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A Hybrid Incentive Program for Managing Electric 

Vehicle Charging Flexibility 

Abstract—With the mass roll-out of electric vehicles 

(EVs) and rapid progress in battery technology, utilizing 

EV charging flexibility has become a promising solution for 

supporting economic and secured power system operations. 

This work proposes a novel hybrid incentive program, 

which encourages EV owners to sell their charging 

flexibility to a charging station (CS) and achieve a win-win 

situation for both EV owners and the CS. Unlike existing 

approaches, the proposed hybrid incentive program is 

simultaneously featured with simplicity, consistency, and 

controllability. To determine the incentive payment 

parameters, an optimal incentive price selection model is 

developed. In the solution methodology, we first linearize 

the original problem, then develop an adaptive ADMM 

algorithm to efficiently solve the formulated problem. Case 

studies confirm the superiority of the proposed hybrid 

incentive program over the state-of-the-arts, achieving 

22.51% of EV owners’ cost reduction, 31.18% of energy 

market bill reduction, and 64.13% of potential charging 

flexibility utilization.  

Index Terms—EV charging flexibility, incentive program, 

optimal incentive price selection, adaptive ADMM  

I. INTRODUCTION  

LIMATE change is one of the biggest challenges for 

mankind [1], which has seen the global response to reduce 

carbon emissions across all sectors of the economy in the last 

decade [2]. Transportation is one of the largest emitting sectors 

of greenhouse gas largely due to the internal combustion engine 

vehicles (ICEVs) [3]. Hence, shifting from ICEVs to electric 

vehicles (EVs) has been widely recognized as one of the most 

effective means to decarbonize the transportation sector 

because EVs can be powered by electricity generated from 

renewable sources. 

The EV charging demand has grown dramatically over the 

past few years [4]. This is contributed by the mass roll-out of 

EVs and the advances in EV battery technology. The increased 

charging demand can impose significant challenges to the 

power network operation if the EV charging behavior is 

uncontrolled and unregulated [5]. Previous research reveals 

that the EV parking time is often longer than that is required for 

charging in many scenarios [6], which leads to charging 

flexibility that can support economic and secured power system 

operations in the future [7].  

Due to the distributed nature and large quantities of EVs, 

direct control of EV charging by the system operator is 

computationally challenging. Hence, EV charging coordination 

is often accomplished by intermediary agents including EV 

aggregators, parking lots, charging stations (CS), virtual power 

plant (VPP) operators, and microgrid operators. For these 

intermediary agents, the EVs under their control can act as 

flexible demand response resources to generate revenues and 

benefits in many ways, such as participating in the energy 

market to reduce the energy procurement cost [8]–[10], 

providing ancillary services to generate income [11]–[13], and 

gaining remunerations by responding to the demand response 

signals [14], [15]. The underlying assumption in these works is 

that the intermediary agents can utilize EV charging flexibility 

without incentivizing EV owners, which is bluntly unrealistic 

as scheduled charging may bring considerable inconvenience 

to EV owners, and convenience is the primary motivation for 

personal ownership of vehicles. Hence, the design of incentives 

for EV owners is vital for the intermediary agents to acquire 

EV charging flexibility. 

Since EV owners tend to charge their EVs as quickly as 

possible [16], incentive programs are needed to remunerate EV 

owners for acquiring their charging flexibility and reshaping 

EV charging load. Otherwise, EV owners will not be motivated 

to participate in the demand response programs (DRP). In a 

demand response incentive program, the DRP operator should 

specify what kinds of EV owners’ actions will be rewarded and 

how much will be paid for these actions. Hence, this work is 

specifically focused on the design of EV owners’ remunerable 

actions and the pricing methods for these actions.  

In the literature, a variety of incentive programs have been 

proposed for inspiring EV owners to participate in DRPs 

managed by intermediary agents. These incentive programs, 

though varying from one to another, can be categorically 

classified as static programs and dynamic programs from the 

incentive signal update frequency angle.  
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The incentive signal update frequency of static incentive 

programs is relatively low, which keeps the incentive programs 

unchanged over a relatively long period. The advantages of 

such programs are that they are consistent and simple for 

implementation, EV owners can easily use them as a reference 

for scheduling their charging plans.  

Practices of static incentive programs include time-of-use 

(TOU) pricing and critical peak pricing (CPP). In [17], an 

optimal TOU tariff plan decision model is proposed to shift the 

EV charging load from high-price hours to low-price hours. In 

[18], an optimal TOU tariff plan is proposed by evaluating 

various aspects of EV charging behavior under the TOU tariff. 

In [19], several strategies including TOU tariff is applied to EV 

charging load to mitigate the transformer burden imposed by 

the high penetration level of EVs. In [20], a TOU charging price 

program with a price reduction strategy is applied to reduce the 

energy procurement costs and distribute the benefits between 

EV owners and charging infrastructure operators. In [21], both 

TOU and CPP mechanisms are applied to the EVs to improve 

the VPP’s profitability. Similarly, both TOU and CPP 

programs are used in [22] to increase the profit of a distribution 

company. In static incentive programs, consumers are allowed 

to sacrifice a certain degree of convenience in return for 

reduced charging fees in a simple way. However, existing static 

programs do not offer the intermediary agents the 

controllability to maximize their benefit from the short-term 

market and system fluctuations. 

Compared with static programs, dynamic programs update 

incentive signals more frequently in response to short-term 

market and system information, which enables more 

controllable actions to handle short-term market and system 

fluctuations, hence encouraging more proactive participation of 

EV owners in offering flexibility services to the power grid 

through intermediary agents.  

The most popular dynamic programs are dynamic pricing 

and transactive control programs. In [23], a CS uses real-time 

energy and reserve price signals to incentivize EV owners for 

altering their charging schedules. In [24], an EV aggregator 

sends dynamic price signals to encourage EV owners to change 

their charging plan or authorize the battery access right to the 

aggregator. In [25], a dynamic pricing model is proposed for 

multiple CSs to coordinately shift EV charging load from 

residential load peaks. A dynamic pricing framework for CSs 

is proposed in [26] to concurrently maximize the profit of CSs 

and reduce the peak load. In [27], the EV aggregator manages 

the charging load by clearing the transactive market according 

to the day-ahead energy procurement and real-time requests of 

EV owners. The charging load in [28] is controlled through a 

transactive market to which EV owners need to submit their 

real-time charging requirements and preference setting of 

demand response. A sensitivity-based real-time transactive 

control framework is proposed in [29] to coordinate the EV 

charging behavior through a local energy market. 

Although dynamic programs are more controllable, they 

lack simplicity and consistency compared to static programs. 

Besides, dynamic incentive programs assume that EV owners 

can actively respond to the price signals and alter their charging 

behavior responsively [30], which is too optimistic as it takes 

effort and specific knowledge to complete these tasks. 

Furthermore, in order to make the optimal decisions to 

maximize the benefit, EV owners have to be constantly updated 

with the latest market information, which demands extra effort 

from the EV owners. 

Considering the pros and cons of existing EV incentive 

programs, we propose a hybrid incentive program for a CS that 

aims to offer incentives to the EV owners to share their 

charging flexibility. The proposed hybrid incentive program 

combines static incentives with dynamic control. Under the 

proposed hybrid incentive program, the consistency and 

simplicity of static programs are retained, while the 

controllability of dynamic programs can be achieved. Table I 

compares the key features of the proposed incentive program 

with both static incentive programs and dynamic incentive 

programs. 

TABLE I 

KEY PROPERTIES OF DIFFERENT TYPES OF 

INCENTIVE PROGRAMS 

 Simplicity Consistency Controllability 

Static programs 

[17]–[22] 
Medium High  Low  

Dynamic programs 

[23]–[29] 
Low  Low  High  

Proposed  

program 
High  High  Medium  

 

The considered CS faces volatile day-ahead wholesale 

market-clearing prices (MCP) and variability of EV owners’ 
willingness to sell their charging flexibility. For the CS, the 

incentive prices can affect both the incentive payment and the 

amount of charging flexibility that can be acquired to reduce 

energy bills. Therefore, the selection of incentive prices is 

crucial for the performance of the proposed hybrid incentive 

program. To maximize the CS’s benefit while encouraging 

proactive participation of the EV owners, an optimal incentive 

price selection model is developed in this paper to determine 

the incentive prices for the EV charging flexibility.  

As the proposed hybrid incentive program needs to retain 

consistency for a relatively long period, market price patterns 

at different times should be considered in the optimization 

model to ensure unbiased incentive price selection. Increasing 

the number of price scenarios leads to a larger number of EVs 

under consideration, which makes the solution process 

computationally challenging. In confronting the dimensional 

problem for large EV fleets, distributed and meta-heuristic 

methods are the most popular approaches in the literature [31]. 

Compared with meta-heuristic approaches, distributed methods 

are more specific and take less time to converge [32]. Hence, a 

distributed solution process based on the ADMM method is 

developed in this paper to guarantee computational efficiency 

in solving the optimal incentive price selection problem.  

The major contributions of this work are as follows: 

 A hybrid incentive program is proposed to encourage 

EV owners to sell their charging flexibility to the CS. 

The proposed hybrid incentive program combines the 

advantages of both static and dynamic incentive 

programs, namely, it has the features of simplicity, 

consistency, and controllability. 

 An optimal incentive price selection model is 

developed to minimize the CS’s cost in the electricity 

market and the DRP. The optimization results of the 

proposed model can serve as a reference for 

policymakers who adopt the proposed hybrid incentive 

program. 

 An ADMM with adaptive penalty (ADMM-AP) 

solution algorithm is presented to efficiently solve the 

problem in a distributed manner for large EV fleets.  



The remainder of this paper is organized as follows. Section 

II gives an overview of the CS operational framework. Section 

III provides the details of the proposed hybrid incentive 

program. Section IV presents the optimal incentive price 

selection model. The proposed solution methodology is 

detailed in Section V. Section VI presents the numerical results 

and discussions. Section VII concludes this paper. 

II.   CHARGING STATION OPERATIONAL FRAMEWORK  

The configuration of the CS’s operational framework is 

presented in Fig. 1.  

 
Fig. 1. Operational framework of the charging station. 

 

The CS under consideration is a public CS, which can 

directly control the charging rates of its charging piles. To 

acquire the information about the EV owners’ demand response 
preferences, it is assumed that EV owners can directly 

communicate with the CS in advance before they choose to 

park and charge there. In the day-ahead wholesale market, the 

clearing resolution is one hour, and the CS is a price-taker who 

purchases energy at the MCP to satisfy EV energy requirements. 

Due to market entrance requirements, the considered CS may 

not be able to have access to the wholesale market and benefit 

from competitive wholesale prices. Hence, an intermediary 

agent that can integrate the CS and access the wholesale market 

(e.g., EV aggregators or virtual power plants that can integrate 

the charging stations) is needed in the energy procurement 

process. Since the CS cannot affect the market price, it is 

motivated to shift the EV charging load from high-price hours 

to low-price hours to reduce the energy bills.  

Under the TOU pricing scheme, EV owners who want to 

reduce their charging fee must wait for low-price hours to park 

and charge, which reduces the simplicity of the incentive 

program by significantly limiting EV owners’ convenience. 

Hence, to minimize the restrictions on EV owners’ traveling 

and parking plans, a flat charging price is applied in the CS. 

The charging loads are shifted through the CS’s DRP, which 
provides certain remuneration to EV owners in exchange for 

the access right to EV batteries. The DRP managed by the CS 

includes the buy-out (BO) program and pay-as-use (PAU) 

program, which correspond to different incentive payment 

calculation methods in the proposed hybrid incentive program.  

The CS needs to set up proper incentive prices to encourage 

EV owners to sell their charging flexibility. Also, the CS is 

responsible for scheduling the charging flexibility to minimize 

the energy procurement cost. For EV owners, they only need to 

claim their charging demands and DR preferences upon arrival. 

Besides the dwelling time, other battery information including 

the initial state-of-charge (SOC), battery capacity, and 

maximum charging rate can be directly acquired from the 

battery management system (BMS) of the EVs. The DR 

preference information includes which incentive they want to 

receive and the minimum prices they can accept for authorizing 

the battery access rights.  

There are several advantages to apply such a flat pricing and 

incentive DRP operational framework. Firstly, EV owners do 

not have to wait for low price hours to park and charge. 

Secondly, EV owners do not need to actively respond to the 

incentive signals during the charging duration. Instead, they 

only need to clarify their DR preferences upon arrival. Thirdly, 

the negotiation process for real-time demand response is 

avoided since all the information needed to approach the 

optimal solution is pre-communicated.  

Because the infrastructure for the vehicle to grid (V2G) 

operation is still an underdeveloped area and frequent 

discharging of the EVs will accelerate battery degradations, 

only the grid to vehicle operation mode is considered in this 

work. 

III. PROPOSED HYBRID INCENTIVE PROGRAM  

A. Discussion on Key Properties of Incentive Programs 

In this work, an incentive program is considered to be 

simple if the required actions from the EV owners are minimal. 

Consistency of an incentive program means that EV owners’ 
knowledge about the incentives does not have to be updated 

frequently. Besides, controllability of incentive programs refers 

to the ability to match the charging load with short-term market 

price variations. Simplicity and consistency can be difficult to 

quantify because the criteria can vary from person to person. 

One example of simple and consistent incentive programs is the 

TOU pricing, where prices for peak-flat-valley periods are 

stable for a relatively long period to allow decision-making 

simple and straightforward. An opposite example is the 

transactive control program, where EV owners need to actively 

respond to the incentive signals that change in real-time. For 

controllability, a controllability index (CI) is defined in this 

work to quantitatively reflect how controllable a DRP incentive 

program is: 𝐶𝐼($/𝑘𝑊ℎ) =  𝐸𝑛𝑒𝑟𝑔𝑦 𝐵𝑖𝑙𝑙 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛($)𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑘𝑊ℎ)        (1) 

where energy bill reduction is the reduced energy procurement 

cost (measured in $) in the wholesale market, and effective 

flexibility (measured in 𝑘𝑊ℎ) is the flexibility that is utilized. 

Larger CI implies more efficient utilization of each unit of 

effective flexibility, which can be achieved by more exactly 

matching the charging load with the variable market price.  

For EV owners, simplicity and consistency are favorable 

properties for an incentive program. From the CS’s point of 
view, controllability is a desirable property as it can achieve 

more benefits. However, achieving controllability may 

contradict the simplicity and consistency if EV owners have to 

actively respond to incentive signals. To address this 

contradiction, we propose a hybrid incentive program for the 

CS, which consists of the BO incentive and the PAU incentive. 

The prices for both the BO and PAU incentives will remain 

unchanged for a relatively long period. Under the proposed 

hybrid incentive program, if EV owners accept the CS’s offer, 
they would receive payments for the access right of their EV 

batteries. With the access right to the batteries, the CS can 

achieve accurate EV charging load control under the constraint 



of satisfying EV charging demand. Specifically, by directly 

controlling the operation of its charging piles, the CS can 

determine the charging time and charging rates of EVs which 

are chosen to participate in the DRPs. 

Towards this end, the proposed hybrid incentive program 

features simplicity in terms of EV owners’ participation, while 

consistency is retained regarding the incentive price update 

frequency. Moreover, controllability can be achieved by the 

dynamic charging control of the CS.  

B. BO Incentive 

For EV owners who accept the offers from the BO program, 

they will receive a payment to buy out all the potential charging 

flexibility (measured in 𝑘𝑊ℎ), which may or may not be used 

in the charging scheduling. Since the battery charging rates are 

assumed to be continuously controllable [33], the potential 

flexibility 𝑓𝑖 of the 𝑖𝑡ℎ EV can be calculated as: 

  𝜏𝑖 = 𝑡𝑖,𝑜𝑢𝑡 − 𝑡𝑖,𝑖𝑛                (2) 𝐸𝑖 = (𝑆𝑂𝐶𝑖𝑚𝑎𝑥 − 𝑖𝑆𝑂𝐶𝑖)𝐶𝑎𝑝𝑖          (3) 𝑓𝑖 = min{𝐸𝑖 , 𝜏𝑖𝑃𝑖𝑚𝑎𝑥 − 𝐸𝑖}            (4) 

where 𝑖 is the index for EVs in the BO program. The plug-in 

and plug-out times are represented by 𝑡𝑖,𝑖𝑛  and 𝑡𝑖,𝑜𝑢𝑡 , 

respectively. Term 𝜏𝑖  denotes the total parking time. The 

energy requirement 𝐸𝑖  is calculated using the initial SOC 

(iSOC) and battery capacity 𝐶𝑎𝑝𝑖  through Eq (3), in which 𝑆𝑂𝐶𝑖𝑚𝑎𝑥  represents the maximum SOC. The potential 

charging flexibility 𝑓𝑖 is given by Eq (4), which states that 𝑓𝑖 
is the maximum shiftable load. The calculation of 𝑓𝑖  is 

schematically illustrated in Fig. 2.  

 

Fig. 2. EV Flexibility in the BO program. 

 

Fig. 2 displays two possible charging scenarios for a typical 

EV whose parking time is longer than the time required for 

charging. Real charging load represents the energy that the EV 

consumes when parking; virtual charging load is the energy that 

the EV is parking but not consuming because the battery is 

already fully charged. In both scenarios, the real charging load 

can be shifted to the virtual charging load, which yields 

potential EV charging flexibility. In Fig. 2a, only part of the 

real charging load can be shifted to the virtual charging load, 

whereas all real charging load can be shifted to virtual charging 

load in scenarios illustrated in Fig. 2b. When only part of the 

real charging load can be shifted to the virtual charging load, 

the potential charging flexibility is given by the totality of the 

virtual charging load. Otherwise, the potential flexibility is 

restricted by the real charging load. For EVs with the required 

charging time less than the parking time, their potential 

charging flexibility is 0.  

C. PAU Incentive 
Unlike paying for all the potential flexibility in the BO 

program, the remuneration in the PAU program depends on 

effective flexibility. Hence, to calculate the payment in the 

PAU program, the uncontrolled load profile for each EV must 

be identified. In the uncontrolled charging scenario, the EV will 

charge at the maximum rate before reaching the battery 

capacity 𝐶𝑎𝑝𝑗: 𝑃𝑗,𝑡𝑢𝑐 = 𝑃𝑗𝑚𝑎𝑥 , (𝑆𝑂𝐶𝑗,𝑡−1 + 𝑃𝑗𝑚𝑎𝑥∆𝑡𝐶𝑎𝑝𝑗 ) ≤ 𝑆𝑂𝐶𝑗𝑚𝑎𝑥     (5) 

where 𝑗  is the index for EVs in the PAU program. The 

uncontrolled charging rate of the 𝑗𝑡ℎ EV at time 𝑡 is given 

by 𝑃𝑗,𝑡𝑢𝑐, whose upper bound is 𝑃𝑗𝑚𝑎𝑥. The scheduling interval 

is given by ∆𝑡 . 𝑃𝑗,𝑡𝑢𝑐  with superscript ‘uc’ stands for the 

charging power under the uncontrolled charging scenario. 

When the EV is about to be fully charged, it will charge at 

a rate such that the EV just reaches the maximum SOC: 𝑃𝑗,𝑡𝑢𝑐 = (𝑆𝑂𝐶𝑗𝑚𝑎𝑥−𝑆𝑂𝐶𝑗,𝑡−1)𝐶𝑎𝑝𝑗∆𝑡 , 𝑃𝑗𝑚𝑎𝑥∆𝑡𝐶𝑎𝑝𝑗 ≥ 𝑆𝑂𝐶𝑗𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑗,𝑡−1(6) 

After the EV is fully charged, the charging rate becomes 0 

because discharging is not considered:    𝑃𝑗,𝑡𝑢𝑐 = 0,    𝑆𝑂𝐶𝑗,𝑡−1 = 𝑆𝑂𝐶𝑗𝑚𝑎𝑥           (7) 
As Eqs (5) – (7) are derived for uncontrolled EV charging 

of the PAU program, they also apply to the BO program. After 

acquiring the uncontrolled charging profile, the change in 

charging power can be obtained as the difference between the 

uncontrolled charging power 𝑃𝑗,𝑡𝑢𝑐 and the scheduled charging 

power 𝑃𝑗,𝑡𝑠 : ∆𝑃𝑗,𝑡 = 𝑃𝑗,𝑡𝑠 − 𝑃𝑗,𝑡𝑢𝑐                 (8) 

To avoid double remuneration, only the downward power 

change will be accounted for when calculating the incentive 

payment. Hence, the power change in the PAU program is 

divided into downward ∆𝑃𝑗,𝑡𝑑  and upward ∆𝑃𝑗,𝑡𝑢  changes: ∆𝑃𝑗,𝑡 = ∆𝑃𝑗,𝑡𝑢 − ∆𝑃𝑗,𝑡𝑑               (9) [∆𝑃𝑗,𝑡𝑢 , ∆𝑃𝑗,𝑡𝑑 ] ≥ 0              (10) 

Thus, the power changes are obtained as: ∆𝑃𝑗,𝑡𝑢 − ∆𝑃𝑗,𝑡𝑑 = 𝑃𝑗,𝑡𝑠 − 𝑃𝑗,𝑡            (11) 

The flexibility calculation for the PAU program is 

schematically depicted in Fig. 3.  

 

(a) Uncontrolled and scheduled load scenarios. 



 

(b) Load change result 

Fig. 3. EV flexibility in the PAU program. 

 

Fig. 3a shows the uncontrolled (left) and scheduled (right) 

charging load profiles for a typical EV. Comparing the 

uncontrolled load with the scheduled load, it is observed that 

only the charging loads between hours 9 and 13 are shifted to 

hours between 17 and 21, whereas the loads at hours 14, 15 and 

16 remain unchanged. The load change result from the 

uncontrolled charging scenario to the scheduled charging 

scenario is summarized in Fig. 3b, which shows that only the 

reduced load is counted as remunerable effective flexibility.  

D. Participation Status Decision 

As the price threshold for authorizing the battery access 

right can vary among a large group of EV owners, it is not likely 

that all the EVs will be involved in the DRP. Instead, only EV 

owners with minimum acceptable prices (MAP) lower than the 

incentive prices are willing to sell their charging flexibility. 

Besides, the price for each unit of charging flexibility in each 

incentive program should be uniform to ensure fairness. Hence, 

the incentive prices must be determined before EV owners can 

decide if they want to join the DRP. 

In the proposed hybrid incentive program, two prices need 

to be specified. In the BO program, the incentive price 𝛼 

represents the financial incentive paid to EV owners for each 

unit of potential flexibility they can provide. In the PAU 

program, the incentive price 𝛽 is the financial incentive paid 

to EV owners for each unit of effective flexibility. 

 Once the incentive price information becomes available, 

the participation status of each EV can be determined through 

the following relationship: 

 𝑦𝑖(𝛼 − 𝜔𝑖) ≥ 0              (12) 𝑦𝑗(𝛽 − 𝜔𝑗) ≥ 0              (13) [𝑦𝑖 , 𝑦𝑗] ∈ {0,1}              (14) 

where 𝜔𝑖 and 𝜔𝑗  are the MAPs for EV owners to authorize 

their battery access right in the BO and PAU programs, 

respectively. Correspondingly, binary terms 𝑦𝑖  and 𝑦𝑗  are 

availability indicators for the battery access rights in the BO 

and PAU programs, respectively. As stated in (12) and (13), EV 

owners will allow the CS to control their EV charging rates 

only if the incentive price is higher than their MAPs.  

In real-life applications, the MAPs of EV owners depend on 

their specific features. Hence, the CS needs to perform surveys 

of its consumers in order to determine the prices that would 

yield the best outcome. 

IV. OPTIMAL INCENTIVE PRICE SELECTION MODEL 

From the CS’s perspective, higher incentive prices can 

encourage more EV owners to share their charging flexibility, 

which allows the CS to reduce the energy procurement cost. 

Meanwhile, the financial incentives paid to EV owners will also 

increase due to uplifted incentive prices and a larger purchased 

flexibility volume. Hence, the selection of incentive prices 𝛼 

and 𝛽  is of vital importance to the performance of the 

proposed hybrid incentive program. 

 To determine the optimal incentive price set (𝛼,𝛽) that will 

maximize the CS’s overall benefit, an optimal incentive price 

selection model is developed in this section. In the developed 

optimization model, the objective is to minimize the total cost 

from the wholesale energy market and the DRP. Therefore, 

before presenting the optimal incentive price selection model, 

the incentive payment of EV owners needs to be calculated. 

The payments of EV owners are calculated as follows: 𝛾𝑖𝐵 = 𝛼𝑓𝑖                 (15) 𝛾𝑗𝑃 = ∑ 𝛽∆𝑃𝑗,𝑡𝑑𝑅𝑡                (16) 

where 𝛾𝑖𝐵  and 𝛾𝑗𝑃  are the payments in the BO and PAU 

programs, respectively. The term 𝑅 is the ratio between one 

hour and the scheduling resolution of the CS. 

After obtaining the incentive payment of EV owners, the 

optimization problem can be formulated as: min𝛼,𝛽,𝑦𝑖,𝑦𝑗 ,∆𝑃𝑖,𝑡,∆𝑃𝑗,𝑡𝑢 ,∆𝑃𝑗,𝑡𝑑 ,𝐸𝑀,𝑡{∑ 𝜆𝑡𝐸𝑀,𝑡𝑡 + ∑ 𝛾𝑖𝐵𝑦𝑖𝑖 + ∑ 𝛾𝑗𝑃𝑗 } (17)  

s.t. (2) – (7), (10) – (16)              (18) (𝑃𝑖,𝑡 + 𝑃𝑗,𝑡 + ∆𝑃𝑖,𝑡 + ∆𝑃𝑗,𝑡𝑢 − ∆𝑃𝑗,𝑡𝑑 )∆𝑡 = 𝐸𝑀,𝑡      (19)   0 ≤ 𝑃𝑖,𝑡 + ∆𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑚𝑎𝑥              (20) −𝑦𝑖𝑃𝑖,𝑚𝑎𝑥 ≤ ∆𝑃𝑖,𝑡 ≤ 𝑦𝑖𝑃𝑖,𝑚𝑎𝑥           (21) 0 ≤ 𝑃𝑗,𝑡 + ∆𝑃𝑗,𝑡𝑢 − ∆𝑃𝑗,𝑡𝑑 ≤ 𝑃𝑗,𝑚𝑎𝑥           (22) [∆𝑃𝑗,𝑡𝑑 , ∆𝑃𝑗,𝑡𝑢 ] ≤ 𝑦𝑗𝑃𝑗,𝑚𝑎𝑥              (23) ∑ ∆𝑃𝑖,𝑡𝑡 = 0                 (24) ∑ (∆𝑃𝑗,𝑡𝑑 − ∆𝑃𝑗,𝑡𝑢 )𝑡 = 0              (25)  0 ≤ 𝛼 ≤ �̅�                  (26) 0 ≤ 𝛽 ≤ �̅�                  (27) 

where 𝜆𝑡 and 𝐸𝑀,𝑡 represent the MCP and energy purchased 

from the market at time 𝑡, respectively. The time interval for 

one charging scheduling period is given by ∆𝑡. The objective 

function contains the energy procurement cost and the 

incentive payments. Parameters �̅� and �̅�  are upper bounds 

for the incentive prices, which are selected as the highest MAPs 

of EV owners so as not to affect the optimality of the problem. 

Constraint (19) is the power balance constraint. Constraints 

(20) – (23) represent the battery charging rate limitations under 

the EV participation status restrictions. Constraints (24) and (25) 

ensure that EV charging demands are satisfied across the 

scheduling horizon. Constraints (26) and (27) provide 

reasonable ranges for the incentive prices to reduce the 

searching domain and ensure problem convergence. 

V. PROPOSED SOLUTION METHODOLOGY 

The proposed optimization model has bilinear terms 𝛽∆𝑃𝑗,𝑡𝑑  

from the PAU program and 𝛼𝑦𝑖  from the BO program. 

Besides, the solution process for EV charging scheduling under 



large EV fleets is challenged by the curse of dimensionality 

issue. Hence, in this section, we first provide a linear 

reformulation of the original problem, then develop an 

ADMM-AP algorithm to efficiently solve the reformulated 

problem for large EV fleets. 

A. Problem Linearization  

 The bilinear term 𝛼𝑦𝑖  is the product of a bounded 

continuous variable 𝛼 and a binary variable 𝑦𝑖. According to 

the method proposed in [34], this term can be modeled by 

introducing a new continuous variable 𝜎𝑖 and the following 

constraints: 𝛼𝑦𝑖 = 𝜎𝑖                  (28) 𝛼 − (1 − 𝑦𝑖)𝑀 ≤ 𝜎𝑖 ≤ 𝛼 + (1 − 𝑦𝑖)𝑀     (29) −𝑦𝑖𝑀 ≤ 𝜎𝑖 ≤ 𝑦𝑖𝑀              (30) 

where 𝑀 is a large enough positive constant. 

Another bilinear term 𝛽∆𝑃𝑗,𝑡𝑑  is the product of two bounded 

continuous variables 𝛽  and ∆𝑃𝑗,𝑡𝑑 . To handle this term, we 

first use the optimality condition to transform the variable ∆𝑃𝑗,𝑡𝑑  

into the product of a binary variable 𝑦𝑗,𝑡𝑑  and a constant 𝑃𝑗,𝑡𝑢𝑐 

derived in (5) – (7), then model this new term 𝛽𝑦𝑗,𝑡𝑑 𝑃𝑗,𝑡𝑢𝑐 by the 

method proposed in [34]. 

 Firstly, when ∆𝑃𝑗,𝑡𝑑 > 0, from the objective function one 

can conclude that: 𝜆𝑗,𝑜𝑢𝑡 − 𝜆𝑗,𝑖𝑛 > 𝛽               (31) 

where 𝜆𝑗,𝑜𝑢𝑡  is the market price when the load is shifted out, 

and 𝜆𝑗,𝑖𝑛 is the market price when the load is shifted in. In this 

case, the profit improvement ∆𝑃𝑟𝑜𝑓𝑖𝑡 from shifting the load ∆𝑃𝑗,𝑡𝑑  is: ∆𝑃𝑟𝑜𝑓𝑖𝑡 = ∆𝑃𝑗,𝑡𝑑 (𝜆𝑗,𝑜𝑢𝑡 − 𝜆𝑗,𝑖𝑛 − 𝛽)        (32) 

which is an increasing function of ∆𝑃𝑗,𝑡𝑑 . Hence, in the optimal 

solution, the value of ∆𝑃𝑗,𝑡𝑑  is either 0 or its maximum possible 

value 𝑃𝑗,𝑡𝑢𝑐. To this end, the continuous variable ∆𝑃𝑗,𝑡𝑑  can be 

transformed into the product of a binary variable 𝑦𝑗,𝑡𝑑  and a 

constant 𝑃𝑗,𝑡𝑢𝑐.  

 The new term 𝛽𝑦𝑗,𝑡𝑑 𝑃𝑗,𝑡𝑢𝑐  is the bilinear product of a 

bounded continuous variable 𝛽, a binary variable 𝑦𝑗,𝑡𝑑 , and a 

constant 𝑃𝑗,𝑡𝑢𝑐. Similarly, the term 𝛽𝑦𝑗,𝑡𝑑 𝑃𝑗,𝑡𝑢𝑐 can be modeled by 

introducing a new continuous variable 𝜑𝑗,𝑡𝑑  and the following 

constraints: 𝛽𝑦𝑗,𝑡𝑑 𝑃𝑗,𝑡𝑢𝑐 = 𝜑𝑗,𝑡𝑑 𝑃𝑗,𝑡𝑢𝑐             (33) 𝛽 − (1 − 𝑦𝑗,𝑡𝑑 )𝑀 ≤ 𝜑𝑗,𝑡𝑑 ≤ 𝛽 + (1 − 𝑦𝑗,𝑡𝑑 )𝑀  (34) −𝑦𝑗,𝑡𝑑 𝑀 ≤ 𝜑𝑗,𝑡𝑑 ≤ 𝑦𝑗,𝑡𝑑 𝑀            (35) 

where the bilinear term 𝛽𝑦𝑗,𝑡𝑑  is replaced by the auxiliary 

variable 𝜑𝑗,𝑡𝑑  bounded by constraints (34) and (35).  
Hence, the original problem can be reformulated as: min𝛼,𝛽,𝑦𝑖,𝑦𝑗 ,∆𝑃𝑖,𝑡,∆𝑃𝑗,𝑡𝑢 ,∆𝑃𝑗,𝑡𝑑 ,𝐸𝑀,𝑡,𝜎𝑖,𝜑𝑗,𝑡 {∑ 𝜎𝑖𝑓𝑖𝑖 + ∑ (∑ 𝜑𝑗,𝑡𝑗𝑅 + 𝜆𝑡𝐸𝑀,𝑡)𝑡 } (36) 

s.t. (18)– (35)                 (37) 

B. A Distributed Solution Algorithm 

As the numbers of price scenarios as well as EVs need to be 

large enough to obtain statistically significant results, the 

dimensional disaster in EV charging scheduling problem is 

hardly avoidable. To address this challenge, the original 

problem (36) – (37) is decomposed into a distributed form 

based on the ADMM algorithm. In the distributed problem, 

EVs are divided into different groups according to the date they 

park in the CS. Specifically, EVs that are parked on the same 

day will be clustered as a group. In the ADMM method, the 

primary problem is responsible for coordinating the optimal 

incentive prices from different groups. By using the scaled form 

of the ADMM method, the primary problem in the (𝑣 + 1)𝑡ℎ  

iteration can be written as: min𝛼 ,𝛽 ,𝑦𝑖,𝑦𝑗 {∑ 𝑦𝑖(𝛼  𝑓𝑖 − 𝐶𝑅𝑖 ,𝑣)𝑖 + ∑ 𝑦𝑗 (𝛽  ∆𝑃𝑗,𝑣𝑑 − 𝐶𝑅𝑗,𝑣)𝑗 + ∑ [(𝛼  −𝑔
𝜶𝑔𝑣)2 + (𝛽 − 𝜷𝑔𝑣 )2 + 𝝆𝑔𝑣2 ||𝛼  − 𝜶𝑔𝑣 − 𝑨𝑔𝑣||22 + 𝝆𝑔𝑣2 ||𝛽 − 𝜷𝑔𝑣 − 𝑩𝑔𝑣||22]}       

(38)                                                                              

s.t.  (2)  −  (4), (12) −  (14)            (39) ∆𝑃𝑗,𝑣𝑑 = 1𝑅 ∑ ∆𝑃𝑗,𝑡,𝑣𝑑𝑡                (40) 

𝐶𝑅𝑖,𝑣 = − 1𝑅 ∑ ∆𝑃𝑖,𝑡,𝑣𝜆𝑡  𝑡              (41) 𝐶𝑅𝑗,𝑣 = 1𝑅 ∑  (∆𝑃𝑗,𝑡,𝑣𝑑 − ∆𝑃𝑗,𝑡,𝑣𝑢 )𝜆𝑡𝑡          (42) min {𝜶𝑔𝑣} ≤ 𝛼 ≤ max {𝜶𝑔𝑣}           (43) min {𝜷𝑔𝑣 } ≤ 𝛽 ≤ max {𝜷𝑔𝑣 }           (44) 

where ∆𝑃𝑗,𝑣𝑑  is the total power reduction of the 𝑗𝑡ℎ  EV 

calculated in the 𝑣𝑡ℎ iteration. The cost reductions 𝐶𝑅𝑖,𝑣 in 

the BO program and 𝐶𝑅𝑗,𝑣  in the PAU program are also 

calculated values obtained from the scheduling results of the 

secondary problems by using Eqs (41) and (42). The optimal 

incentive price set to be coordinated is represented by (𝛼  ,𝛽 ). 

Incentive price set (𝜶𝑔𝑣 , 𝜷𝑔𝑣 ) are the optimal values of the 𝑔𝑡ℎ 

group obtained in the 𝑣𝑡ℎ  iteration. The term 𝝆𝑔𝑣  is the 

penalty for the 𝑔𝑡ℎ group in the 𝑣𝑡ℎ iteration. Terms 𝑨𝑔𝑣 

and 𝑩𝑔𝑣  are scaled dual variables in the ADMM method. The 

ranges of the coordinated optimal incentive prices are given by 

Eqs (43) and (44). The bilinear terms in (38) are handled in a 

similar way as (28) - (30). 

 Upon receiving the optimized values of ( 𝛼𝑣+1 ,𝛽𝑣+1 ) 

from the primary problem, each group re-calculates the 

incentive prices using the secondary problem that considers the 

deviation penalty from the coordinated optimal incentive prices: min𝜶𝑔 ,𝜷𝑔 ,𝑦𝑖,𝑦𝑗,∆𝑃𝑖,𝑡,∆𝑃𝑗,𝑡𝑢 ,∆𝑃𝑗,𝑡𝑑 ,𝜎𝑖,𝜗𝑗,𝑡,𝐸𝑀,𝑡  {∑ 𝜎𝑖𝑓𝑖𝑖 + ∑ (∑ 𝜗𝑗,𝑡𝑗𝑅 +𝑡
𝜆𝑡𝐸𝑀,𝑡) +  ∑ [(𝛼𝑣+1 − 𝜶𝑔 )2 + (𝛽𝑣+1 − 𝜷𝑔 )2 + 𝝆𝑔𝑣2 ||𝛼𝑣+1 −𝑔
𝜶𝑔 − 𝑨𝑔𝑣||22 + 𝝆𝑔𝑣2 ||𝛽𝑣+1 − 𝜷𝑔 − 𝑩𝑔𝑣||22]}                   (45)         

s.t.  (18) – (35)                 (46) 
where 𝜶𝑔  and 𝜷𝑔  are incentive prices to be optimized by 

group 𝑔. Notably, the penalty terms are not included in the 

secondary problems in the first iteration.  

By solving the primary and secondary problems, the scaled 

dual variables (𝑨 𝑣+1,𝑩 𝑣+1) are updated: 𝑨𝑔 𝑣+1 = 𝑨𝑔 𝑣 + 𝛼𝑣+1 − 𝜶𝑔 𝑣+1          (47) 𝑩𝑔 𝑣+1 = 𝑩𝑔 𝑣 + 𝛽𝑣+1 − 𝜷𝑔 𝑣+1          (48) 

The convergence of the problem is declared when the 

change in scaled dual variables falls below a certain criterion: 



√||𝑨 𝑣+1−𝑨 𝑣||22 + ||𝑩𝑣+1−𝑩 𝑣||22 ≤ 𝜀𝐴𝐷𝑀𝑀     (49) 

C. Adaptive Penalty Factors 

The conventional ADMM method applies the same penalty 

factors to all groups, which cannot reflect different qualities of 

the obtained incentive price sets. To accelerate the convergence 

of the solution process, an adaptive algorithm is proposed in 

this work to adjust the penalty factors at the early stages of the 

consensus optimization problem. The proposed adaptive 

algorithm assigns heavier penalties to price sets with better 

qualities to increase their significance in the coordination 

process. The quality of each price set is evaluated by 

calculating the CS’s final gain 𝑭𝑔𝑣 using that price set: 𝑭𝑔𝑣 = ∑ 𝑦𝑖(𝜶𝑔𝑣𝑓𝑖 − 𝐶𝑅𝑖,𝑣)𝑖 + ∑ 𝑦𝑗(𝜷𝑔𝑣 ∆𝑃𝑗,𝑣𝑑 − 𝐶𝑅𝑗,𝑣)𝑗   (50) 

The first and second terms represent the CS’s gains from the 
BO and PAU programs, respectively. In (50), the values of {𝜶𝑔𝑣 , 𝜷𝑔𝑣 , 𝑓𝑖 , ∆𝑃𝑗,𝑣𝑑 , 𝐶𝑅𝑖,𝑣 , 𝐶𝑅𝑗,𝑣}  are optimized results of the 

secondary problems for each group. Besides, the participation 

status {𝑦𝑖 , 𝑦𝑗} in the BO and PAU programs can be determined 

through Eqs (12) – (14). Hence, the CS’s gain under each group 
incentive price set can be obtained from a simple calculation 

process that only takes negligible computation time. 

After obtaining the qualities of the price sets, the adaptive 

weight 𝝋𝑔𝑣  of each group is acquired from (51) – (53): 𝐹𝑚𝑎𝑥𝑣 = 𝑚𝑎𝑥{𝑭𝑔𝑣 , 𝑔 ∈ 𝐺}         (51) 𝐹𝑚𝑖𝑛𝑣 = 𝑚𝑖𝑛{𝑭𝑔𝑣 , 𝑔 ∈ 𝐺}         (52) 𝝋𝑔𝑣 = 𝐹𝑔𝑣−𝐹𝑚𝑖𝑛𝑣𝐹𝑚𝑎𝑥𝑣 −𝐹𝑚𝑖𝑛𝑣                 (53) 

where 𝐹𝑚𝑎𝑥𝑣  and 𝐹𝑚𝑖𝑛𝑣  denote the CS’s maximum and 
minimum gains under different price sets in the 𝑣𝑡ℎ iteration. 

The adaptive weight 𝝋𝑔𝑣  is calculated based on the quality of 

each group by using (53). 

Denote 𝜌0 as the initial penalty factor, the penalty factors 

for different groups in each iteration can be acquired by: { 𝜌𝑔𝑣+1 = 𝜌0(1 + 𝝋𝑔𝑣 )    ∀𝑣 < 𝑣𝑚𝑎𝑥𝜌𝑔𝑣+1 = 𝜌0                     ∀𝑣 ≥ 𝑣𝑚𝑎𝑥        

(54) 
where 𝑣𝑚𝑎𝑥 is the iteration threshold, after which the adaptive 

update of the penalty factors is terminated.  

D. ADMM-AP Convergence Discussion 

In the early stages of the consensus optimization problem, 

the optimized incentive prices among different groups deviate 

hugely from each other, resulting in large quality variations. By 

using the adaptive algorithm, the qualities of different price sets 

are accounted for to accelerate the convergence. After some 

iterations, such quality differences become insignificant. Hence, 

the adaptive update of penalty factors is not needed, and the 

subsequent iterations work as the standard ADMM method to 

guarantee the convergence of the solution process.  

In this work, we propose an event-triggered mechanism to 

determine the timing 𝑣𝑚𝑎𝑥 for switching from the pre-event 

stage to the post-event stage without requiring pre-knowledge 

on the problem convergence speed. The switch between stages 

occurs when the maximum quality difference among the price 

sets falls below a given threshold: 𝐹𝑚𝑎𝑥𝑣 −𝐹𝑚𝑖𝑛𝑣𝐹𝑚𝑖𝑛𝑣 ≤ 𝜀𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒            (55) 

After the switch of stage, the adaptive update of penalty 

factors is terminated, and the solution process enters the post-

event stage for convergence. To this end, the ADMM-AP 

algorithm can be summarized as follows: 

Algorithm 1: Solution algorithm based on ADMM-AP 

1. Initialize: 𝜀𝐴𝐷𝑀𝑀 = 0.0001 , 𝜌0 = 100 ，𝜀𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 0.01  

2. While (49) is not True  

3. Obtain 𝜌𝑔𝑣+1 for each group from (50) – (55) 

4. Solve (38) – (44) and Derive (𝛼𝑣+1, 𝛽𝑣+1) 

5. Solve Problem (45) – (46) for each group and  

Derive (𝜶𝑔𝑣+1, 𝜷𝑔𝑣+1) 

6. Update 𝑨 𝑣+1 and 𝑩 𝑣+1 using (47) – (48) 

7. End While 

VI. CASE STUDY 

A. Basic Data 

The case study considers 24 operating days that are 

uniformly distributed over the year 2020. The price data for 24 

days from the Nord Pool UK day-ahead market [35] is shown 

in Fig. 4.  

 
Fig. 4. Day-ahead price data for 24 operating days. 

 

Four typical EV models displayed in Table II are selected to 

generate EV charging scenarios through the Monte-Carlo-

Simulation method introduced in [36]. For each EV, the 

charging efficiency is assumed to be 0.95 and the maximum 

SOC is 0.95 [37]. A total of 2,400 EV charging scenarios are 

generated and evenly distributed to the selected 24 operating 

days. Among the 2,400 EV charging scenarios, it is assumed 

that half of the EV owners prefer the BO program and the rest 

prefer the PAU program. In the BO program, EV owners’ 
MAPs are assumed to follow the normal distribution with mean 

and variance equal to 25% of the average energy market price. 

Since the PAU incentive is risker than the BO incentive, the 

MAPs for EV owners in the PAU program are assumed to be 

50% higher than the BO programs. The scheduling resolution 

of the CS is set to be 15 minutes [38].  

TABLE II 

EV MODEL PARAMETERS 

Model 
Tesla 

model Y 

Tesla 

model 3 

BYD    

Qin plus 

Volkswagen 

ID.4 

Capacity 66 𝑘𝑊ℎ 62 𝑘𝑊ℎ 57 𝑘𝑊ℎ 62 𝑘𝑊ℎ 

Charging rate 11.5 𝑘𝑊 11.5 𝑘𝑊 11 𝑘𝑊 11 𝑘𝑊 

B. Results and Discussions 

The potential flexibility distributions of the generated EV 

charging scenarios are displayed in Fig. 5 regarding different 

flexibility amounts and EV arrival times. The distribution of 

EV charging flexibility amount is provided in Fig. 5a, which 

shows that most EVs can provide an amount of charging 



flexibility between 30 𝑘𝑊ℎ and 45 𝑘𝑊ℎ. Given the battery 

capacities shown in Table II, it can be concluded that most of 

the EV charging demand in this work can be treated as flexible 

loads. The potential flexibility distribution regarding different 

EV arrival times is shown in Fig. 5b. The peaks in Fig. 5b 

correspond to the time windows when most EVs come and 

charge, one is from hour 8 to hour 9, and the other is between 

hours 18 and 21. Especially, the second peak covers the price 

spikes shown in Fig. 4, which makes this part of flexibility 

extremely valuable. Hence, the amount and value of EV 

charging flexibility make it promising for supporting the 

economic operation of the CS. 

 

Fig. 5. Flexibility distributions for a) different flexibility amounts and 

b) different EV arrival times. 

 

Fig. 6a displays the optimal incentive price selection results 

together with the MAP distributions. By considering the typical 

price scenarios over a year, the incentive prices that can 

maximize the CS’s benefit are selected to be 0.0114 $/𝑘𝑊ℎ 

and 0.0177 $/𝑘𝑊ℎ  in the BO and PAU programs, 

respectively. In the PAU program, all the remunerated charging 

flexibility is effective for reducing the energy procurement cost 

of the CS. However, in the BO program, the CS must pay for 

potential charging flexibility that may not be useful. Hence, the 

BO incentive price is lower than the PAU incentive price. Fig. 

6b shows the participation status of EV owners. Under the 

selected incentive prices, 44% and 46% of EV owners are 

involved in the BO and PAU programs, respectively. In total, 

90% of EV owners are incentivized to offer their EV charging 

flexibility.  

 

Fig. 6. a) EV owner MAPs and optimized incentive prices, b) 

participation results.  

 

In the case study, 1,066 EV owners are participating in the 

BO program. Because the BO program remunerates EV owners 

based on their potential charging flexibility, all the participating 

owners are paid even if their charging flexibility is not utilized 

during the charging scheduling. Thus, the average incentive 

payment is $0.42 per EV owner in the BO program. On the 

other hand, 1,113 EV owners are participating in the PAU 

program. However, since the PAU program only considers 

effective charging flexibility, some EV owners are not 

rewarded because their charging flexibility is not used during 

the charging scheduling. Consequently, only 762 EV owners 

are paid in the PAU program with an average incentive 

payment of $0.57 per EV owner, and a total of 351 EV owners 

participating in the PAU program are not rewarded at all. From 

the EV owners’ perspective, this result implies that the PAU 
program is a more risky program but with a higher average 

return. Hence, for conservative EV owners, the BO program 

can be a better choice because it offers a stable return. For risk-

seeking EV owners, the PAU program may be preferable 

because it has a higher average return. 

An important criterion to assess the incentive programs is 

the potential flexibility utilization ratio (PFUR), which can 

reflect the effectiveness of incentive programs in motivating 

the utilization of potential charging flexibility: 𝑃𝐹𝑈𝑅 = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑘𝑊ℎ)𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑘𝑊ℎ)           (56) 

In the optimization result, the PFUR for individual EVs in 

both the BO and PAU programs are displayed in Fig. 7. The 

PFUR distribution for EVs in the BO program is shown in Fig. 

7a. The number of EVs whose potential flexibility is not 

utilized at all is 134, which is in line with the participation 

status displayed in Fig. 6b. In the BO program, the PFUR for 

699 EVs reaches 100%, which implies that all their potential 

charging flexibility is utilized to reduce the energy procurement 

cost. It is also shown that the PFURs for some EVs are 

distributed between 0% and 100%, indicating that their 

potential flexibility is not fully utilized. Since utilizing the 

purchased potential flexibility will not induce extra costs to the 

CS, the only reason for this result is that some potential 

flexibility is useless in terms of reducing the CS’s energy 
procurement cost. In total, 71.05% (31,328 𝑘𝑊ℎ  out of 

44,091 𝑘𝑊ℎ) of the potential flexibility is used by the CS 

through the BO incentive program. 

Fig. 7b illustrates the PFUR distribution for EVs in the PAU 

program. Similar to the BO program, two peaks are observed at 

PFUR equals to 0% and 100%, respectively. However, the 

number of EVs whose potential flexibility is not utilized is 438, 

which exceeds the number of EVs that are not selected in the 

PAU program (87 EVs). This is because the utilization of 

charging flexibility in the PAU program will lead to extra costs. 

The utilization of charging flexibility depends on the 

competing result of the flexibility price and energy bill 

reduction. Hence, though some EVs are involved in the PAU 

program, their flexibility is not utilized because the reduced 

energy procurement cost cannot cover the incentive payment. 

In the PAU program, there are also some EVs with PFUR 

distributed between 0% and 100%. The reason for this situation 

is twofold, one is that some flexibility cannot be used to reduce 

the energy cost, and the other is that the cost of utilizing some 

flexibility is larger than the benefit. Overall, 59.06% (25,072 𝑘𝑊ℎ  out of 42,452 𝑘𝑊ℎ ) of the potential EV charging 

flexibility is deployed through the PAU incentive program. 

 



Fig. 7. PFUR distribution for individual EV owners in a) BO program 

and b) PAU program. 

 

The convergence rates of the proposed ADMM-AP and the 

conventional ADMM approaches using different numbers of 

groups are shown in Fig. 8. It can be seen that the convergence 

speed of the proposed ADMM-AP algorithm becomes more 

accelerated as the number of groups increases. This is due to 

the fact that a larger number of groups leads to larger variations 

of EV charging information and market price data among 

different groups, and hence reflecting the quality of different 

price sets becomes more important in the algorithm design.  

 

Fig. 8. Convergence rates of a) the proposed ADMM-AP algorithm 

and b) the conventional ADMM algorithm. 

 

C. Comparative Case Studies 

To demonstrate the performance of the proposed hybrid 

incentive program, we compare it with the TOU program and 

transactive control program in this subsection. In the 

comparative case studies, typical day price data from the Nord 

Pool market is used to evaluate these incentive programs. The 

flat and TOU prices [39] at the CS are presented in Fig. 9a. In 

the proposed hybrid incentive program, EV owners with MAPs 

lower than the incentive prices (i.e., 0.0114 $/𝑘𝑊ℎ in the BO 

program and 0.0177 $/𝑘𝑊ℎ in the PAU program) will be 

involved in the DRP. In the TOU program, EV owners with 

MAPs lower than the peak-flat-valley price differences will 

participate in the DRP. In the transactive control program, the 

CS determines the price signals to shift EV charging load based 

on the relationship between the load change and incentive price 

signal 𝜆𝑖𝑛𝑐 , which is illustrated in Fig. 9b [27]. The 

comparative cases are tested using 200 EV charging scenarios 

shown in Fig. 10. 

 

Fig. 9. a) Charging prices at the charging station. b) EV response curve 

in the transactive control program. 

 

Fig. 10. EV charging scenarios. 

 

The energy market price and net load change in the TOU 

program are displayed in Fig. 11, in which one can observe that 

the load is only shifted from hours between 16 and 24 to hours 

between 1 to 4 of the next day. No load shift is observed in 

other periods of the day because the charging load is shifted 

based on the fixed TOU price, which cannot accurately reflect 

the short-term market price fluctuations. Notably, in some flat-

price periods, there are both loads shifted in from higher price 

hours and loads shifted out to lower price hours, which cancel 

each other in the net load change result. Hence, the net load 

change is less than the deployed charging flexibility. 

In the TOU program, the CS’s revenue and energy bill for 

charging the EVs are $260.90 and $227.46, respectively. 

Compared to the uncontrolled charging scenario, the CS’s 

revenue and energy procurement cost have been reduced by 

$44.95 and $65.84, respectively. In total, the CS’s profit is 
increased by $20.89 (from $12.55 to $33.44). Meanwhile, by 

shifting the charging load in the TOU program, EV owners’ 
cost is reduced by $44.95.  

 

Fig. 11. Load shift results in the TOU pricing program. 

 

The net load change and optimized incentive price signals 

in the transactive control program are shown in Fig. 12. 

Compared to the load shift in the TOU program, the load 

change in the transactive control program can more accurately 

capture the market price variations. For instance, in the 

transactive control program, the load increment is more 



concentrated at hours 2 and 3, which have lower energy prices. 

Also, the transactive control program shifts loads from high-

price hours (10 to 14) to low-price hours (15 to 17), whereas 

the TOU program does not react to the price differences during 

this period.  

When the market price is high, the CS uses high incentive 

prices to shift the EV charging load. At low-price hours, to 

motivate EV owners to charge at large power, the incentive 

prices can be very low or even zero, such as hours 2 to 7.  

In the transactive control program, the CS pays $25.06 for 

utilizing the charging flexibility, which reduces the energy 

procurement cost by $57.15. In total, the CS’s profit is 

increased by $32.09 (from $12.55 to $44.64) compared to the 

uncontrolled charging scenario. For EV owners, their charging 

fee is reduced by $25.06 due to the incentive payment.   

 

Fig. 12. Load shift results in the transactive control program. 

 

The net load shift result in the proposed hybrid incentive 

program is presented in Fig. 13. In the BO program, the 

charging load is shifted from high-price hours to low-price 

hours even if the price differences are small, which can 

maximize the CS’s gain because utilizing the charging 
flexibility in the BO program will not induce extra costs. In the 

PAU program, because shifting the load can bring extra 

incentive costs, the charging load is only shifted between hours 

with large price differences (e.g., price differences between 

hours 18 to 24 and hours 2 to 3) to be profitable.  

 

Fig. 13. Load shift results in the proposed hybrid incentive program. 

 

By applying the proposed hybrid incentive program, the 

CS’s electricity bill is reduced by $91.45. The incentive 

payments in the BO and PAU programs are $37.75 and $31.11, 

respectively. Overall, the CS’s profit is increased by $22.59 

compared to the uncontrolled charging scenario. For EV 

owners, their charging fee is significantly reduced by $68.86 

from the proposed hybrid incentive program. 

The performances of the uncontrolled charging scenario and 

investigated incentive programs are all summarized in Table III. 

Among the investigated programs, the proposed hybrid 

incentive program achieves the smallest EV owners’ cost, 
which is reduced by 22.51% compared to the uncontrolled 

charging scenario (from $305.85 to $236.99). Hence, the 

proposed program is the most attractive program for EV owners. 

It also reduces 31.18% of wholesale market energy 

procurement cost for the CS (from $293.30 to $201.85), which 

is more than other programs. Among the investigated incentive 

programs, the proposed hybrid incentive program has the 

largest PFUR of EVs, which confirms that it is the most 

efficient program in encouraging the utilization of EV charging 

flexibility and makes it more attractive to the power system. As 

a simple and consistent incentive program, the controllability 

of the proposed hybrid incentive program is much better than 

the TOU program. Though the CI of the transactive control 

program is higher than the proposed hybrid incentive program, 

it has however sacrificed simplicity and consistency.  

TABLE III 

SCHEDULING RESULTS 

 CS profit 

[$] 

EV owner 

cost [$] 

Market 

bill [$] 

CI 

[$/kWh] 

PFUR 

(%) 

Uncontrolled 

charging 
12.55 305.85 293.30 0 0 

TOU 

program 
33.44 260.90 227.46 0.0183 50.25 

Transactive 

control 
44.64 280.79 236.15 0.0225 35.50 

Proposed 

program 
35.14 236.99 201.85 0.0200 64.13 

 

The CS’s profit obtained from the proposed hybrid 

incentive program is higher than the TOU program and lower 

than the transactive control program. The better profitability of 

the transactive control program comes from the adjustability of 

flexibility prices. Notably, the CS’s profits shown in Table III 

are obtained under the assumption that the numbers of EVs 

participating in the listed incentive programs are all the same. 

However, compared to the transactive control program, the 

proposed hybrid incentive program is simpler, more consistent, 

and less costly to EV owners. Hence, it is very likely that a CS 

adopting the proposed hybrid incentive program can attract 

more EVs than a CS applying the transactive control program, 

which can potentially increase the CS’s profit. 
In summary, the proposed hybrid incentive program is 

consistent and simple for EV owners to participate. Meanwhile, 

the proposed hybrid incentive program can minimize the 

potential restrictions and impacts on EV owners’ daily plans 

and charging costs. Thus, the proposed hybrid incentive 

program can be a highly attractive and practical program for 

real-world EV owners that are willing to participate in the 

DRPs. Besides, the high potential profitability feature of the 

proposed hybrid incentive program makes it also attractive to 

the CSs facing volatile electricity prices. Hence, the proposed 

hybrid incentive program has a great potential for its practical 

implementations.  



 Notably, to avoid disturbances of uncertain factors, 

deterministic price and EV charging scenarios are used in the 

case studies to compare the proposed hybrid incentive program 

with existing methods. However, uncertainties in the variable 

market price and the EV charging demand are inevitable in real-

world applications. These uncertainties may have several 

impacts on CS operations. Firstly, in the day-ahead scheduling 

stage, to consider the price and EV charging demand 

uncertainties, some uncertainty handling techniques such as 

stochastic and robust optimization approaches are required to 

determine the energy procurement in the wholesale market. 

Secondly, due to the information gap between the forecast and 

real EV charging demand, the real-time operational stage needs 

to simultaneously consider the deviation penalty and price 

differences. 

VII. CONCLUSION 

This work has proposed a novel hybrid incentive program 

for motivating EV owners to share their EV charging flexibility. 

The proposed hybrid incentive program combines the 

advantages of both the static and dynamic incentive programs, 

making it simple and consistent for EV owners, as well as 

controllable for the charging station. To determine the incentive 

prices, an optimal incentive price selection model is developed 

in this work. Because large EV fleets are involved in the 

optimization model, an improved ADMM algorithm with 

adaptive penalties is proposed to efficiently solve the incentive 

price selection problem.  

The proposed hybrid incentive program is compared with 

the TOU and transactive control programs using real-world 

price data. The numerical results confirm that the proposed 

hybrid incentive program is highly efficient in cutting down the 

CS’s energy market bill, reducing EV owners’ charging fees, 

and encouraging the utilization of EV charging flexibility. The 

proposed hybrid incentive program has superior controllability 

compared to the TOU program while maintaining simplicity 

and consistency. Though the transactive control program is 

more controllable than the proposed hybrid dynamic incentive 

program, it is more demanding for EV owners in order to 

participate. The CS’s profit is also improved considerably by 

applying the proposed hybrid incentive program. Although the 

improvement is not as significant as the transactive control 

program, the proposed hybrid incentive program is more 

attractive to EV owners, which may further increase the CS’s 
profit. 

Future works may consider the impacts of the V2G 

operation on the design of incentive programs. Also, 

competition among different CSs can be considered to assess 

the necessity of fairness in benefit distribution between the CS 

and EV owners. 

 

REFERENCES 

[1] IPCC, “Sixth Assessment Report - IPCC [online],” 2021. 
https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed 

Sep. 09, 2021). 

[2] Z. Zhang et al., “Advances in carbon capture, utilization and 
storage,” Appl. Energy, vol. 278, p. 115627, 2020. 

[3] A. M. Koufakis, E. S. Rigas, N. Bassiliades, and S. D. Ramchurn, 

“Offline and Online Electric Vehicle Charging Scheduling with V2V 
Energy Transfer,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5, 

pp. 2128–2138, 2020. 

[4] S. K. Injeti and V. K. Thunuguntla, “Optimal integration of DGs into 
radial distribution network in the presence of plug-in electric vehicles 

to minimize daily active power losses and to improve the voltage 

profile of the system using bio-inspired optimization algorithms,” 
Prot. Control Mod. Power Syst., vol. 5, no. 1, 2020. 

[5] H. Vincent Poor, Y. Shi, H. D. Tuan, A. V. Savkin, and T. Q. Duong, 

“Model predictive control for smart grids with multiple electric-

vehicle charging stations,” IEEE Trans. Smart Grid, vol. 10, no. 2, 

pp. 2127–2136, 2019. 

[6] V. Heinisch, L. Göransson, R. Erlandsson, H. Hodel, F. Johnsson, 

and M. Odenberger, “Smart electric vehicle charging strategies for 

sectoral coupling in a city energy system,” Appl. Energy, vol. 288, 

no. January, 2021. 

[7] D. B. Richardson, “Electric vehicles and the electric grid: A review 
of modeling approaches, Impacts, and renewable energy 

integration,” Renew. Sustain. Energy Rev., vol. 19, pp. 247–254, 

2013. 

[8] F. Rassaei, W. S. Soh, and K. C. Chua, “Demand Response for 
Residential Electric Vehicles with Random Usage Patterns in Smart 

Grids,” IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1367–1376, 

2015. 

[9] Y. Zheng, H. Yu, Z. Shao, and L. Jian, “Day-ahead bidding strategy 

for electric vehicle aggregator enabling multiple agent modes in 

uncertain electricity markets,” Appl. Energy, vol. 280, no. 

September, p. 115977, 2020. 

[10] A. Hajebrahimi, S. Member, and I. Kamwa, “Scenario-Wise 

Distributionally Robust Optimization for Collaborative Intermittent 

Resources and Electric Vehicle Aggregator Bidding Strategy,” IEEE 

Trans. Power Syst., vol. 35, no. 5, pp. 3706–3718, 2020. 

[11] X. Duan, Z. Hu, and Y. Song, “Bidding Strategies in Energy and 

Reserve Markets for an Aggregator of Multiple EV Fast Charging 

Stations with Battery Storage,” IEEE Trans. Intell. Transp. Syst., vol. 

22, no. 1, pp. 471–482, 2021. 

[12] M. R. Sarker, S. Member, Y. Dvorkin, S. Member, M. A. Ortega-

vazquez, and S. Member, “Optimal Participation of an Electric 
Vehicle Aggregator in Day-Ahead Energy and Reserve Markets,” 
IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3506–3515, 2016. 

[13] M. G. Vayá and G. Andersson, “Self Scheduling of Plug-In Electric 

Vehicle Aggregator to Provide Balancing Services for Wind Power,” 
IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 886–899, 2016. 

[14] M. Shafie-Khah et al., “Optimal Behavior of Electric Vehicle 
Parking Lots as Demand Response Aggregation Agents,” IEEE 

Trans. Smart Grid, vol. 7, no. 6, pp. 2654–2665, 2016. 

[15] L. Yao, W. H. Lim, and T. S. Tsai, “A Real-Time Charging Scheme 

for Demand Response in Electric Vehicle Parking Station,” IEEE 

Trans. Smart Grid, vol. 8, no. 1, pp. 52–62, 2017. 

[16] H. Chung, S. Member, W. Li, C. Yuen, and S. Member, “Electric 
Vehicle Charge Scheduling Mechanism to Maximize Cost Efficiency 

and User Convenience,” vol. 10, no. 3, pp. 3020–3030, 2019. 

[17] J. Su, T. T. Lie, and R. Zamora, “A rolling horizon scheduling of 
aggregated electric vehicles charging under the electricity exchange 

market,” Appl. Energy, vol. 275, no. July 2019, p. 115406, 2020. 

[18] A. Dubey, S. Santoso, M. P. Cloud, and M. Waclawiak, 

“Determining Time-of-Use Schedules for Electric Vehicle Loads: A 

Practical Perspective,” IEEE Power Energy Technol. Syst. J., vol. 2, 

no. 1, pp. 12–20, 2015. 

[19] G. Razeghi, L. Zhang, F. Jabbari, and E. Ramos, “Electric vehicle 
charging algorithms for coordination of the grid and distribution 

transformer levels Battery State of Charge,” Energy, vol. 113, pp. 

930–942, 2016. 

[20] Y. Song, L. Shangguan, and G. Li, “Simulation analysis of fl exible 
concession period contracts in electric vehicle charging infrastructure 

public-private-partnership ( EVCI-PPP ) projects based on time-of-

use ( TOU ) charging price strategy,” Energy, vol. 228, p. 120328, 

2021. 



[21] F. MulSheidaei and A. Ahmarinejad, “Multi-stage stochastic 

framework for energy management of virtual power plants 

considering electric vehicles and demand response programs,” Int. J. 

Electr. Power Energy Syst., vol. 120, no. December 2019, p. 106047, 

2020. 

[22] S. M. B. Sadati, J. Moshtagh, M. Shafie-khah, A. Rastgou, and J. P. 

S. Catalão, “Bi-level model for operational scheduling of a 

distribution company that supplies electric vehicle parking lots,” 
Electr. Power Syst. Res., vol. 174, no. April, p. 105875, 2019. 

[23] T. Zhao, Y. Li, X. Pan, P. Wang, and J. Zhang, “Real-Time Optimal 

Energy and Reserve Management of Electric Vehicle Fast Charging 

Station: Hierarchical Game Approach,” IEEE Trans. Smart Grid, 

vol. 9, no. 5, pp. 5357–5370, 2018. 

[24] W. Liu, S. Chen, Y. Hou, and Z. Yang, “Optimal Reserve 
Management of Electric Vehicle Aggregator: Discrete Bilevel 

Optimization Model and Exact Algorithm,” IEEE Trans. Smart Grid, 

vol. 12, no. 5, pp. 4003–4015, 2021. 

[25] C. Of and M. Island, “A Coordinated Dynamic Pricing Model for 
Electric Vehicle Charging Stations,” IEEE Trans. Transp. Electrif., 

vol. 5, no. 1, pp. 226–238, 2019. 

[26] S. Limmer and T. Rodemann, “Electrical Power and Energy Systems 
Peak load reduction through dynamic pricing for electric vehicle 

charging,” Electr. Power Energy Syst., vol. 113, no. May, pp. 117–
128, 2019. 

[27] Z. Liu, Q. Wu, K. Ma, M. Shahidehpour, Y. Xue, and S. Huang, 

“Two-Stage Optimal Scheduling of Electric Vehicle Charging Based 

on Transactive Control,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 

2948–2958, 2018. 

[28] Z. Liu, Q. Wu, M. Shahidehpour, C. Li, S. Huang, and W. Wei, 

“Transactive real-time electric vehicle charging management for 

commercial buildings with PV on-site generation,” IEEE Trans. 

Smart Grid, vol. 10, no. 5, pp. 4939–4950, 2019. 

[29] M. M. Hoque, M. Khorasany, R. Razzaghi, H. Wang, and M. Jalili, 

“Transactive Coordination of Electric Vehicles with Voltage Control 
in Distribution Networks,” IEEE Trans. Sustain. Energy, vol. 13, no. 

1, pp. 391–402, 2021. 

[30] Z. Zhou, B. Wang, Y. Guo, and Y. Zhang, “Blockchain and 

Computational Intelligence Inspired Incentive-Compatible Demand 

Response in Internet of Electric Vehicles,” IEEE Trans. Emerg. Top. 

Comput. Intell., vol. 3, no. 3, pp. 205–216, 2019. 

[31] T. U. Solanke, V. K. Ramachandaramurthy, J. Y. Yong, J. Pasupuleti, 

P. Kasinathan, and A. Rajagopalan, “A review of strategic charging–
discharging control of grid-connected electric vehicles,” J. Energy 

Storage, vol. 28, no. November 2019, p. 101193, 2020. 

[32] Y. Zheng, S. Niu, Y. Shang, Z. Shao, and L. Jian, “Integrating plug-

in electric vehicles into power grids: A comprehensive review on 

power interaction mode, scheduling methodology and mathematical 

foundation,” Renew. Sustain. Energy Rev., vol. 112, no. May, pp. 

424–439, 2019. 

[33] J. Jin and Y. Xu, “Optimal Policy Characterization Enhanced Actor-

Critic Approach for Electric Vehicle Charging Scheduling in a Power 

Distribution Network,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 

1416–1428, 2021. 

[34] M. Shabanzadeh, M. K. Sheikh-El-Eslami, and M. R. Haghifam, “An 
interactive cooperation model for neighboring virtual power plants,” 
Appl. Energy, vol. 200, pp. 273–289, 2017. 

[35] “N2EX Day Ahead Auction Prices [online].” 
https://www.nordpoolgroup.com/Market-data1/GB/Auction-

prices/UK/Hourly/?view=table (accessed Mar. 07, 2021). 

[36] J. Su, T. T. Lie, and R. Zamora, “Modelling of large-scale electric 

vehicles charging demand: A New Zealand case study,” Electr. 

Power Syst. Res., vol. 167, no. June 2018, pp. 171–182, 2019. 

[37] H. Wang, M. Shi, P. Xie, Q. Dong, and Y. Jia, “Optimal operating 
regime of an electric vehicle aggregator considering reserve 

provision,” Energy Reports, vol. 8, pp. 353–362, 2022. 

[38] C. B. Saner, A. Trivedi, and D. Srinivasan, “A Cooperative 
Hierarchical Multi-Agent System for EV Charging Scheduling in 

Presence of Multiple Charging Stations,” IEEE Trans. Smart Grid, 

vol. 3053, no. c, pp. 1–1, 2022. 

[39] “Green Energy UK [online],” TIDE: Take control of your energy 

bills the smart way. https://www.greenenergyuk.com/tideabout 

(accessed Feb. 07, 2022). 

 
Han Wang (S’20) received the B.Sc. degree in New 
Energy Science and Engineering from Chinese 

University of Hong Kong (Shenzhen), China, in 2019. 

He is currently a joint PhD candidate with Southern 

University of Science and Technology, China, and The 

University of Leeds, UK. His research interests include 

economic virtual power plant operation, multi-energy 

systems, and electric vehicle charging scheduling.  

 

Youwei Jia (S’11, M’15) received the B.Eng and 
Ph.D degrees from Sichuan University, China, in 

2011, and The Hong Kong Polytechnic University, 

Hong Kong, in 2015, respectively. From 2015 to 

2018, he was a postdoctoral fellow at The Hong Kong 

Polytechnic University. He is currently an Assistant 

Professor with the Department of Electrical and 

Electronic Engineering, University Key Laboratory 

of Advanced Wireless Communication of 

Guangdong Province and Shenzhen Key Laboratory 

of Electrical Direct Drive Technology, Southern University of Science and 

Technology, Shenzhen, China.  

His research interests include microgrid, renewable energy modeling and 

control, power system security analysis, complex network and artificial 

intelligence in power engineering. 

 

Mengge Shi (S’22) received the B.Eng and M.Eng 

degrees from Changsha University of Science and 

Technology, China, in 2019, and Southern University 

of Science and Technology, China, in 2022, 

respectively. She is currently a Ph.D candidate with 

Southern University of Science and Technology, 

China. Her research interests include integrated 

energy system energy management, smart buildings, 

and electric vehicle charging scheduling.  

 

 

Peng Xie (M’19) received the Ph.D. degree in 

electrical engineering from the South China 

University of Technology, Guangzhou, China, in 

2019. He is currently a postdoctoral fellow with the 

Department of Electrical and Electronic 

Engineering, Southern University of Science and 

Technology, Shenzhen, China. His current research 

interests include smart microgrid planning and 

operation, power system uncertainty analysis and 

modeling, integrated energy systems, and 

blockchain technology in energy trading.  

 

 

Chun Sing Lai (S’11, M’19, SM’20) received the 
B.Eng. (First Class Hons.) in electrical and 

electronic engineering from Brunel University 

London, London, UK, in 2013, and the D.Phil. 

degree in engineering science from the University of 

Oxford, Oxford, UK, in 2019. He is currently a 

Lecturer with the Department of Electronic and 

Electrical Engineering, Brunel University London. 

From 2018 to 2020, he was an UK Engineering and 

Physical Sciences Research Council Research 

Fellow with the School of Civil Engineering, 

University of Leeds, Leeds, UK.  



His current research interests are in power system optimization and data 

analytics. Dr. Lai was the Publications Co-Chair for both 2020 and 2021 IEEE 

International Smart Cities Conferences. He is the Vice-Chair of the IEEE Smart 

Cities Publications Committee and Associate Editor for IET Energy 

Conversion and Economics. He is the Working Group Chair for IEEE P2814 

Standard; Associate Vice President for Systems Science and Engineering of the 

IEEE Systems, Man, and Cybernetics Society (IEEE/SMCS); Chair of the 

IEEE SMC Intelligent Power and Energy Systems Technical Committee. He is 

an IET Member and a Chartered Engineer.  

 

Kang Li (M’05–SM’11) received the B.Sc. degree in 
Industrial Automation from Xiangtan University, 

Hunan, China, in 1989, the M.Sc. degree in Control 

Theory and Applications from Harbin Institute of 

Technology, Harbin, China, in 1992, and the Ph.D. 

degree in Control Theory and Applications from 

Shanghai Jiaotong University, Shanghai, China, in 

1995. He also received D.Sc. degree in Engineering 

from Queen’s University Belfast, UK, in 2015. 
Between 1995 and 2002, he worked at Shanghai 

Jiaotong University, Delft University of Technology 

and Queen’s University Belfast as a research fellow. Between 2002 and 2018, 
he was a Lecturer (2002), a Senior Lecturer (2007), a Reader (2009) and a Chair 

Professor (2011) with the School of Electronics, Electrical Engineering and 

Computer Science, Queen’s University Belfast, Belfast, U.K. He currently 
holds the Chair of Smart Energy Systems at the University of Leeds, UK. His 

research interests cover nonlinear system modelling, identification, and control, 

and machine learning, with substantial applications to energy and power 

systems, smart grid, transport decarbonization, and energy management in 

energy intensive manufacturing processes. He has authored/co-authored over 

200 journal publications and edited/co-edited 18 conference proceedings, 

winning over 20 prizes and awards, including a recent Springer Nature ‘China 
New Development Award’ in 2019 in recognition of the ‘exceptional 
contributions to the delivery of the UN Sustainable Development Goals’.Dr Li 
was the Chair of the IEEE UKRI Control and Communication Ireland chapter, 

the Secretary of the IEEE UK & Ireland Section. He is also a visiting professor 

of Shanghai Jiaotong University, Southeast University, Tianjin University, 

Shanghai University and Xiangtan University. 
 


