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Abstract

Population-based structural health monitoring (PBSHM) is a branch of structural health monitoring (SHM) which
seeks to leverage information from across a population of structures, with the aim of making robust data-based models
that generalise across the population, allowing information to be exchanged and harnessed in constructing better
inferences than considering an individual structure alone. PBSHM approaches overcome many of the challenges
associated with conventional data-based SHM, such as limited labelled observations in training, classifiers failing
to generalise when structural modifications or environmental variations occur etc. Transfer learning provides an
important set of tools in performing PBSHM, with the technologies offering mechanisms for transferring label
information between structures, and the ability to harness all the available information from all structures in the
population, creating a single classification model that generalises across the complete population. This paper explores
heterogeneous transfer learning, a branch of transfer learning where datasets have inconsistent feature spaces, i.e.
the dimensions of datasets from one structure are different to those from another. In PBSHM, this scenario arises
for several reasons; for example, the data acquisition processes on each structure may be different: e.g. the sample
rates and durations were different for each structure, leading to transmissibilities with a different number of spectral
lines. The paper compares two heterogeneous transfer learning approaches that are formed in a discriminative
manner, namely kernelised Bayesian transfer learning and heterogeneous feature augmentation. The techniques are
benchmarked against conventional approaches to data-based SHM, with the benefits of a heterogeneous transfer
learning approach highlighted by a case study on a Gnat aircraft wing.

Keywords: Heterogeneous transfer learning; kernelised Bayesian transfer learning; heterogeneous

feature augmentation; population-based structural health monitoring

1 Introduction

Data-based approaches to Structural Health Monitoring (SHM) have been demonstrated as successful in many
scenarios [1, 2, 3, 4]. However, there are two main problems with data-based methods in general. Firstly, their
construction conventionally assumes that the data distributions in training will be the same as in testing. This
assumption is invalidated if changes to the system take place, such as structural repairs, which fundamentally change
the way the system responds. Secondly, to perform diagnosis beyond anomaly detection, some labelled data are
required, and often a set of labels that correspond to all the damage states of interest is unavailable in training due to
economic and feasibility issues. By considering a population of structures, the number and variety of labelled data
points can be increased, aiding inferences across the complete population, even when individuals have sparsely-labelled
dataset. This approach is termed Population-Based Structural Health Monitoring (PBSHM) [7, 8, 9]. Transfer
learning, a branch of machine learning, can be used to overcome both of these challenges, harmonising datasets
from different structures even when data shift occurs, and allowing label datasets to be transferred between different
members of a population. This paper seeks to compare transfer learning approaches for PBSHM, particularly in
scenarios where the feature data from each member of the population are inconsistent and have different dimensions.
For example, the data acquisition processes on each structure may be different: e.g. the sample rates and durations
were different for each structure leading to transmissibilities with a different number of spectral lines. Transfer
learning methods that handle inconsistent feature spaces are named heterogeneous transfer learning methods.



Although transfer learning methods have been implemented for health monitoring scenarios [17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31], all of these approaches assume consistent feature spaces. A large number of
these methods use a fine-tuning approach [17, 18, 19, 20, 21, 22, 23, 24], re-purposing pre-trained neural networks
for new tasks, with the remainder using a form of domain adaptation [25, 26, 27, 28, 29, 30, 31], where the aim is
to adapt the feature spaces so that information is transferred between datasets. However, as stated, none of these
approaches handle inconsistent feature spaces. This paper therefore utilises two existing heterogeneous transfer
learning algorithms, which learn a mapping to a shared latent space where a discriminative classifier is inferred,
namely Kernelised Bayesian Transfer Learning (KBTL) [10] and Heterogeneous Feature Augmentation (HFA) [14, 15].
These approaches expand the datasets and population types that can be considered in PBSHM, making the approach
more applicable.

The outline of the paper is as follows. Heterogeneous transfer learning is defined and two algorithms KBTL [10]
and HFA [14, 15] are presented. A comparison of these approaches, benchmarked against conventional techniques, is
shown for an SHM localisation problem on a dataset from a Gnat trainer aircraft. Finally conclusions are presented.

2 Heterogeneous transfer learning

Transfer learning is a category of machine learning that seeks to utilise information from various sources in improving
a machine learning model. Formally, the definition requires two objects:

A domain D = {X , p(X)} consisting of a feature space X and a marginal probability distribution p(X) over a
finite sample of feature data X = {xi}

N
i=1 ∈ X from X .

A task T = {Y, f(·)} combing a label space Y and a predictive function f : X → Y.

From these objects, transfer learning is the process of improving a target predictive function, for a target task, given
knowledge from some a set of source domains and tasks [11, 12, 13]. Transfer learning can then be subdivided into
homogeneous and heterogeneous transfer learning methods. The former category encompasses algorithms that require
the feature spaces between source and target domains to be consistent and of the same dimensions, i.e. Xs = Xt

and ds = dt where the subscripts s and t denote the source and target domains respectively for a single source
and target domain. Heterogeneous transfer learning methods relax these restrictions, handling inconsistent feature
spaces where each domain may have a different dimension, i.e. Xs 6= Xt and ds 6= dt. In an engineering context,
this assumption means that multiple different types of data can be used to transfer knowledge between structures.
For example, imagine that a labelled source structure has a dataset consisting of ten natural frequencies (ds = 10)
and a target structure where the dataset are transmissibilities with 512 spectral lines (dt = 512), these feature
spaces are inconsistent and have different dimensions, meaning a heterogeneous transfer learning approach is required.
Clearly, heterogeneous transfer learning methods are more general, but also more challenging approaches, with these
algorithms needing to learn a dimensionality transformation as well as a mapping between datasets from source and
target domains.

This paper compares two different heterogeneous transfer learning methods, namely kernelised Bayesian transfer
learning and heterogeneous feature augmentation. Both techniques are constructed around a discriminative classifier,
with the methods jointly inferring a mapping from the feature spaces onto a shared latent space where the classifier is
applied. Details of the two algorithms are given in the following sections.

2.1 Kernelised Bayesian transfer learning

KBTL is a Bayesian discriminative classification model, proposed by Gönen and Margolin [10], that utilises T
domains {Dt}

T
t=1 with inconsistent feature spaces {Xt}

T
t=1 (where there is no weighting towards a particular domain

as a target domain). The method can be seen as performing two steps in a joint manner; firstly, a mapping is
learnt that projects the data for each domain through a kernel and then onto a shared latent space via a linear
mapping. The second step constructs an optimal discriminative classifier (in a one-vs-all sense) in the shared latent
space that classifies all domains. More formally, the data from each domain Xt = {xt,i ∈ Xt}

Nt

i=1 ∈ R
Nt×dt (where

Nt are the number of data points and dt is the dimension of the feature set) are projected into a Reproducing
Kernel Hilbert Space (RKHS) via a kernel Kt = kt(Xt, Xt) ∈ R

Nt×Nt ∀ t ∈ 1 :T , before being mapped onto the
shared latent space as Ht = AT

t Kt ∈ R
R×Nt , ∀ t ∈ 1 :T . A joint discriminative classifier is subsequently inferred as

f t,l = HT

t wl+1bl ∀ t ∈ 1 :T and ∀ l ∈ 1 :L, where the parameters of the classifier {bl ∈ R
1×1, wl ∈ R

R×1} are shared
for all tasks. The function output can then be used to determine the label for each data point for each domain. It is
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Figure 1: Multi-class classification: graphical model of KBTL. Recreated from [10].

noted that the classifier is formed in a similar manner to a Relevance Vector Machine (RVM) [35]. A graphical model
of KBTL is presented in Figure 1, stating the conditional relationships between the observation parameters {Kt, Yt}

T
t=1

(where D = {Yt}
T
t=1), priors Ξ = {{Λt}

T
t=1, {ηl, γl}

L
l=1}, hyperparameters1 ζ = {κλ, θλ, κη, θη, κγ , θγ , σ

2
h, ν}, latent

variables and model parameters Θ = {{b,w}Ll=1, {{f t,l}
L
l=1, At, Ht}

T
t=1}.

The graphical model leads to the following modelling definitions for the projection part:

Λt[i, s] ∼ G(Λt[i, s] | κλ, θλ) (1a)

At[i, s] | Λt[i, s] ∼ N (At[i, s] | 0, (Λt[i, s])
−1) (1b)

Ht[s, i] | At[:, s],Kt[:, i] ∼ N (Ht[s, i] | At[:, s]
TKt[:, i], σ

2
h) (1c)

∀ i ∈ 1 :Nt, ∀ s ∈ 1 :R, ∀ t ∈ 1 :T , where square brackets denote indices — two elements denote rows and columns of
a matrix respectively, one element denotes a vector index, : denotes the set of index values. G(· | κ, θ) refers to a
gamma distribution parametrised by shape κ and scale θ parameters, and N (· | µ,Σ) refers to a Gaussian distribution
parametrised by mean µ and covariance Σ parameters.

Again, modelling assumptions for the classification part are:

γl ∼ G(γl |κγ , θγ) (2a)

bl | γl ∼ N (b | 0, γ−1
l ) (2b)

ηl[s] ∼ G(ηl[s] ; κη, θη) (2c)

wl[s] | ηl[s] ∼ N (wl[s] | 0, (ηl[s])
−1) (2d)

f t,l[i] | bl,wl, Ht[:, i] ∼ N (f t,l[i] | w
T

l Ht[:, i] + bl, 1) (2e)

yt,l[i] | f t,l[i] ∼ δ(f t,l[i]yt,l[i] > ν) (2f)

∀ i ∈ 1 :Nt, ∀ s ∈ 1 :R, ∀ l ∈ 1 :L, ∀ t ∈ 1 :T , where δ(·) is a Dirac delta function. The model includes a non-negative
margin parameter ν which creates a low-density region between the lth class and the rest of the data (in a one-vs-all
sense); this works in a similar manner to a margin in an Support Vector Machine (SVM).

In order to efficiently infer the model parameters variational inference is used (via a mean-field approach)2,

p({Θ,Ξ} | D) ≈ q({Θ,Ξ}) =
T
∏

t=1

[q(Λt)q(At)q(Ht)]

L
∏

l=1

[q(γl)q(ηl)q(bl,wl)]

T
∏

t=1

L
∏

l=1

q(f t,l). (3)

This process leads to the following closed-form update equations (〈f(·)〉 denotes the posterior expectation Eq(·)[f(·)])
for the dimensionality reduction part:

κ(Λt[i, s]) = κλ + 1/2 (4a)

1For the sake of clarity, dependencies on any of the hyperparameters ζ are dropped from the notation in this paper.
2For specific details the reader is referred to [10].
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θ(Λt[i, s]) = (1/θλ + 〈At[i, s]
2〉/2)−1 (4b)

Σ(At[:, s]) = (diag(〈Λt[:, s]〉) +KtK
T

t /σ
2
h)

−1 (5a)

µ(At[:, s]) = Σ(At[:, s])(Kt〈Ht[s, :]
T〉/σ2

h) (5b)

Σ(Ht[:, i]) =

(

I/σ2
h +

L
∑

l=1

〈wlw
T

l 〉

)−1

(6a)

µ(Ht[:, i]) = Σ(Ht[:, i])(〈A
T

t 〉Kt[:, i]/σ
2
h +

L
∑

l=1

〈f t,l[i]〉〈wl〉 − 〈blwl〉) (6b)

meaning that the shared latent space is updated to reflect the performance of all L discriminative classifiers. The
update equations for the classification part are,

κ(γl) = κγ + 1/2 (7a)

θ(γl) = (1/θγ + 〈b2l 〉/2)
−1 (7b)

κ(ηl[s]) = κη + 1/2 (7c)

θ(ηl[s]) = (1/θη + 〈wl[s]
2〉/2)−1 (7d)

Σ(bl,wl) =

[

〈γl〉+
∑T

t=1Nt

∑T
t=1 1

T〈HT

t 〉
∑T

t=1〈Ht〉1 diag(〈ηl〉) +
∑T

t=1〈HtH
T

t 〉

]−1

(8a)

µ(bl,wl) = Σ(bl,wl)

[

∑T
t=1 1

T〈f t,l〉
∑T

t=1〈Ht〉〈f t,l〉

]

(8b)

Σ(f t,l[i]) = 1 (9a)

µ(f t,l[i]) = 〈wT

l 〉〈Ht[:, i]〉+ 〈bl〉 (9b)

a(f t,l[i]) =

{

−∞, if yt,l[i] = −1

ν, if yt,l[i] = +1
(9c)

b(f t,l[i]) =

{

−ν, if yt,l[i] = −1

∞, if yt,l[i] = +1
(9d)

Finally, the predictive equations are found by substituting the true posterior distributions with the variational
approximation. The predictive equation for the latent space for each domain ht,∗ for a new data point xt,∗ (via its
corresponding kernel k(Xt,xt,∗) = kt,∗) is,

p(ht,∗ | kt,∗, D) =

R
∏

s=1

N (ht,∗[s] | µ(At[:, s])
Tkt,∗, σ2

h + kT

t,∗Σ(At[:, s])kt,∗) (10)

where the predictive equation for the classifier is,

p(ft,l,∗ | ht,∗, D) = N (f t,l,∗ | µ(bl,wl)
T[1 ht,∗]

T, 1 + [1 ht,∗]Σ(bl,wl)[1 ht,∗]
T). (11)

By passing the predictive function through a truncated Gaussian cumulative density function, the probability of
an observation belonging to class l is predicted as,

p(yt,l,∗ = +1 | ft,l,∗, D) = z−1
t,l,∗Φ

(

µ(ft,l,∗)− ν)

Σ(ft,l,∗)

)

(12)

where zt,l,∗ is the normalisation coefficient for a truncated Gaussian distribution, where [a b] (the truncation interval)
are for the y = +1 case. This equation produces a 1×L vector yt,∗, where a Maximum A Posteriori (MAP) estimate
of the class label can be obtained by by finding the element l corresponding to max (p(yt,∗ = +1 | f t,∗, D)).
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2.2 Heterogeneous Feature Augmentation

Heterogeneous Feature Augmentation (HFA), first proposed by Duan et al., seeks to learn a mapping from the data
domains to an augmented (and shared) latent space in which a discriminative classifier, using a support vector machine
(SVM) formulation, is inferred and used to jointly classify the data [14]. The approach is constructed assuming a
single source and target domain, with respective feature data Xs ∈ R

ds×Ns and Xt ∈ R
ds×Ns (meaning Xs 6= Xt).

The main idea in HFA is that feature replication can be used to augment the original feature space and allow
transfer between inconsistent feature spaces, replicating the source and target domains to form a larger shared space.
Additionally, in order to adapt the original source and target feature spaces such that knowledge can be transferred,
part of the shared augmented space consists of a common subspace (Rdc), where the projection matrices P and Q
are used to map source and target samples xs and xt onto this common subspace. The mappings that transform

the source and target datasets onto the shared augmented space are defined as ψs(xs) =
[

Pφs(xs)
T φs(xs)

T 0T

dt

]T

and ψt(xt) =
[

Qφ(xt)
T 0T

ds
φt(xt)

T
]T

respectively, where φs(·) and φt(·) are some nonlinear mapping such that the
kernels on the source and target domain are defined as Ks = ΦT

sΦs and Kt = ΦT

t Φt. These augmented feature spaces
are then adapted into an SVM formulation outlined below.

The weight vector for the SVM formulation is defined as w = [wT

c wT

s wT

t ]
T, combining weights for the common,

source and target subspaces (which make up the augmented shared space). The structural risk for the SVM is
therefore,

min
P,Q

min
w,b,ξs[i],ξt[i]

1

2
‖w‖2 + C

(

Ns
∑

i=1

ξs[i] +

Nt
∑

i=1

ξt[i]

)

(13a)

s.t. ys[i](w
Tψs(xs[i]) + b) ≥ 1− ξs[i], ξs[i] ≥ 0 (13b)

yt[i](w
Tψt(xt[i]) + b) ≥ 1− ξt[i], ξt[i] ≥ 0 (13c)

‖P‖2F ≤ λp, ‖Q‖2F ≤ λq, (13d)

where C > 0 trades off model complexity and empirical losses on both domains, with λp and λq controlling the
complexity of P and Q. The dual form of the inner optimisation problem is formed by introducing the dual variables
αs and αt for the constraints in equations (13b) and (13c). The Karush-Kuhn-Tucker (KKT) conditions are found
by setting the derivatives of the Lagrangian of equation (13a) with respect to {w, b, ξs[i], ξt[i]} to zeros, leading to

w =
∑Ns

i=1 αs[i]ys[i]ψs(xs[i]) +
∑Nt

i=1 αt[i]yt[i]ψt(xt[i]),
∑Ns

i=1 αs[i]ys[i] +
∑Nt

i=1 αt[i]yt[i] = 0 and 0 ≤ αs[i], αt[i] ≤ C.

Furthermore, rather than explicitly solving for P and Q, the approach utilises a latent representation via H̃, a
nonlinear transformation matrix that satisfies H = ΦK−1/2H̃K−1/2ΦT where H = [P Q]T[P Q] and,

K =

[

Ks ONs×Nt

ONt×Ns
Kt

]

where the ON×M notation defines an N ×M matrix of zeros. The KKT conditions and the introduction of the
nonlinear transformation metric lead to the following dual problem,

min
H̃�0

max
α

1Tα−
1

2
(α ◦ y)TKH̃(α ◦ y) (14a)

s.t. yTα = 0, 0 ≤ α ≤ C1 (14b)

tr
(

H̃
)

≤ λ (14c)

where KH̃ = ΦT(H + I)Φ = K1/2(H̃ + I)K1/2, λ = λp + λq, α =
[

αT

s αT

t

]T

and y =
[

yT

s yT

t

]T

∈ {+1− 1}.
In order to guarantee convergence to the global solution Li et al. then introduce a convex form of equation (14a)

[15], replacing the trace regularisation term in equation (14c) with a regularisation term in the objective function
leading to,

min
H̃�0

max
α

1Tα−
1

2
(α ◦ y)TKH̃(α ◦ y) + ηtr

(

H̃
)

(15a)

s.t. yTα = 0, 0 ≤ α ≤ C1 (15b)
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where η is a trade-off parameter. Subsequently, to avoid the non-trivial semi-definite programming problem, H̃ is
decomposed into a linear combination of positive semi-definite (PSD) matrices, in this case rank-one normalised
PSD matrices M = {Mr|

∞
r=1}, such that H̃ = Hθ =

∑∞

r=1 θrMr where Mr = hrh
T

r and hT

rhr = 1, with θ being
a vector of linear combination coefficients. By substituting in the linear combinations, the regularisation term

tr
(

H̃
)

= tr(
∑∞

r=1 θrMr) = 1Tθ and the optimisation problem can now be formed in terms of θ instead of H̃ as,

min
θ∈Dθ

max
α∈A

1Tα−
1

2
(α ◦ y)T

∞
∑

r=1

θrKr(α ◦ y) (16)

where Kr = K1/2(λMr + I)K1/2, Dθ = {θ|1Tθ ≤ 1,θ ≥ 0} and A = {α|yTα = 0,0 ≤ α ≤ C1}, which is an infinite
kernel learning problem with each base kernel as Kr (where [15] states the proof that optimising for θ is the same as
finding the optimal Hθ).

To simplify the problem in equation 16, H̃ can be represented by a finite and small number of base kernels,
constructed using a cutting-plane algorithm. By forming a new dual problem where the dual variable τ is introduced
for θ the problem becomes,

max
τ,α∈A

1Tα− τ (17a)

s.t.
1

2
(α ◦ y)TKr(α ◦ y) ≤ τ, ∀r (17b)

meaning that there are now an infinite number of constraints. The approach then allows the structural risk to be
approximated by iteratively adding a kernel where the corresponding constraint is violated according to the current
solution; the kernel associated with this constraint is called an active kernel. The most active kernel is found by
maximising the left hand side of equation (17b),

max
M∈M

1

2
(α ◦ y)TKM (α ◦ y) (18)

where Km = K1/2(λM + I)K1/2. This maximisation has a closed-form solution where M = hhT and h =
K1/2(α ◦ y)/‖K1/2(α ◦ y)‖. The optimisation is therefore conducted by initialising the set of rank-one PSD matrices
with M1 = h1h

T

1 where h1 is a unit vector. Using this current M, the min-max problem in equation (16) is solved to
find the optimal α and θ. These values are subsequently used to find the most active kernel using equation (18), and
this is added to the current set of M. The process is iterated, optimising for α and θ then adding the most active
kernel to M until convergence.

Once converged, the predictive equations using the optimal α and H̃(=λ
∑

r θrMr) for a new test sample x are,

f(x) = (α ◦ y)TK1/2(H̃ + I)

[

0Ns×Nt

K
−1/2
t

]

kt + b (19)

where kt = k(Xt,x).

3 Gnat aircraft dataset

The Gnat aircraft dataset is an experimental dataset that has been well-studied within the field of SHM [36, 37, 38,
39, 40, 41]. Although the dataset is from one structure, namely an aircraft wing from a Gnat trainer aircraft [37, 38],
the dataset does form two distinct data domains due to data shift that occurs from changes caused by reattaching
inspection panels (even when the torque of the fasteners is monitored [38]). A scenario is imagined where the sensor
configurations change between the two domains, meaning a different number of sensors were available in each domain.
This change in available sensors, shown in Figure 2, creates feature spaces for each domain that are inconsistent
(where transmissibility paths are used as the features) and therefore heterogeneous transfer learning is required to
transfer information between the two domains.

The Gnat dataset consists of measurements from the starboard wing in-situ, undergoing a band-limited Gaussian
noise input, where the response was measured at several locations using uni-axial accelerometers, forming transmis-
sibility paths. Transmissibilities with 1024 spectral lines between 1024-2048Hz form the feature set. Damage was
introduced via sequentially removing the inspection panels shown in Figure 2 (as it was not possible to damage the
structure), i.e. no panels are removed, Y = 0, P1 is removed, Y = 1, P1 and P2 are removed, Y = 2, and P1, P2 and

6



P1
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•A1 •A2
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P1

P2

P3
•
AR

•A1 •A2

•
A3
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Figure 2: Schematics sensor configurations for Domain One and Domain Two for the Gnat aircraft wing (not to
scale).

(a)

(b)

Figure 3: Visualisation of Domains One and Two training feature data. The Panel (a) displays the stacked log
transmissibilities for Domain One (top) and Domain Two (bottom) where a vertical line indicates the start of a new
transmissibility. The Panel (b) compares the first two principal components of Domain One (×) and Domain Two
(�).
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P3 are removed, Y = 3. For each class, 100 measurements were collected before all the panels were reattached (with
fastener torque being controlled [38]) and the process repeated in order to collect a second data domain. For the sake
of brevity etc., the interested reader is referred to [38] for more details on the dataset.

As stated, the dataset forms two data domains (both with 400 observations in total), where Domain One consists
of two transmissibilities (T1 = A1/AR and T2 = A2/AR), and three transmissibilities (T1 T2 and T3 = A3/AR)
are available for Domain Two. This leads to two inconsistent feature spaces as X1 = {T1, T2} ∈ R

N1×2048 and
X2 = {T1, T2, T3} ∈ R

N2×3072. In this case study, the training dataset for Domain One only consist of 50 observations
for class 0, 1, and 2 (i.e. N train

1 = 150) with no training data for the removal of panel 3. This reflects a scenario where
the monitoring system was not designed initially to target locating damage to panel 3. In contrast, the training dataset
for Domain Two has 10 observations for all four classes (i.e. N train

2 = 40). A visualisation of the training dataset
is presented in Figure 3, with the transmissibilities stacked for each observation. Figure 3 also shows the first two
principal components for each domain, highlighting the data shift between domains and the need for heterogeneous
transfer learning.

3.1 Comparison of Heterogeneous Transfer Learning Methods

KBTL and HFA were applied to the Gnat dataset in order to compare their performance. HFA has been applied
in both combinations, i.e. consider Domain One the source and Domain Two the target and Domain Two as the
source and Domain One as the target. The techniques were also benchmarked against two single-domain approaches

Figure 4: Visualisation of KBTL latent space and classifier for training (top) and testing (bottom) data. The left
panels depict the one-vs-all discriminative classifiers (mean (-) and three standard deviations (- -)) for each class
(indicated by the colour) as well as the predicted label MAP estimates. The right panels present the true labels. Each
domain is denoted by a different symbol for Domains One (×) and Two (�).
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Figure 5: Visualisation of HFA one-vs-all function predictions on corresponding target domain. Left panel shows
predictions on Domain One when Domain Two is the source domain, and the right panel shows predictions on Domain
Two when Domain One is the source domain.

representing conventional machine learning methods with no knowledge transfer, namely Single-Domain KBTL
(SD-KBTL) (KBTL trained and tested on a single domain), and an RVM, trained using the algorithm in [35] with a
Bernoulli likelihood (used in a one-vs-all approach). In each approach a radial-basis kernel was implemented where
the scale hyperparameter was defined for each domain using the median heuristics approach [42].

The KBTL hyperparameters were set to (κλ, θλ) = (κγ , θγ) = (κη, θη) = (1× 10−3, 1× 10−3) due to the small
number of observations in each domain and the latent space standard deviation was σh = 1 reflecting a degree of
uncertainty in mapping, with a small margin of ν = 0.1 used to try and aid separability. For visualisation purposes
R = 2 was used. The trade-off parameters for HFA were set as C = 1 and λ = 100, with the approach repeated in a
one-vs-all manner for each class label.

As the KBTL latent subspace was two-dimensional, the latent space and classifier can be visualised. Figure 4
displays the expected posterior latent space and classifier function, with the label MAP estimates on the left panels
and the true labels on the right panels. The figure also shows the generalisation of the approach with the training
and testing data in the top and bottom panels respectively. KBTL has placed class Y = 3 at the origin of the latent
space as a result of limited information provided by Domain Two.

The high-dimensional augmented feature space in HFA means that only the function predictions at each observation
are displayed in Figure 5. The results show that in the scenario where Domain One is the source domain (right panel),
the fact that Y = 3 occurs in the target domain means that the classifier has inferred a generalised form that applies
to the testing target data. However, the inverse is true when Domain Two is used as the source domain, where the

Figure 6: Comparison of testing accuracies. HFA(Di) refers to the results where the ith domain is considered the
source domain. Shaded regions denote the true label.
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lack of Y = 3 in the target training set has caused confusion.
Finally the testing accuracies are compared in Figure 6. These results show that KBTL has more successfully

managed to transfer knowledge between Domains Two and One than all other approaches, with HFA only marginally
improving performance of conventional single-domain approaches. However, in the well-labelled target scenario,
where knowledge is transferred from Domain One to Domain Two, the heterogeneous transfer learning approaches
and conventional approaches show comparable results, with HFA achieving the highest classification accuracy. This
demonstrates the challenges with KBTL. By trying to learn one generalised latent space and classifier for all domains,
KBTL classification performance might not be improve on a well-labelled domain in order to improve classification on
other sparsely labelled domains.

4 Discussion and conclusions

Transferring label knowledge between different datasets is part of a population-based approach to SHM. This paper
has investigated the use of two heterogeneous transfer learning methods, KBTL and HFA, that allow for knowledge
to be transferred between feature spaces that are inconsistent and have different dimensions.

The algorithms were applied to datasets from a Gnat training aircraft where, over both domains, KBTL
outperformed HFA. The ability to construct one classification model over all domains, rather than just transferring
from a single source to target, meant that KBTL was better able to generalise to all domains. Furthermore, both
heterogeneous transfer learning methods outperform conventional approaches to machine learning. The results show
that it is possible to map between inconsistent datasets and overcome data shift, meaning a wider range of PBSHM
problems can be addressed. Future research will seek to investigate the limitations of these approaches as feature
inconsistency increases in a PBSHM context.
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