what we know to be

401 500] =030 ) + 15 (=)
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the correct theory of quantum electrodynamics (QED). For example,
QED is introduced in this way in Steven Weinberg’s textbook on
quantum field theory."”

However, leaving aside questions of mathematical rigor, this
Coulomb-gauge version of quantum electrodynamics suffers from a
number of aesthetically unpleasant features. An obvious such unpleas-
ant feature is that it makes implicit reference to a particular choice of
Lorentz frame. (The way our product picture transforms under
Lorentz transformations is an interesting question but we will not
address it here.) However, leaving that aside too, we wish here to focus
on the following:

1. Voulomb 1S quartic in i/ and also nonlocal.

2. The commutation relations (3) also have a nonlocal piece in
addition to the delta function on the right hand side. (One can
see that such a term is necessary to be consistent with the trans-
versality of 7t and of the Coulomb gauge condition on A on the
left hand side.)

3. Only the transverse part of the electric field participates in the
dynamics. Instead of a longitudinal part, we have an action-at-a-
distance force due to the potential Voyomp. This is unsatisfac-
tory because, for example, it suggests that we need to think of the
energy stored in a capacitor as due to the work required to sepa-
rate its charged plates or the work done against the electrostatic
attraction of opposite charges to charge them up, whereas we
would prefer (since Faraday!) to think it is stored in the (longitu-
dinal) electric field between the plates!

4. True, we can define the longitudinal
Elong — —V¢, where

electric field by

VY (y) e

4
amjx—y O (4)

o) =<
which, by the way, is equivalent to imposing Gauss’s law,
V- E = p, by definition! However, then, E'°"¢ is made out of
Dirac field operators and does not have an independent existence
(as well as not participating in the dynamics).

5. It would be nice if the Hilbert space, Hqrp, could be written as
the tensor product,

HQED = Helectromag @ Hchargedmatter: (5)

of a Hilbert space, Helectromag» for the electromagnetic field and a
Hilbert space, Hchargedmatters for charged matter (i.e., for our
Dirac field), and if also the QED Hamiltonian then arose in the
form

HQED = Helectromag + Hcharged matter + Hinteraction- (6)

When such a statement is true of a quantum theory involving
two systems in interaction, we say it has a product structure.
However, the Coulomb-gauge formulation of QED does not
have a “product structure” in this sense. It might appear to do so
if Helectromag Were interpreted as the Hilbert space of the trans-
verse part of the electromagnetic field. However, if we insist on
all electromagnetic field operators (both transverse and longitu-
dinal) acting on Heiectromag ®@ Hcharged matter @8 Operators of the
form A ® I, where I denotes the identity on H charged matter—which
is what we really mean when we say that Heiectromag is “the
Hilbert space for the electromagnetic field”—then this clearly
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does not hold since the longitudinal part of the electric field is
made out of charged matter field operators.

To amplify on Point 5, what would be preferable (and as we shall
discuss further in Sec. V not only for aesthetic reasons but also because
it enables one to ask and answer new physical questions) would be if
there were ways to quantize electrodynamics in which the Hilbert
space took the product form (5) and in which the Hamiltonian took
the product picture form (6), or more precisely, if it took the form

1. 1 N N . A
Hep = [E”z +5 (VX AY + 730y (—iV — ed)y

+mp "y dx 7)

with no Coulomb potential term; if the electromagnetic field commu-
tation relations took the form

[40), 7] =036 (x —y), (W) )} = 6 (x— y)
(®)

with no nonlocal term; if # was (minus) the full electric field operator
(rather than just its transverse part); if Gauss’s law, V - E = p, held as
a genuine operator equation (rather than by definition); and yet, if this
new formulation was entirely equivalent to Coulomb gauge QED.
Because after all, while we have complained that it is aesthetically
unpleasant, we do know that it is physically correct!

I want next to show that (at a similarly mathematically non-
rigorous level to that at which the Coulomb gauge theory is typically
discussed) it is possible to have a formulation of QED, which we call
the product picture, equivalent to the Coulomb gauge formulation, and
with all these nice features. More precisely, the equivalence is between
the Coulomb gauge formulation and our product picture theory
restricted to a certain product picture physical subspace (PPPS) of a full
(unphysical) product picture Hilbert space, which we call below the
“augmented QED Hilbert space.”

As a preliminary to that, we conclude this introduction by recall-
ing how the operators A and 7+ in Coulomb gauge QED may be rep-
resented on a Hilbert space. In terms of the usual (say, momentum-
space) annihilation and creation operators, a;(k), a; (k) on the Fock
space, F(Hone) over the one particle Hilbert space, Hope = L*(R?)?,
we may define

Ai(k) _ (a}rans(k) + a;rtrans(k)>7

\/§|k|1/2

trans _ ttrans
n%(k)—_ﬂkl/z(“f (k) = (")>,

where a{™ (k) is the transverse part, (&, — kik/ /k*)a;(k) of a;(k) and
a; "™ (k) is the transverse part (0 — kK /k*)a;" (k) of a;" (k).

It will be important to note here that we can think about the
Hilbert space on which A;(k) and m;-(k) act in two slightly different

ways. Either we can think of it as the Fock space, F(H""), over the

one

subspace, Hu™, consisting of transverse elements of Hye OF We can

note that the full one particle Hilbert space Hopne can be written as a

sum of its two orthogonal subspaces H™™ and H!°% consisting,

respectively, of transverse and longitudinal vectors, and thus, the full
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Fock space, F(Hone), is the tensor product, F(H™™) @ F(Hom),
and think of the subspace on which A;(k) and 7;- (k) act as consisting
of the subspace F(H*) @ Q°8, where Q' is the vacuum vector
in ! With the latter point of view, we admit the possibility of lon-
gitudinal photons but keep them in their vacuum state.

With the latter viewpoint, we can think of the full representation
space of QED (now incorporating the Dirac field too) as what we shall
call the Coulomb gauge physical subspace (CGPS), F(H™) @ Q'

®HDirac> Of the augmented QED Hilbert space, which is the name we
shall give to F (Hone) ® Hpirac-

Il. APRODUCT PICTURE FOR QED

To provide QED with a product picture, the first step is to define
operators, A and 7, on our augmented QED Hilbert space F(Hone)
3¢ 7_{Dirac bY

A,(k) = (‘W>7 7=nt +ﬁlong’

where 7 is defined as in Eq. (9) and

_ lek‘l/2 allong

vz !
This last definition may seem strange. Let us pause to notice that we
could think of #°"® as the result of first defining an operator that we
shall call # by again taking its transverse part to be the same as the def-
inition of 7" in Eq. (9) and defining its longitudinal part, along similar
lines, i.e., by

ﬁl.ong (k) _

1

(k).

long _ ‘+long
ﬁlong(k) _ 7l'|k‘1/2 a; (k) a; (k) 7
V2

but then deleting the second term on the right hand side containing a
creation operator and doubling the term on the right hand side con-
taining an annihilation operator. Clearly, in consequence (and unlike
A and #), 7@ will fail to be (even formally) self-adjoint. However, it will
still have the same commutation relations with all other operators
(and in particular with A) that # has and we shall soon see (see
Theorem 1a below) that it will be (formally) self-adjoint on the appro-
priate “product picture physical subspace” of the augmented QED
Hilbert space which we next define.
First, we define the (formally) unitary operator

U =exp (iJAi(x)a,-qb(x) d3x>7 (10)

where ¢ is given by Eq. (4), and then we define the product picture
physical subspace (PPPS) to be the result of acting with U on the
Coulomb gauge physical subspace, ie, as UF(H™™) @ Q"8
®Hpirac. Let us notice here that all states in the PPPS (including the
vacuum state, UQ) are entangled between charged matter and longitu-
dinal photons!

We then have:

Theorem la. 7 and Hygp [defined as in (7) with the above defini-
tions for A and 7] map the PPPS to itself and are self-adjoint when
restricted to it.

scitation.org/journallaqs

Theorem 1b. Also, the magnetic field operator, B =V x A, maps
the PPPS to itself. [Although the (as always, unphysical) vector poten-
tial, A, does not.]

Theorem 2. H{Y, on the PPPS is (unitarily) equivalent to
HGmb on the CGPS.

Theorem 3. VW € PPPS, V-E¥ (= -V a2 ¥)=)pY, ie,
Gauss’s law holds as an operator equation on the PPPS (in contrast to
Coulomb gauge, where it held by definition).

We briefly sketch the proofs. For more details, see Ref. 8, Sec. 3.

Proofs of Theorems 3 and 1a. These follow easily after noting that
UrU-' =7 — V¢

Proof of Theorem 1b. This follows immediately from the fact that
V x A is the same as V x acting on the transverse part of A (which is
the same thing as the Coulomb gauge A) and that, as one easily sees,
this maps the PPPS to itself. (It is noteworthy that the longitudinal
part of A does not map the PPPS to itself but this is annihilated
by Vx.)

Proof of Theorem 2. First define

§ 1
Haep = HG2™ + JE (7°"8)? 4 7. Vo d°x, (11)

and notice that, restricted to the CGPS, Hqep = Hg%%"mb.

Then, on the full augmented QED Hilbert space, if one calculates
UH qepU ™", one finds that it equals HEg .

To do this calculation, it is helpful as a first step to notice that

URU ' =7 — V¢, UYU ' =y,

where we define
U= e—(iea,/VZAi)wh

Using these, one easily finds that UH qzp U™ is equal to

J%ﬁz +%(V X A 0y (—iV — e +my” )Y dx.
It is then not difficult to see (or see Ref. 8, Sec. 3) that this is equal to
the HS%D of (7). (End of proofs.)

Let us also remark that one may think of i as the appropriate
counterpart to i in the product picture. In fact, we have the dictionary
shown in Table I.

Finally, let us remark that there are two ways that we may
obtain the unitary time evolution exp (—iHgppt) on the PPPS
(which must both lead to the same answer). One way is to exponen-
tiate (—i times) the self-adjoint restriction of Hgppt to the PPPS
on the PPPS. However, another way would be to first exponentiate
(—i times) the non-self-adjoint H{pnt on the augmented QED
Hilbert space—obtaining a nonunitary operator—and then to
restrict that nonunitary operator to the PPPS on which it will, of
course, be unitary. In an approach to constructing QED in a mathe-
matically fully meaningful way based on the product picture, the
latter method may be technically advantageous, in part because it
would enable us to separate the issue of defining the dynamics from
the issue of assigning a mathematical meaning to the operator U of
Eq. (10) in Sec. II, which defines the PPPS. This seems worthy of fur-
ther exploration.

AVS Quantum Sci. 4, 031401 (2022); doi: 10.1116/5.0085813
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TABLE I. Coulomb gauge to product picture dictionary.

Quantity Coulomb gauge Product picture
Hamiltonian Hagp (or HG5™) Hg;’[l))imc
Electric field Ec=—(n+ Vo) Epp = —7

(or —(nt + V) R
Magnetic field VxA(rVxA) VxA
Dirac field v v = ef(iea,/vlix’)w
Adjoint Dirac field /8 v T elied/v? Ai)l//*
Dirac electrical ¢ ¢
potential

Qtrans ® Qlong ® QDirac Qtrans ® U(Qlong ® QDirac)
(or Q"™ @ Qpbirac) (entangled)

Vacuum state

I1l. THE CONTRADICTORY COMMUTATOR THEOREM
AND COMPARISON WITH TEMPORAL GAUGE
QUANTIZATION

The Hamiltonian, (7), resembles the classical Hamiltonian appro-
priate to the temporal gauge condition A’ =0 (also known as the
Weyl gauge condition). Several attempts have been made in the past to
obtain a formulation of QED by “quantizing” that temporal gauge
classical Hamiltonian—taking the commutation relations to be those
of Eq. (8) but hitherto certain assumptions have been (sometimes tac-
itly) made that led to pathologies of one sort or another (see, for exam-
ple, Ref. 3). For example, one could define A in (8) as we have here
but replace 7 by the & that we mentioned in Sec. II. However, one
finds that any attempt to obtain a theory equivalent to Coulomb gauge
QED with those choices would fail. The essence of what goes wrong
can be summed up in what we shall call the Contradictory
Commutator Theorem (see Ref. 8, Sec. 3.4 for more details).

The Contradictory Commutator (CC) Theorem. There can be
no pair of 3-vector operators A and mt on a Hilbert space H such that

(a) A and 7 satisfy the canonical commutation relations

[Ai(x), m(y)] = 056 (x — y),

(12)
[Ai(x), Ai(y)] = 0 = [mi(x), m(y)].
(b) A and n are each self-adjoint;
(¢) For some vector, ¥ € H (¥ # 0)
V.-1¥ =—p¥Y,
for some operator-valued function of x, p.

(d)  p commutes with A.
Proof. (a) Easily implies the equality

(P[A(x), V- 2()]¥) = =i(Vis®)(x - y), (13)

while (b), (c), and (d) imply that quantity on the left hand side of (13)
is zero—a contradiction!

However, our product picture evades the conclusions of this
seeming no-go theorem, as, of course, it must in view of Theorem 2.
First let us notice that, in attempting to apply the CC Theorem to our

scitation.org/journallaqs

product picture, there are two different interpretations we could make
for the Hilbert space H. We could identify it with the full augmented
QED Hilbert space, but then the CC Theorem fails to apply because 7
fails to be self-adjoint on H. Alternatively, we could identify H with the
product picture physical subspace, and then 7t will map H to itself and
be self-adjoint on it. However, A will fail to map H to itself! So, either
way the Contradictory Commutator theorem fails (as it must) to rule
out our product picture formulation of QED.

A. The question of whether and to what extent
the Contradictory Commutator theorem generalizes
to Yang-Mills

It is natural to ask to what extent the formulation and proof of
the Contradictory Commutator Theorem generalize to the Yang-Mills
theory [say, for a compact connected semisimple Lie group with Lie
algebra generators, T', satisfying [T!, T™] = if ™ T" for totally anti-
symmetric structure constants "™ and tr(T"T") = (1/2)0™"] and
also to gravity in general relativity.

We content ourselves here with a discussion of the Yang-Mills
theory (in flat spacetime). Adopting signature (4, —, —, —), we may
take the classical Lagrangian density of pure Yang-Mills to be
—(1/2)tr(F™F,,), where F,y, is V Ay — VA, — ig[A,, Ap), where g
is the Yang-Mills coupling constant and A, = Al T'. Choosing tem-
poral gauge where A, = 0, the conjugate momentum, say 7;, to 4, is
—Fy; = —A;, while the counterpart to the Gauss law constraint is

Din; = —p, (14)
where the covariant derivative, D;7;, written out in full, is given by
v,'T[,' - lg[A,, Tfi]. (15)

For, say, a quark-like field (assumed, of course, to commute with the
Yang-Mills fields) with values, |i}), in the (finite dimensional) Hilbert
space of (say) the fundamental representation of the Lie algebra, p is the
operator on this Hilbert space given by the formula [cf. (2)]

p =g )(yl.

The hypotheses of the CC theorem stated above for QED clearly have
counterparts for Yang-Mills fields, which may be expressed with the
same equations provided one makes two changes in their interpreta-
tion. First, we need to reinterpret A and 7 as Lie-algebra valued quan-
tum (vector) fields where it is to be understood that (now identifying
our Lie algebra with its adjoint representation) next to the d;, there is
an unwritten identity operator (on the Lie algebra thought of as the
representation vector space of the adjoint representation—see below
for a more accurate statement) on the right hand side of the commuta-
tion relations in part (a).

Second, the equation V- ¥ = —p¥ of Part (c) needs, in light
of (14), to be replaced by D;n;'¥ = —pW for a Lie-algebra valued p,
which commutes with A. (The equation is still assumed to hold for
some ¥ in the Hilbert space.)

With this changed interpretation of its hypotheses to make them
relevant to Yang-Mills fields, the question we want to ask, and will
partly answer, is to what extent the statement and proof of the theo-
rem do—or don’t—go through as before. We will also comment on
the relation between our work and the work in Refs. 1 and 3.

AVS Quantum Sci. 4, 031401 (2022); doi: 10.1116/5.0085813
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One big difference in the nonabelian case is that because of the
nonlinearity of the Yang-Mills theory, one now has to deal with prod-
ucts of fields at the same point, notably, in the second term in (15).
However, adopting the point of view of the first few pages of a paper’
of Dimock, one may proceed by formally manipulating expressions
involving suitably smeared versions of our fields. To begin to explain
this, let us momentarily backtrack and notice that we might have re-
expressed the commutation relations (12) in the electromagnetic case
in terms of the smeared fields, A(u) and 7(v), where u and v are
3-vector valued say smooth compactly supported test functions, which
are to be interpreted in terms of the formal equations,

Au) = JAi(x)ui(x) &Ix, n(v) = Jn,-(x)vi(x) dx,

whereupon the first commutator in Eq. (12) would have taken the
form

[Aw),V - n(v)] = —i(u|V - v), (16)

where the symbol ( - |-) denotes the L inner product in the space of
3-vector fields.

Finally, let us remark that since the unsmeared equation (13)
needed a 0;; on the right hand side due to the quantum vector fields
being expressed as triples of quantum scalar fields in some coordinate
system, the Hilbert space involved in that unsmeared version should
have strictly been taken to be the result of taking the tensor product of
the Hilbert space relevant to the smeared version with the (complexi-
fied) Hilbert space of triples of numbers with the inner product being
the (complexified) dot product.

Returning to the Yang-Mills case, we proceed likewise but (fol-
lowing Ref. 1) now smearing A; with a test triple «; whose components
take their values in the Lie algebra to obtain a smeared field A(u), etc.,
where we think of the latter as “(A;|u;)” (summed over i from 1 to 3)
where the inner product (-|-) now means the integral over R* of
minus the Killing form of A; and u; (summed over i). [Similarly for
n(v).] Let us note, related to our above remark about the (5ij, that
when we reinterpreted the hypotheses of our CC Theorem, written in
their unsmeared version, to apply to Yang-Mills theories, then, strictly,
we should have thought of the Hilbert space as the tensor product of
the Hilbert space involved in the smeared version with the (again finite
dimensional) Hilbert space consisting of the complexified Lie Algebra
(thought of as a complex finite dimensional vector space) equipped
with that inner product. The identity operator that we mentioned
above should really have been regarded as the identity operator on
that latter Hilbert space. (This is the more accurate statement about
that identity operator that we promised to make above.)

Assuming that the standard Lie-Algebra identity ([X,Y]|Z)
= (X|[Y,Z]) applies also when some of X, Y, and Z are quantum
operators, one easily sees formally (again as in Ref. 1 but adapted to
our conventions) that the smeared quantity (D;7;|u) can be equated
with (7|(V-u) — g(A|[r,u]) [or alternatively with (7|(V - u)
+g(n|[A, u])]. Making use of this, one easily computes formally [now
writing A(u) in place of (A|u), etc.] that [cf. Ref. 1, Eq. (8)]

[A(u), Dim;(v)] = —i(u|V - v) — igA([u,v]). (17)

This is clearly the Yang-Mills counterpart to the commutator (16).
However, a crucial difference is that, unlike the right hand side of (16),
the right hand side of (17) is no longer just a c-number, but there is

scitation.org/journallaqs

also an additional term that involves the operator A. So, when we take
the expectation value of the above smeared commutator in a state
vector, W, in the appropriate Hilbert space, H, the result will depend
on ¥, and we will no longer obtain an immediate contradiction as we
did in the proof of the CC Theorem in the electromagnetic case.
Instead, let us first shift our viewpoint slightly and notice that one way
of restating the CC Theorem in that electromagnetic case is that, if (fol-
lowing Ref. 1) we define a physical state to be a state vector that satisfies
V- n'¥ = 0, then the set of physical states is empty! If we now attempt
to adapt the steps of that proof to the Yang-Mills case, by calculating
the expectation value of the commutator in the left hand side of (17) in
the two different ways [one way using property (a), and the other using
properties (b), (c), and (d)], we will clearly find, now defining a physical
state vector to be one satisfying D;m; ¥ = 0, that if a state vector, W, is
physical, then we must have that

(W|A([u,v])¥) = —g ' (u|V - v). (18)

Before we consider the implications of this, let us first notice that, in
the Yang-Mills case, there is also a non-trivial commutator between
n(u) and D;m;(v) [cf. Ref. 1, Eq. (9)],

[n(u), Dimi(v)] = in([u,v]), (19)

from which, by a similar argument, we may conclude that, for a state
vector, P, to be physical, we must also have that, for all Lie-algebra
valued smearing functions, w,

(¥ |m(w)¥) = 0. (20)

(Here, we have used the fact that, in a semisimple Lie Algebra, every
element arises as the Lie bracket of two other elements.)

So, we have the striking result that, for a state vector to be physi-
cal, the expectation value of the field momentum 7, which (in compo-
nents) is our quantized —F; (= —Ai), must vanish! On the contrary,
returning to the implications of (18), we clearly, at least, have the
immediate corollary that, for a state vector to be physical, the expecta-
tion value of A must not vanish! More information would seem to be
extractable from (18), but we will not attempt to do so here.

The aforementioned results certainly seem to suggest that, in the
case of Yang—Mills, the set of physical state vectors (defined to be state
vectors on which the Yang-Mills counterpart to Gauss’s law in tempo-
ral gauge holds) is strangely restricted. However, this seems as far as
one can easily go in directly generalizing our CC theorem proof for
nonabelian Yang-Mills. Note though that, in the case of linearized
(nonabelian) Yang-Mills, the right hand side of (17) clearly becomes a
c-number, and so the proof goes through exactly as in the electromag-
netic case. Thus, for linearized Yang-Mills, we may conclude that the
set of physical states is empty!

Returning to full (nonlinear) Yang-Mills, in the later pages of
Dimock’s paper, defining J(h) to be the Gauss law operator D;m;
smeared with a test function A, he finds that A, 7, and J form an infi-
nite dimensional Lie Algebra. Formally, exponentiating that to obtain
an infinite dimensional Lie group, he points out that the elements that
formally correspond to ¢/ may be understood as the generators of
gauge transformations. The notion of “physical state” is then redefined
to mean a state annihilated by all those elements. He then studies
Hilbert space representations of this Lie Group and finds classes of
representations, for which it turns out that the set of physical state vec-
tors, defined in that way, is empty! However, using C* algebra
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techniques, he then finds a representation, which is a certain limit of
one of those classes of representations in which it is not empty.
Presumably, in the electromagnetic case, this coincides with the repre-
sentation of the formal exponentiation of Eq. (12) that was found in
Ref. 3, in which Gauss’s law holds strongly but the fields A and 7 do
not exist. (Rather only their formal exponentials exist.)

On the other hand, for the electromagnetic case, we found here
and in Ref. 8 that, at least at our level of mathematical rigor, our prod-
uct picture has the advantage of evading the conclusions of the CC
Theorem and in it the fields A and 7 exist. Thus, it would seem to be
of interest to find a suitable counterpart to our electromagnetic prod-
uct picture both for (linearized and full) Yang-Mills theory and also
(for reasons discussed further in Sec. V) at least for linearized quantum
gravity and, as far as is possible, for full quantum gravity. It would also
seem to be of interest to attempt to make these product pictures math-
ematically rigorous.

IV. A PRODUCT PICTURE FOR
MAXWELL-SCHRODINGER THEORY AND THE NEW
ALTERNATIVE UNDERSTANDING ENTAILED FOR THE
NONRELATIVISTIC QUANTUM MECHANICS OF MANY
CHARGED PARTICLES

There is a similar product picture in the quantum electrodynam-
ics of many non-relativistic Schrodinger particles interacting with the
EM field (for more details, see Ref. 8, Sec. 4). One has to treat the par-
ticles as finite radius balls with charge density p. The Hamiltonian

1
CoulombSchr __ 12
HQED = J E T

(PI - JA(x)pI(x — x1) d3x> ’

N
t2 T8

+ % (V x AV dx

Schr
+ VCoulomb

where

chr 1 She pI X - xI P (y )
Vel =523 | W ey
=1

4z|x — y|
on the appropriate CGPS gets replaced by
cnr 1 ot
Hgllja?)h = JE 7

+2N:(p,—JA(x);,\r—x,)d3x)2

I=1

1 N
+E(V x A)’ d’x

(21)

on the PPPS, all of whose states are again entangled between our
charged balls and longitudinal photons.

We also define H ZI}SID by adding the same extra terms to
Hg SoulombSehr that were added to H, C‘ﬁ‘]‘)l"mb in (11) and find that

Schr 1 PPSch
UH aepU ™ HQED“ r

and

~ long

Up, U =y~ [ )y~ 1)

etc.

scitation.org/journallaqs

In the usual approximation where we neglect terms that lead to
radiative corrections [and suppress the F(HI)® in the Hilbert
space], the Coulomb gauge formulation of this nonrelativistic version
of QED gives us the familiar non-relativistic Schrodinger equation for
systems of many charged particles. [With extended balls, it is natural
to include the (finite) self-energies of the balls in st)}l‘flomb and in E.]
So, one might wonder how the product picture can work in the non-
relativistic limit since the Hamiltonian of Eq. (21) has no potential
term! To understand this, let us look at the familiar example of the
(spinless) hydrogen atom (for more details, see Ref. 8, Sec. 4.2). If
Particle 1 is the proton, Particle 2 the electron, and the two-body wave
function Wsay is say a product of one of the usual Coulomb gauge
energy eigenfunctions of the relative coordinate with a wave packet in
the center of mass coordinate of negligible energy, then in the usual
Coulomb gauge description, we will have

< Pl PZ + VSchr

2M oulomb) Q8 @ Woehr ~ EQ"8 @ Wsehr-
1

In the product picture, this (on the CGPS) gets replaced by

(i + i + lﬁlOﬂgZ) UQlong & LIJSchr = EUQlong ® \pSchr
oM, | 2M, ' 2
(on the PPPS). We see that the binding energy is now understood to
be the decrease in the energy of the longitudinal part of the electric field
when the charged balls are closer to one another. The (entangled) quan-
tum state, UQ™" @ Wsepr, schematically takes the form—when we
think of F(H%%8) @ L2(R®) as L*(R®, F(H"®)):

(xl ) xz) — \PSchr(xlaxZ)q)long(xhx2)7

where ®'°"(x,, x,) is the coherent state of longitudinal photons, which
corresponds to the classical electric field due to the presence of the
proton at x; and the electron at x;.

For more information about exactly what is meant by coherent
states of longitudinal photons, see Ref. 8 that gives an alternative
account of the product picture formulation of QED, which takes the
construction of such coherent states as its starting point. We also refer
the reader to the paper” for a discussion of a number of other topics
including more about Gauss’s law and the charged field commutator
(see Sec. 3.3 there) and (in Sec. 4.3 there) about the reduced density
operator of charged Schrodinger matter. We shall also have more to
say about the latter topic in Sec. V.

V. AFTERWORD: THE RELEVANCE TO THE MATTER
GRAVITY ENTANGLEMENT HYPOTHESIS AND
COMMENTS ON THE RELATION WITH PENROSE'S
IDEAS ABOUT COSMOLOGICAL ENTROPY AND STATE
VECTOR REDUCTION

Aside from providing a new formulation of QED that is free
from the aesthetically unpleasant features that we mentioned at the
outset, and aside from offering the intriguing new way of thinking
about the non-relativistic quantum mechanics of many charged par-
ticles that we discussed in Sec. I'V, the product picture formulation of
QED also permits us to ask some questions about QED that could not
even be posed in the Coulomb gauge formulation. In particular, thanks
to the fact that, in the product picture, we can write the Hilbert space,
Haqep, as a tensor product of the form (5), it becomes meaningful to
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ask, for a (say pure) quantum state of QED—thought of now as the
density operator, aqep = |'¥)(¥| for ¥ € Hqep—what is its reduced
density operator ¢ harged matter 00 the Hilbert space H charged matter (Which
we define to be the partial trace of ¢ over Heiectromag). Similarly, we
could ask what is the reduced density operator Geectromsg On the
Hilbert space Helectromag (Which we define to be the partial trace of &
over Hcharged matter)- Relatedly, we can ask, e.g., what is the entangle-
ment entropy of gqep between charged matter and the electromag-
netic field. Here, we recall that because of the assumed purity of oqep,
the von Neumann entropy of Gchargedmatter and the von Neumann
entropy of Gelectromag Will be equal, and their equal value is deservedly
named the charged matter-electromagnetic entanglement entropy of
OQED-

Aside from any possible interest in these questions in their own
right, they are of interest as providing analogies to basic questions one
asks on my matter gravity entanglement hypothesis (see Refs. 6 and 7
and references therein), which aims to help resolve a number of funda-
mental issues both about the foundations of quantum mechanics [in
particular regarding the possibility of having an objective (observer-
independent) notion of quantum state reduction] and also about the
foundations of thermodynamics (in particular regarding the definition
of entropy and the origin of the second law). This hypothesis was
inspired partly by the discovery” of the Hawking effect, which suggests
that there may be new interconnections among quantum mechanics,
gravity, and thermodynamics waiting to be discovered. It was also
party inspired by Roger Penrose’s writings (see, for example, Ref. 10)
on the status of the notion of entropy in a cosmological context and
the importance of understanding how the entropy of the universe
evolves in time from the big bang to the late-time universe.

The idea of the matter-gravity entanglement hypothesis is that, to
address such questions, a closed system must be understood in the
context of a (possibly low-energy approximate) theory of quantum
gravity, which is assumed, conservatively, to be formulated in terms of
a total Hilbert space, say Hiowi, Which arises as a tensor product,
Hravity ® Hmatter> 0of a gravity Hilbert space Hgravity and a matter
Hilbert space Hmater- It is further assumed that the state of a closed
system is always a pure state, described by a density operator of form
Ototal = | W) (| for ¥ € Hiora, and that (with a naive notion of ‘time’
and from a Schrodinger picture point of view) this evolves unitarily in
time. A fundamental process of decoherence (potentially offering an
explanation of quantum state reduction) will then be expected to occur
if we assume that the Hamiltonian generating our unitary time evolu-
tion (the quantum gravity Hamiltonian) arises in the following form
[cf. Eq. (7)]:

Htotal = ngavity + Hmatter + Hinteractium (22)

and if we assume that the relevant density operator when we talk about
the occurrence of decoherence is not g itself (which will always be
pure) but rather the reduced density operator oy,er. We then obtain a
natural candidate for the physical entropy of a closed system by defin-
ing it to be the system’s matter-gravity entanglement entropy (rather
than the von Neumann entropy of oo, which will always be zero). In
other words we define it to be the von Neumann entropy of Gpater (OF
equally of Ggrayity)-

Indeed, suppose (now taking our closed system to be, say, the
entire universe) we make the further assumption that the initial state
was unentangled between matter and gravity (or perhaps just had a
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low degree of matter-gravity entanglement), then, for any of a wide
range of interaction terms, Hinteraction> it (22), we would expect Omagter
to get more and more mixed (thus providing us with a fundamental
process of decoherence), and, concomitantly, we would expect the
matter-gravity entanglement entropy (i.e., our model for the physical
entropy of the universe) to increase monotonically with time, thus
offering the possibility of an objective explanation for the second law.

Moreover, taking instead our closed system to be a model asymp-
totically flat universe containing a ball of matter that collapses to a
black hole, and similarly assuming that the initial total state had a low
degree of matter-gravity entanglement, we would again expect G matter
to get more and more mixed and the system’s matter-gravity entangle-
ment entropy to increase monotonically. Thus, we would reconcile
“information loss” (which we interpret now as the reduced density
operator Gpaer getting more and more mixed) with an underlying
unitary evolution of Giotl.

Thus, this very simple hypothesis already appears to give us a
conceptual template capable of both explaining the second law and
resolving the black hole information loss puzzle—which, in fact, is
seen now just to be a special case of the second law.

However, the entire hypothesis is predicated on quantum gravity
having (to use the terminology of our introduction) a product picture.
And even granting quantum gravity (or at least an appropriate low-
energy approximation of it which we might hope would be the suitable
setting for discussing questions of decoherence and entropy) will turn
out to be a conservative sort of (unitary) quantum theory, there might
have seemed reasons to worry that this quantum theory would not
have a product picture. After all, one might have objected that quan-
tum gravity is, in a certain well-known sense, a gauge theory, and,
more to the point, its Hamiltonian formulation involves four well-
known constraints. Furthermore, one might then have argued by anal-
ogy that, just as the Gauss law constraint prevents quantum electrody-
namics, in its Coulomb gauge formulation, from having a product
picture, so one might expect that the four constraints of general rela-
tivity will prevent quantum gravity from having a product picture.

However, now that we have provided QED with an alternative
formulation, which is a product picture, this worry is at least to some
extent dispelled. It raises the hope that, with further work, we will simi-
larly be able to provide quantum gravity with a product picture.

To end this afterword, I would like to make some tentative and
sketchy remarks about how our matter gravity entanglement hypothe-
sis might possibly be related to Roger Penrose’s ideas (e.g., as discussed
in Ref. 10) about cosmological entropy and especially to his related
ideas (see, e.g., Ref. 11) about quantum state reduction. It seems to me
to be still quite unclear at present whether the two lines of thought are
fully in contradiction with one another or whether our hypothesis per-
haps stands in relation to Penrose’s vision in somewhat the same way
that, e.g., Bohr’s 1910 theory of the hydrogen atom related to the 1924
ideas of de Broglie (which led, a little later, to the Heisenberg-
Schrodinger theory of quantum mechanics).

One point of contact is that both theories have addressed the
issue of what happens to would-be macroscopic quantum superposi-
tions involving different spacetime geometries, and, for concreteness,
both theories have been illustrated by considering a Schrodinger Cat-
like superposition of two states of a single uniform density massive
ball centered on two distinct locations in an otherwise empty (asymp-
totically flat) space. Each ball state will have its own (Newtonian)
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gravitational field, and the question is whether and in what sense the
total state might spontaneously decohere. According to Penrose’s
ideas,"" one expects such a macroscopic superposition to decay to a
state centered on a single location on some time-scale, which depends
on the size and mass of the ball and the separation of the centers of
mass of the two ball states in the superposition. According to the mat-
ter gravity entanglement hypothesis, such a superposition could be in
a static state, but the relevant density operator, when one asks ques-
tions about purity versus mixedness, will not be its o (Which will
always be pure) but rather it will be the reduced density operator
Omatter- One can compute this similarly to the way in which one would
compute G charged matter i oUr product picture for QED for a superposi-
tion involving two states of an electrically charged ball centered on two
different locations in the non-relativistic version of QED described in
Sec. IV. In fact, formulae for both G harged matter in the QED analogy
and for opaer in weak-field Newtonian quantum gravity were
obtained by the author in Ref. 4 (albeit I was able, only around 24 years
later, to provide them, in the case of QED, with the more satisfactory
theoretical underpinning described here and in Ref. 8 [where the for-
mulae are reproduced in Secs. 1 and 4.3] and I should mention that
work is in progress on providing such an underpinning [and the fixing
of an overall constant] in the case of linearized gravity), and one finds
that (in the case the displacement of the centers is much smaller than
the ball radius) the degree of mixedness of ¢ charged matter/Tmatter 15 OV-
erned by a certain decoherence length, which again depends on the size
and mass of the ball and the separation of the centers of mass of the
two ball states in the superposition.

As discussed in more detail in Ref. 4, the formula obtained there
for the decoherence length is remarkably similar to the formula
obtained (up to a presently unfixable multiplicative constant) by
Penrose in Ref. 11 for his decay time-scale. (The only difference is that
where there is a Laplacian in the latter formula, there is a square root of
the Laplacian in the former.) On the other hand, there are important
physical differences. One difference, as we have already seen, is that the
decoherence is a time-dependent process in the Penrose theory, while it
is ever present in the setting of Ref. 4. Another is that the sort of deco-
herence one obtains on the theory of Refs. 4 and 8 is, in the case of static
or slowly changing ball configurations, a reversible sort of decoherence;
if one were to (slowly) bring the ball centers back into coincidence, the
decohered ball states would recohere. For this reason, in the Newtonian
limit, the matter gravity entanglement hypothesis appears (see Ref. 5
for details) to predict the same result as standard quantum mechanics
for the experiment” proposed by Penrose and thus to be experimentally
distinguishable from his theory. One expects instead that, on the
matter-gravity entanglement hypothesis, irreversible decoherence
would occur and lead to a noticeable loss of coherence in that experi-
ment only if the oscillator in the experiment were to oscillate suffi-
ciently rapidly to emit a graviton in a suitably short time interval—a
much harder regime to access (for more discussion and for more dis-
cussion of the physical interpretation of ¢ mater» See again Refs. 5 and 7).

Another point of difference between the two sets of ideas is that,
on the matter-gravity entanglement hypothesis, the entropy of the
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universe resides at all times in the entanglement of matter with gravity
(which is assumed to start low and then predicted to increase),
whereas, on Penrose’s ideas, one apparently thinks in terms of an
entropy, which is a sum of a matter entropy (which dominates at early
times) and a gravity entropy (which dominates at late times and is
larger than the matter entropy at early times). Here, there appears to
be an antagonism between the two theories, which resembles (and
partly subsumes) the antagonism between the understanding of black
hole entropy on the matter-gravity entanglement hypothesis (accord-
ing to which the total state is pure, while it is the reduced density oper-
ator of matter as well as the reduced density operator of gravity which
are approximately Gibbs states), and the traditional (Hawking) under-
standing of black holes according to which the total state is a (mixed)
Gibbs state. See the proposed resolution of the thermal atmosphere
puzzle in Ref. 6.
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