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We consider the use of sparsity-promoting norms in obtaining localised forcing9

structures from resolvent analysis. By formulating the optimal forcing prob-10

lem as a Riemannian optimisation, we are able to maximise cost functionals11

whilst maintaining a unit-energy forcing. Taking the cost functional to be the12

energy norm of the driven response results in a traditional resolvent analysis13

and is solvable by a singular value decomposition (SVD). By modifying this14

cost functional with the L1-norm, we target spatially localised structures that15

provide an efficient amplification in the energy of the response. We showcase this16

optimisation procedure on two flows; plane Poiseuille flow at a Reynolds number17

of Re = 4000 and turbulent flow past an NACA0012 aerofoil at Re = 23000. In18

both cases, the optimisation yields sparse forcing modes that maintain important19

features of the structures arising from an SVD in order to provide a gain in energy.20

These results showcase the benefits of utilising a sparsity-promoting resolvent21

formulation to uncover sparse forcings, specifically with a view to using them as22

actuation locations for flow control.23

1. Introduction24

Resolvent analysis is a framework in which harmonic forcings that provide maxi-25

mal amplification in their harmonic response can be determined on a frequency-26

by-frequency basis (Trefethen et al. 1993; Farrell & Ioannou 1993). By sweeping27

through frequencies, structural mechanisms that provide efficient means of flow28

amplification, as well as effective frequencies at which to provide such forcings,29

can be identified. While the original resolvent analysis focused on perturbation30

dynamics about steady states, recent studies have extended the analysis to system31

dynamics about the mean flow with emphasis on examining the self-sustaining32

fluctuations that are characteristic of turbulent flows (McKeon & Sharma 2010).33

† Email address for correspondence: c.s.skene@leeds.ac.uk
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UK
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With the resolvent analysis being able to reveal the input-output relationship34

with respect to the chosen base state (Jovanović & Bamieh 2005), it naturally35

serves as a valuable tool to design flow control techniques. Past studies including36

Luhar et al. (2014), Yeh & Taira (2019), Toedtli et al. (2019), and Liu et al. (2021)37

have demonstrated that physical insights revealed from resolvent analysis provide38

valuable guidance of developing effective and efficient actuation strategies.39

Traditionally, modal analysis techniques for fluid flows (Taira et al. 2017,40

2020) have been founded on L2-based norms, which can lead to global spatial41

structures. For the resolvent analysis, this translates to having forcing modes42

that are spatially supported over a large region. It should however be realised43

that actuation inputs cannot be applied over a large spatial region in practical44

engineering flow control settings. In general, flow control inputs can only be intro-45

duced as localised actuation inputs. To address this point, we consider sparsity-46

promoting approaches to specifically target resolvent forcing modes that have47

spatially compact support, i.e., are spatially sparse. We also note that sparsity-48

promoting techniques may also help identify appropriate variables through which49

control inputs can be added to the flow for enhanced amplification. This piece50

of information is important in selecting the appropriate type of actuators to51

introduce control input to the flow field (Cattafesta & Sheplak 2011).52

To sparsify the resolvent forcing mode, we adopt a similar approach to Foures53

et al. (2013), who used alternative norms for studying transient growth in plane54

Poiseuille flow. In their work, transient growth analysis has been treated as a55

gradient-based optimisation problem, where the goal is to find the initial condition56

that has the most growth as measured by an appropriate norm. Choosing the L2-57

norm leads to the usual transient growth analysis (Trefethen et al. 1993) that can58

be solved using a singular value decomposition. However, choosing an alternative59

norm can tune the analysis to reveal different mechanisms which would be sub-60

optimal in terms of the L2-norm.61

Foures et al. (2013) found more localised transient growth mechanisms using62

the infinity-norm, i.e., by measuring the norm of the response by its maximum63

value rather than energy. The result of this is that the identified initial conditions64

are spatially localised in order to achieve responses that are focused around local65

‘hot spots.’ Further to this, the non-convex nature of this optimisation problem66

means that there exist different branches of optimal initial conditions, with some67

representing local maximums of the cost functional. Physically, these localisations68

manifested themselves in the form of initial conditions that focused either in the69

middle of the channel or towards the walls.70

Following this approach, our study considers resolvent analysis as an opti-71

misation problem where forcing modes are sought that maximise a prescribed72

cost functional. In order to obtain spatially sparse forcing modes, we propose73

a gradient-based algorithm that maximises the energy of the output whilst74

minimising the L1-norm of the forcing, which is also constrained to have unit75

energy. To provide an initial assessment of our proposed method we consider two76

examples. Firstly, we consider the same plane Poiseuille setup as in Foures et al.77

(2013), allowing us to qualitatively assess the differences between localisation78

strategies for initial conditions and for forced problems. Secondly, we consider79

turbulent flow past an aerofoil using the same mean-flow as Yeh & Taira (2019),80

providing an assessment of the method in a higher Reynolds number, turbulent81

flow.82

The structure of the paper is as follows. Section 2 outlines the mathematical83
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formulation of the paper and contains an introduction to the resolvent operator,84

a background on Riemannian optimisation and how we utilise it to find optimal,85

sparse resolvent modes, and a discussion of wavemakers in the context of a86

resolvent analysis. In section 3 we discuss the numerical setup, with the results87

subsequently being presented in section 4. Conclusions are offered in section 5.88

2. Formulation89

2.1. The resolvent operator90

Let us consider the Navier–Stokes equations in the general, spatially discretised91

form92

G
dq

dt
= N (q), (2.1)93

where q is the spatially discretized state vector, and N represents the right-94

hand side of the unforced Navier–Stokes equations. Including the mass-matrix G95

in equation (2.1) means that this form could represent either the compressible96

Navier–Stokes equations or the incompressible equations where there is no time-97

derivative in the continuity equation. By linearising this equation about a base98

flow q0, we can write the system in input-output form as99

G
dq

dt
= Lq

0
q + Bf , (2.2)100

y = Cq, (2.3)101

where Lq
0
is the linearised Navier–Stokes operator (Jeun et al. 2016). The matrix102

B allows for the introduced forcing f (input) to be windowed in space or restricted103

to specific equations or state variables. In an analogous manner, the matrix C104

allows for a similar windowing to be applied to the output y.105

The relationship between harmonic inputs and outputs with frequency ω can106

be obtained by Laplace transforming the input-output system in time, giving the107

relation108

ŷ = C(−iωG − Lq
0
)−1

Bf̂ . (2.4)109

Through this equation, the resolvent operator is defined via Hq
0
≡ C(−iωG −110

Lq
0
)−1B. The form of equation (2.4) shows that the resolvent operator is equiva-111

lent to a transfer function which maps the forcing to its time-asymptotic response.112

Before we discuss the meaning of the resolvent in fluid dynamics it is worth113

considering the Laplace variable ω. If the operator Lq
0
is stable then ω is real and114

(2.4) is obtainable via the Fourier transform. However, if Lq
0
is unstable then more115

care is needed. Indeed, for unstable Lq
0
the time-asymptotic response is not given116

via (2.4) and is instead a combination of the exponentially growing disturbance117

given by the most unstable eigenvector and the forced response given by the118

resolvent. In order to separate these two mechanisms a complex value for ω can119

be used leading to the concept of a time-discounted resolvent analysis (Jovanović120

2004). Choosing complex values for ω means that the imaginary part can be121

chosen such that the forced response ‘rises above’ the exponentially growing122

disturbance due to the unstable nature of Lq
0
, allowing for the forced dynamics123

to be probed (see Yeh et al. (2020) for more details).124

In the context of fluid dynamics, the resolvent can be interpreted in two main125

ways. Firstly, choosing q0 to be a steady solution to the unforced Navier–Stokes126

equations leads to a non-normal stability study of the flow. In this manner, the127
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resolvent identifies forcing structures that lead to particularly efficient amplifi-128

cation in the dynamics despite the stable nature of the flow (Trefethen et al.129

1993). Secondly, using a time-averaged mean-flow for q0 leads to the resolvent130

formulation of turbulence (McKeon & Sharma 2010). The resolvent in this131

instance can be used to identify the coherent structures that arise via disturbances132

caused by the non-linear terms.133

For both steady base-flows and time-averaged mean-flows, the resolvent pro-134

vides critical insights into how forcings can cause an amplification in the dynam-135

ics. This amplification can occur both from resonant frequencies, and also from136

particularly effective structural mechanisms. Whilst one could choose a variety of137

forcings f̂ at each frequency to determine the most effective structures, it is more138

efficient to directly solve for the optimal forcing. This can be mathematically139

formulated as140

f opt = arg max
f

‖y‖Wq

‖f‖Wf

, (2.5)141

where the norms are defined as ‖a‖2
W

= aHWa with W being a positive definite142

weight matrix. We allow for the weight matrix for the forcing (Wf ) and response143

(Wq) to be different. These matrices are problem dependent, and are chosen so144

that the norms represent appropriate measures of the energy (see sections 3.1 and145

3.2 for examples). The cost functional in this case is the gain. To link the weighted146

norms to the two norm, it is useful to also consider the Cholesky decomposition147

W = MHM. The optimal forcing has the corresponding output ỹopt = Hf opt with148

the amount of amplification being measured by the gain σ = ‖ỹopt‖Wq
/‖f opt‖Wf

.149

This problem can be solved by taking the SVD of MqHM
−1
f , whose maximum150

singular triplet is (σ,Mqyopt,Mff opt).151

While a resolvent analysis in this manner can provide useful information about152

frequencies and forcing structures that can provide a large amplification, and153

therefore identify good candidates for flow control, the forcing structures are often154

global. This means that implementing them in a practical situation is infeasible.155

In the present study, we present an approach to finding sparse (spatially compact)156

resolvent forcings that induce large amplifications in the underlying dynamics. In157

this manner, particularly sensitive spatial locations in the flow field are identified,158

providing a guide for effective and efficient actuation.159

2.2. Sparsification via Riemannian optimisation160

To seek a spatially sparse resolvent forcing mode, we first generalise the optimal161

forcing problem. We start by realising that finding the greatest singular value of162

the resolvent matrix is equivalent to maximising the gain163

σ =
‖Hf‖2

Wq

‖f‖2
Wf

. (2.6)164

Therefore, instead of carrying out an SVD, we could instead maximise the gain165

via a gradient ascent algorithm. It is useful to phrase this optimisation as follows;166

maximise the gain167

σ = ‖Hf‖2Wq
, (2.7)168

where the forcing is confined to the manifold given by the constraint ‖f‖2
Wf

= 1.169

This is an equivalent problem to (2.6) because the resolvent is linear and hence170

Focus on Fluids articles must not exceed this page length
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Rfn
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∇fn
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σ(L2)

α grad σ(L2)
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M

Figure 1: A sketch illustrating the concept of Riemannian optimisation. First,
the Euclidean gradient ∇fn

M
σ(L2) is found from the vector fn

M
that is situated

on the hypersphere S. This vector is then mapped to the tangent space Tfn

M
S

via the projection Projfn

M

. Next, the Riemannian gradient is extended along the

tangent space by the step-size α. Finally, we map this gradient back to the
manifold via the retraction Rfn

M
, yielding the updated forcing vector fn+1

M
. For

varying values of α the retraction traces out a smooth curve over the manifold,
displayed as a dotted line. The link between α and θ is also shown.

will produce the same gain defined by (2.6), if we choose the forcing to have a171

unit-energy norm. In effect, by constraining our forcing to this manifold, we are172

ensuring that we search for the maximum amplification in dynamics with the173

forcing having the same energy budget.174

Whilst we could conduct an unconstrained optimisation by enforcing ‖f‖2
Wf

= 1175

with a Lagrange multiplier (Pringle et al. 2012), we instead take account of this176

constraint directly in the update step. This results in a similar approach to that177

of Foures et al. (2013), where a geometric approach was used to ensure that the178

unit-norm condition is satisfied when stepping in the search direction. In general,179

carrying out an optimisation where the input is constrained to a manifold is180

known as Riemannian optimisation (Absil et al. 2007).181

Let us first discuss the optimisation problem considered thus far. We seek to182

maximise the gain183

σ(L2) = ‖MqHM
−1
f Mff‖2, (2.8)184

subject to ‖Mff‖2 = 1. By expressing the problem in this form, we have185

reformulated the problem in terms of the L2-norm, and hence we are optimising186

with respect to the vector fM = Mff , which we constrain to have unit L2-187

norm. The manifold for this problem then becomes the complex-hypersphere188

S = {y | yHy = 1}.189

For an unconstrained optimisation, we generally work with the Euclidean190
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gradient191

∇f
M
σ(L2) =

∂σ(L2)

∂fM

. (2.9)192

By stepping in the direction of the conjugate of this gradient, we would be193

increasing the value of σ(L2), assuming that we use a sufficiently small step size194

for which a linear approximation is appropriate. The problem with this approach195

is that stepping in such a direction would most likely result in a vector that is no196

longer on the manifold.197

To carry out a gradient descent on the hypersphere, we must therefore define198

the gradients appropriately. Riemannian optimisation will not work directly199

with the Euclidean gradient, but instead all gradients must be tangent to the200

hypersphere at the evaluation points. The set of all vectors tangent to the201

manifold at a point x is known as the tangent space TxS, with the set of all202

tangent spaces being referred to as the tangent bundle Tx =
∑

x∈S
TxS (see203

figure 1 which schematically shows the Riemannian optimisation procedure). For204

the hypersphere, the Riemannian gradient can be written as205

grad σ(L2)(fM) =
(

1− f
H
MfM

)

∇f
M
σ(L2) = ProjfM

(

∇fM
σ(L2)

)

, (2.10)206

where the function Proj is the projection that links the Riemannian gradient to207

the Euclidean one.208

Now that we have defined appropriate gradients, we must also define how to209

step in the direction of steepest ascent. For the unconstrained optimisation, we210

may simply add a scalar multiple (the step size) of this gradient onto our current211

value of the forcing. However, for the Riemannian optimisation, this will result212

in a vector that no longer falls on the manifold, as noted above. The equivalent213

procedure in this case is the notion of a retraction. A retraction is a mapping214

Rx(ξ) : TxS → S such that Rx(0) = x and DRx(0) = idTxS . In other words,215

a retraction maps vectors tangent to the manifold at x to other vectors on the216

manifold such that for ξ = 0 it maps x to itself, and that the derivative of the217

mapping at ξ = 0 is the identity. For the hypersphere, we have the retraction218

Rx(ξ) =
x+ ξ

‖x+ ξ‖ . (2.11)219

Once the gradient is found, we can then update the forcing using the map220

RfM
(α grad σ(L2)(fM)), where α denotes the step size. By writing cos(θ) =221

1/
√
1 + α2, we can also express the update step as222

f
n+1
M = Rfn

M
(α gradσ(L2)(fn

M)) = cos(θ)fn
M + sin(θ) gradσ(L2)(fn

M), (2.12)223

which is exactly the geometric form used by Foures et al. (2013). Note that224

we have described a steepest ascent approach here. However many alterna-225

tive gradient-based optimisation algorithms, such as the conjugate gradient and226

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms, are applicable to Rie-227

mannian optimisation with faster convergence (Boumal & Absil 2015; Huang228

et al. 2016).229

The main advantage of phrasing the optimal forcing-output problem in this230

way is its generality. Whilst we have shown how we can obtain the same result as231

the SVD (and it is actually possible to get the higher-order singular values in this232

manner by considering a different manifold), we are free to change how we define233
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y

x

(a) The unit L2 norm (circle) and L1

norm (diamond) with respect to the
coordinate system (x, y).

y

x

η

ξ

θ

(b) The L2 norm (green-dashed circle)
and L1 norm (green-dashed diamond)
with respect to the coordinate system

(ξ, η).

Figure 2: Sketches of the L2- and L1-norms. The effect of a coordinate rotation
on the norms is also demonstrated.

the gain. The SVD can only find the gain in the L2-norm sense. This means that234

the input is measured by an energy norm, leading to the global structures seen235

in many studies. In order to introduce sparsification, we consider the use of the236

1-norm.237

A sketch of the unit L2- and L1-norms for a vector (x, y) in R
2 is presented in238

figure 2a. The L2-norm takes the form of a circle, whereas the L1-norm yields a239

regular diamond inscribed within this circle. Note that the unit L1-norm touches240

the unit L2-norm at the coordinate axes. This indicates that the L1-norm for all241

vectors with unit L2-norm yields its smallest value for sparse vectors, i.e., vectors242

(x, y) with either x or y equal to zero. Indeed, if the square touched the circle243

at another location (x0, y0) with x0 6= 0 and y0 6= 0 then the L2-norm would be244

unity whereas the L1-norm would have a value of |x0|+|y0| > 1. Hence, optimising245

over the space of unit-norm forcings, whilst penalising the L1 norm, will push the246

forcing vector, and hence its structure, towards more locally supported structures.247

One important consideration when using an alternative norm, such as the L1-248

norm, is illustrated by figure 2b. Here we have again shown the unit L2- and249

L1-norms, but this time for the coordinate system (η, ξ) which is obtained via250

a rotation of the coordinate system (x, y) by an angle θ. In this new coordi-251

nate system, the L2-norm still represents a circle, which is invariant under this252

transformation. However, the unit L1-norm is affected, and its square shape is253

rotated by the angle θ. This means that in this new coordinate system the sparse254

vectors, where the square touches the circle, are different to those of the original255

coordinate system (x, y). In other words, what is considered sparse is completely256

defined by how we choose to represent our vectors. In practise, we must be careful257

when choosing the vector of which we take the L1-norm. We therefore choose258

to take the L1-norm of a vector that leaves the L2-norm unchanged, yet has259

appropriate axes for best defining the sparsity we aim to achieve. In terms of260
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resolvent analysis, this transformation is used to maintain the physical relevance261

of the sparsification. Specific examples are described in sections 3.1 and 3.2.262

Based on the discussion of the previous two paragraphs, we seek to maximise263

the new gain σ(L1) defined by264

σ(L1) =
σ(L2)

‖T (fM)‖1
=

‖MqHM
−1
f fM‖2

‖T (fM)‖1
, (2.13)265

still subject to the forcing fM having a unit-energy norm. The transformation266

T in the denominator is a transformation of the vector fM to another vector.267

Hence, the vector in the denominator need not be equal to the forcing vector268

fM as, based on the discussion of the previous paragraph, this may not be269

physically relevant. However, by ensuring ‖T (fM)‖2 = ‖fM‖2, we maintain the270

geometric interpretation of sparsity illustrated by figure 2a, albeit in a much271

higher dimensional space. By dividing the usual gain by the 1-norm of the vector272

T (fM), we are in effect promoting sparsity, with sparsity defined as a vector273

T (fM) with a minimal number of non-zero entries. Optimising the gain in this274

form will seek a compromise between providing a large gain in energy whilst275

ensuring the spatial sparsity of the forcing. Indeed, the maximal nature of σ(L1)
276

means that obtaining a response with larger energy requires a forcing structure277

that is less sparse. Likewise, making the forcing more sparse leads to a less278

energetic response.279

As in the study of Foures et al. (2013), who considered a similar optimisation280

problem for localising flow structures obtained in transient growth studies, our281

cost functional is non-convex. This means that any solution to the optimisation282

problem is only guaranteed to be a local, rather than global, maximum of the283

cost functional. In the case of transient growth this led to multiple branches284

of solutions being found during the optimisation, which could be discovered285

by running the problem with multiple starting guesses for the gradient-based286

optimisation. However, despite running multiple instances of each optimisation287

with different initial guesses in our following examples, no differences in the288

solution could be found apart from symmetries of the flow which are to be289

expected. Whist this does not confirm that our results are truly the global290

optimum, it does highlight a difference between localising forcings for driven291

versus initial condition based studies.292

Another important factor is the realisation that the L1-norm is notoriously293

hard to optimise due to its non-smoothness near the origin. Intuitively, we can294

visualise the problem by considering the unconstrained optimisation problem of295

minimising the L1-norm of a scalar a. Using our gradient based approach, this296

amounts to stepping in the direction of steepest descent, which for our simple297

example is the sign of a. No matter how near or far we are to the optimal value298

of a = 0, this gradient will have the same magnitude. This means that we will299

continuously step over the optimal value, unless the step-size is perfect, leading300

to zig-zagging and ultimately causing the algorithm to converge rather slowly.301

To alleviate this behavior we replace the L1-norm with a smooth approximation,302

namely l1,δ(q) = hδ(q)/δ where hδ(q) is the pseudo-Huber norm (Bube & Langan303

1997; Bube & Nemeth 2007)304

hδ(q) =
∑

j

δ2

(
√

1 +
|qj|2
δ2

− 1

)

. (2.14)305
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This pseudo-Huber norm has the property that it approximates the L1-norm for306

small δ and is completely smooth. Therefore, in order to achieve convergence,307

we will not optimise σ(L1) directly but perform a series of optimisations for the308

quantity309

σ
(L1)
δ =

‖MqHM
−1
f fM‖2

l1,δ(T (fM))
, (2.15)310

for decreasing values of δ. By using the optimal forcing obtained from an optimi-311

sation for the preceding one with a lower value of δ, we are able to more robustly312

achieve a converged optimisation for a sufficiently small δ such that our norm313

(2.14) is an appropriate approximation for the true L1-norm.314

Before concluding this section, it is important to note that our choice of cost315

functional is not unique. Indeed, other cost functionals such as σ(L1) = σ(L2) −316

µ‖T (fM)‖1 can also lead to sparse forcing modes for appropriate choices of µ.317

However, the fact that unit-norm forcings can lead to gains in energy many orders318

of magnitude larger than that of the forcing makes the choice of µ, which must319

balance the L2-based gain against the L1-based forcing, a difficult challenge.320

This is further complicated by the strong dependence of the gain on the forcing321

frequency, making a universally good way of choosing µ hard to determine. In322

our proposed cost functional there is no such parameter to choose, meaning that323

it can easily be applied to different frequencies and base-flows without change.324

Hence, we continue with it for the rest of the study.325

2.3. Resolvent wavemaker326

One concept that we use in our subsequent analysis is that of structural sensitivity327

and the wavemaker (Giannetti & Luchini 2007). The wavemaker has its origin328

in global stability analysis and provides a way to highlight regions in which flow329

field changes result in changes to global modes. Specifically, the wavemaker is the330

structural sensitivity to a localised flow feedback. To obtain the wavemaker, we331

consider the eigenvalue problem Lx = λGx. This eigenvalue problem could arise,332

for instance, as a global stability problem, in which case x would be the global333

mode, with the corresponding eigenvalue λ giving its frequency and growth rate.334

It can be shown (see the review of Schmid & Brandt (2014) for example) that to335

first order, a perturbation to the eigenvalue δλ for a perturbation in the matrix336

δL is given via337

δλ =
〈x†, δLx〉
〈x†,Gx〉 , (2.16)338

where x† is the solution to the adjoint eigenvalue problem LHx† = λ̄GHx†. The339

wavemaker is then obtained by specifying δL = I and instead taking the element-340

wise, or Hadamard (⊙), product.341

λ =
x̄† ⊙ x

〈x†,Gx〉 . (2.17)342

In this way, the wavemaker λ can then be thought of as a vector-field λ(x, y) =343

(λu, λv, λw) whose components represent what changes to the eigenvalue occur344

from localised feedback at each location and state-component in the flow field.345

We quickly note that there are a few ways in which the wavemaker could be346

perceived. Whilst we have stayed within a discrete setting Giannetti & Luchini347

(2007) present the wavemaker in a continuous formulation. This gives the main348
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difference that their wavemaker is a scalar field which is defined pointwise via349

λ(x, y) = ‖x†(x, y)‖‖x(x, y)‖. Hence, their wavemaker, by the Cauchy-Schwarz350

inequality, shows the maximum change to the eigenvalue that can be achieved via351

localised feedback at each spatial location. Conversely, the wavemaker presented352

by Schmid & Brandt (2014) is more easily related to ours via λ(x, y) = λu +353

λv + λw. In this manner, they obtain a complex-valued wavemaker whose real354

and imaginary parts show the individual changes to the real and imaginary parts355

of the eigenvalue. Additionally, the sign of these changes is retained, allowing356

for the direction of the eigenvalue perturbation to be determined. However, by357

keeping the values of the flow-field separate, our wavemaker definition is strongly358

related to that of Paladini et al. (2019), who introduce windowing matrices to359

allow for the selection of specific physical components in the resulting wavemaker.360

Whilst they use these matrices to isolate the contribution of the momentum to the361

wavemaker, we instead do this procedure for each separate velocity component.362

This means that for each spatial location, our wavemaker tells us how a specific363

eigenvalue will move for localised feedback restricted to each component of the364

state-vector.365

Whilst the previous paragraph talked about wavemakers in terms of an eigen-366

value problem, it can also be directly formulated for an SVD-based resolvent367

analysis (Qadri & Schmid 2017). Indeed, by realising that taking the SVD of the368

matrix K = MqHM
−1
f is equivalent to taking the eigenvalues of the matrix KHK ,369

the same procedure that yields (2.16) can be applied, resulting in370

δσ = σ2Real
(

〈f , δLq〉Wf

)

, (2.18)371

where L stands for the linearised Navier–Stokes operator (Fosas de Pando et al.372

2014; Fosas de Pando & Schmid 2017; Qadri & Schmid 2017). Again, taking373

δL = I and using the Hadamard product yields374

σ = σ2Real
(

f̄ ⊙ Wfq
)

. (2.19)375

The resolvent wavemaker σ is then analogous to the eigenvalue-based wavemaker,376

i.e., for localised feedback at each spatial location and component of the state-377

vector, the resolvent wavemaker will indicate how the singular value will be378

perturbed.379

An example of the wavemaker and resolvent wavemaker is shown for cylinder380

flow in figure 3. It is important to note that for the eigenvalue-based wavemaker381

the frequency is set by the eigenvalues. However, our definition of the resolvent382

wavemaker allows any frequency to be specified. Therefore, we concentrate on383

St = 0.162, which is the frequency at which the most unstable eigenvalue384

is found. We observe that these wavemakers have similar structures but with385

different gains. The fact that they have similar structures is not surprising, since386

the resolvent forcing and response modes are qualitatively similar to the direct387

and adjoint eigenvectors, respectively. However, the signs of the structures are388

often different. This indicates that a localised feedback affects the eigenvalue389

perturbation differently from the singular value perturbation, highlighting the390

importance of formulating a resolvent wavemaker in order to quantify the effect391

of localised feedback for resolvent analyses.392

Rapids articles must not exceed this page length
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(a) Wavemaker (real part of the
u-component)

(b) Wavemaker (real part of the
v-component).

(c) Resolvent wavemaker (u-component)
at St = 0.162.

(d) Resolvent wavemaker (v-component)
at St = 0.162.

Figure 3: The eigenvalue-based wavemakers and resolvent wavemakers for
cylinder flow at Re = 100 shown for illustration. Computations performed with

the immersed boundary projection method ibmos (Fosas de Pando 2020).

3. Numerical setup393

This section describes the numerical setup for our flow examples. In addition to394

the details given in this section, all Riemannian optimisations are managed using395

the python package pyManopt (Townsend et al. 2016), the python extension of396

the MATLAB package Manopt (Boumal et al. 2014). The optimisations are all397

conducted using the conjugate gradient algorithm.398

3.1. Plane Poiseuille flow399

Firstly, we consider plane Poiseuille flow to compare the differences in localisation400

strategies between initial-condition-based (transient growth) and driven (resol-401

vent) studies. The present setup follows that of Foures et al. (2013) in which402

a domain covers (x, y) ∈ [0, 2π] × [0, 2] at a Reynolds number of Re = 4000.403

No-slip boundary conditions are applied at y = 0 and 2 and periodic boundary404

conditions are applied at x = 0 and 2π. The base flow is analytically provided as405

u = y(2 − y). We conduct the numerical simulations using the python package406

ibmos developed by Fosas de Pando (2020). This is an immersed boundary407

projection code based on the formulation of Taira & Colonius (2007) with specific408

formulation for optimisation and stability analyses. The package solves the non-409

linear incompressible Navier–Stokes equations and directly provides the linearised410

and adjoint codes necessary for conducting a resolvent analysis. For the plane411

Poiseuille examples, the matrix B is chosen so that the forcing is only added to412
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the momentum equations. Similarly, the matrix C is chosen so that only velocity413

components constitute the output.414

As detailed in section 2.2, there is some consideration in choosing the vector for415

our L1-norm, T (fM). The obvious choice would be to use the same vector used for416

the unit energy norm, fM , for the L1-norm. However, as the x- and y-components417

of the velocity occur in different locations of fM this would result in a sparsification418

that not only sparsifies the forcing mode in space, but also sparsifies between the419

x- and y-components of velocity. In other words, if the sparse procedure were to420

locate a single spatial point for the forcing mode, it would also be advantageous421

to completely align the velocity vector with the coordinate axes at this point in422

order to achieve a further reduction in the L1-norm. As we are primarily interested423

in localisation in space, as opposed to sparsifying the velocity vector itself, we424

therefore design a vector for the L1-norm optimisation that does not result in425

this unwanted sparsification. This is particularly pertinent to applications of this426

method to flow-actuation, where the directional information obtained by keeping427

the x-, y- and possibly z-components of velocity independent of the sparsification428

procedure will provide additional insight into actuator design.429

To this end, we consider a vector of the following form: T (fM) = M(u ⊙ u +430

v⊙v)1/2, where ⊙ is the Hadamard product and the square root is taken compo-431

nentwise. This vector has the same 2-norm as fM , but groups local contributions432

of the forcing mode to the total energy together. Hence, the L1-norm of this433

vector is small when the forcing is localised in space, but without penalising434

among individual components of the velocity vector. It should be noted that435

some additional care may be needed when designing this vector depending on436

the specific numerical implementation. For example, as our immersed boundary437

implementation uses a staggered mesh with the x-components of velocity lying438

on the east and west faces of the cell whilst the y-components lie on the north439

and south faces, we form the vector T (fM) on the cell centres by averaging440

the kinetic energy contributions from the cell-edges. The weight matrices are441

chosen to incorporate the grid spacing (see Taira & Colonius (2007) for more442

information), so that the forcing and response are measured in terms of the443

kinetic energy.444

3.2. Flow past an aerofoil445

Secondly, we also consider a spanwise-periodic turbulent flow over a canonical446

aerofoil obtained from a large-eddy simulation (LES) with a Vremen sub-grid447

scale model (Vreman 2004). The LES is conducted using the finite-volume solver448

CharLES that solves the compressible Navier–Stokes equations with second-order449

spatial and third-order temporal accuracies (Khalighi et al. 2011; Brès et al.450

2017). The linearisation is performed within the same solver (Sun et al. 2017),451

considering the time- and spanwise-averaged turbulent flow over the aerofoil as452

the base flow.453

The resolvent analysis is performed on a separate mesh from that used by454

the LES. The mesh for the resolvent analysis has a two-dimensional rectangular455

domain with the extent of x/Lc ∈ [−15, 16] and y/Lc ∈ [−6, 5], comprising ap-456

proximately 0.11 million cells and giving the resulting discretised linear operator a457

dimension of 540840×540840. Compared to the LES mesh, the mesh for resolvent458

analysis is coarser over the aerofoil and in the wake, but is much finer in the459

upstream region of the aerofoil in order to resolve the forcing mode structures.460

The convergence of resolvent norm with respect to the domain extent and grid461
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resolution has been reported in detail in Yeh & Taira (2019). At the far-field462

boundary and over the aerofoil, Dirichlet conditions are specified for the density463

and velocities and Neumann conditions are prescribed for the pressure in q. At464

the outlet boundary, Neumann conditions are provided for all flow variables. The465

base-flow is two-dimensional, however, in contrast to the plane Poiseuille case,466

and we allow the perturbations to be three-dimensional by adopting a bi-global467

setting that decomposes q into spanwise Fourier modes with the wavenumber β.468

Even though the linear operator is sparse, its large dimension requires special469

care. To efficiently deal with this operator, the python bindings for PETSc (Balay470

et al. 2021a,b, 1997), petsc4py (Dalcin et al. 2011) are used. This enables us471

to carry out the required linear algebra manipulations in parallel whilst keeping472

our code within the python environment. Specifically, PETSc is used together473

with the external library MUMPS (Amestoy et al. 2001, 2019) in order to provide474

the LU decomposition of the resolvent operator, and hence evaluate the action475

of the resolvent operator (and its adjoint) on a vector. To compare our sparse476

method with a traditional resolvent analysis, the SVD of the resolvent operator477

is found using a Lanczos SVD solver provided by the python bindings for SLEPc478

(Hernandez & Vidal 2005), slepc4py (Dalcin et al. 2011).479

As in the previous case, we need to be careful regarding the choice of the state480

vector for the L1-norm. To sparsify the location of any momentum input, rather481

than the individual components of the momentum, we must design our L1-norm482

such that the momentum components are together. This requires some care for483

the aerofoil case, since it is compressible and the modes are not measured via an484

L2-norm but via the Chu-norm (Chu 1965)485

‖q‖2E =

∫

Ω

(

RT0

ρ0
|ρ′|2 + ρ0‖u′‖2 + Rρ0

(γ − 1)T0

|T ′|2
)

dV, (3.1)486

which represents the energy contained in a perturbation in the absence of487

compression work. In defining the Chu-norm, we have used a dash ′ to denote488

quantities derived from our state vector q. Similarly a subscript 0 is used489

to denote quantities derived from the base-flow used for linearisation. This490

integral is discretised to ‖q‖2E = qHWEq with WE as a positive definite491

weight matrix. Taking the Cholesky decomposition WE = MHM gives the492

matrices needed for the resolvent description (Mq = Mf = M). Hence, to493

keep momentum grouped in our sparsification, we split the components of494

the norm matrix M to form the state T (fM) = (Mρρ
′,MKEκ

′,MTT
′) where495

κ′ =
√

(ρu)′ ⊙ (ρu)′ + (ρv)′ ⊙ (ρv)′ + (ρw)′ ⊙ (ρw)′. Note that in defining κ′,496

we have used the notation (ρu)′ = ρ0u
′ + ρ′u0 for the streamwise linearised497

momentum component, with similar definitions for the spanwise (ρv)′ and498

transverse (ρw)′ linearised momentum components. This vector has the same499

L2-norm as our full state vector. However, when taking the L1-norm the kinetic500

energy is now grouped, ensuring that all velocity components are treated equally.501

It should be pointed out that now we have two additional components in the502

norm, specifically ρ′ and T ′. By not including these in the same component of503

the vector for the L1-norm, they are treated separately by the sparsification. In504

essence, this means that the sparse resolvent does not only sparsify the spatial505

structure of any forcing but also sparsifies the actuation mechanism by choosing506

between a velocity-based, density-based or temperature-based forcing.507
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Figure 4: The optimal gains over frequency for Poiseuille flow. Our analysis
focuses on the optimal gain which occurs at ω = 0.278, and on the second peak

at ω = 1.14 (both shown with a black +)

4. Results508

4.1. Plane Poiseuille flow509

Let us first consider plane Poiseuille flow. This canonical example provides a good510

comparison with the work of Foures et al. (2013) and highlights the differences511

between using an alternative norm for a resolvent analysis and a transient growth512

study. It is important to note that as plane Poiseuille flow is a parallel flow, we513

could have proceeded with a local analysis, i.e. we could specify the streamwise514

wavenumber α and search for modes of the form515

f(x, y) = fα(y)e
iαx and u(x, y) = uα(y)e

iαx. (4.1)516

However, as we are using a global (2D) analysis, the wavenumbers that our forcing517

and response can consist of are set by the aspect ratio of the domain. Taking518

x ∈ [0, 2π] with periodic boundary conditions requires our wavenumbers to be519

integer, i.e., α ∈ N. Another artifact of using a 2D code for a parallel-flow is that520

the results do not change if the forcing and response modes are translated along521

the x-axis.522

The gains obtained from a full resolvent analysis (i.e. by using an SVD) are523

shown in figure 4. This figure shows a strong peak at ω = 0.278, followed by524

another peak at ω = 1.14. Examining the forcing and response modes at these525

two frequencies (shown in figures 5 and 6, respectively) we observe that the first526

peak is associated with α = 1 structures whereas the second peak corresponds527

to a higher wavenumber of α = 2. This can be seen as a consequence of the528

flow being parallel and hints that by performing a two-dimensional analysis the529

optimal response is obtained at the wavenumber that has the maximum response530

from the one-dimensional analysis. With this in mind, the qualitative shape of531

the gain distribution agrees with those obtained in (Schmid & Henningson 2001)532

if the effects of perturbations in the spanwise direction, not considered in our533

analysis, are neglected. In both cases, the forcing mode consists of structures534

slanted against the shear, indicating that an Orr-mechanism is responsible for535

the gain in dynamics. Another interesting observation can be made by examining536

the phase velocity k = ω/α. We see that the phase velocity of the second peak is537

twice that of the first peak. The fact that the second peak is a faster disturbance538
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(a) Real part of the full forcing mode.
(u-velocity component)

(b) Real part of the full forcing mode.
(v-velocity component)

(c) Real part of the full response mode.
(u-velocity component)

(d) Real part of the full response mode.
(v-velocity component)

Figure 5: The real parts of the forcing and response mode obtained by SVD of
the resolvent at ω = 0.278. The forcing is unit-norm whereas the response mode

has norm equal to the gain.

(a) Real part of full forcing mode.
(u-velocity component)

(b) Real part of full forcing mode.
(v-velocity component)

(c) Real part of full response mode.
(u-velocity component)

(d) Real part of full response mode.
(v-velocity component)

Figure 6: The real parts of the forcing and response mode obtained by SVD of
the resolvent at ω = 1.14. The forcing is unit-norm whereas the response mode

has norm equal to the gain.

is also evident from the forcing mode being situated more centrally in the y-539

direction where the base-flow has a higher velocity.540

We now turn our attention to the resolvent analysis results from the sparse541

optimisation procedure. The sparse forcing mode obtained for ω = 0.278 is542

shown in figure 7. Firstly, it is clear from this figure that the forcing mode is543

more sparse than the full resolvent analysis. Indeed, instead of a series of slanted544

structures angled against the shear we now have thin stripes parallel to the walls.545

Interestingly, even though our vector T (fM) was carefully chosen not to sparsify546

the separate velocity components at a given spatial location, the sparse forcing547

mode consists mainly of a u-component, indicating that this forcing is primarily548

in the direction of the wall.549

A striking feature of the sparse forcing mode is that it has maintained its550
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(a) Real part of the sparse forcing mode
(u-velocity component).

(b) Real part of the sparse forcing mode
(v-velocity component).

(c) Real part of the sparse response mode
(u-velocity component).

(d) Real part of the sparse response mode
(v-velocity component).

Figure 7: The real parts of the forcing and response mode obtained by
sparsification at ω = 0.278. The forcing is unit-norm whereas the response mode

has norm equal to the gain.

α = 1 structure, i.e. it is still 2π-periodic in the x-direction. This is particularly551

enlightening since the strip-structure is not as sparse as the forcing mode could552

be, which would consist of just one element of the kinetic energy vector being553

filled, i.e. a single spatial location forcing. Therefore, the fact that the sparse554

procedure has chosen a less sparse structure indicates that forcing with this spatial555

wavenumber is crucial in achieving a high gain at this frequency. The location of556

these stripes can be hypothesised to be intrinsically linked to the α = 1 structure557

using the concept of critical layers. A critical layer occurs at y∗ where the base-558

flow velocity U(y∗) is equal to the phase velocity k of a disturbance, and is central559

in causing instability in plane Poiseuille flow. Using the phase velocity k for a560

disturbance at ω = 0.278 and α = 1 implies a critical layer at y∗ ≈ 0.150, which561

is close to the y-location of the stripes which occur at y = 0.155. Hence, the562

sparse forcing mechanism can be summarised as forcing along (or just above)563

and parallel to the critical layer, with the v-velocity component, which does not564

contribute to this critical layer, being negligible.565

Further evidence for the importance of α = 1 forcing is shown in the response566

modes, which are also displayed in figure 7. The figure shows that the response567

modes stemming from the sparse forcing mode have the same structure as those568

from the full resolvent. As well as reinforcing that the α = 1 forcing is critical for569

providing optimal amplification at this frequency, this observation also highlights570

the low-rank nature of the resolvent at this frequency. Even though the forcing571

shape is qualitatively different in the sparse case, the shape of the response is572

identical, disregarding arbitrary phase shifts, albeit with a lower magnitude. This573

agrees with previous observations, such as that of Rosenberg et al. (2019) where574

it is shown that when there is a large separation in singular values the shape of575

the forcing is less critical in exciting the dominant response. The lower magnitude576

is to be expected since our sparse forcing mode sacrifices some amount of energy577

to achieve a more localised spatial structure.578

To provide a comparison between the results at different wavenumbers, we also579

carry out the sparse optimisation procedure at ω = 1.14. Figure 8 shows the580

results, which differ quite significantly from the case of ω = 0.278. In this case,581
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(a) Real part of the sparse forcing mode.
(u-velocity component)

(b) Real part of sparse forcing mode.
(v-velocity component)

(c) Real part of sparse response mode.
(u-velocity component)

(d) Real part of sparse response mode.
(v-velocity component)

Figure 8: The real parts of the forcing and response mode obtained using
sparsification at ω = 1.14. The forcing is unit-norm whereas the response mode
has norm equal to the gain. The location of the sparse forcing mode is shown

with ×.

the sparsification procedure has resulted in a single spatial forcing in u, with a582

negligible v-component which can be safely disregarded. In fact, the structure583

of the v-component is an artifact of the optimisation procedure which initially584

converged to a critical-layer mechanism similar to the previous case, before585

converging to a single spatial location. The reason for the different structure586

in this case can be attributed to the higher rank nature of the resolvent at this587

frequency. For ω = 0.278, σ
(L2)
1 /σ

(L2)
2 ≈ 31 whereas for ω = 1.14, σ

(L2)
1 /σ

(L2)
2 ≈ 2.588

The effect is that, even though an α = 2 forcing is optimal, there is a less clear589

distinction between this forcing and the higher-order singular vectors. The result590

is that, unlike the previous case, there is less of a need for a specific α wavenumber591

to provide the optimal gain and, the sparsification procedure can take advantage592

of this to further sparsify the forcing structure. This is also evident in the response593

modes which are quite different from the SVD results. Finally, it is worth noting594

that the asymmetry of the forcing mode, with the single spatial location being595

located above the centreline, is due to our optimisation procedure converging to596

a local maximum. The reflection of this point about the centreline would also597

achieve the same value of the cost functional, hence representing another local598

optimum. Similar behaviour has been reported in the work of Foures et al. (2013).599

4.2. Flow past an aerofoil600

Secondly, we consider flow past a NACA 0012 aerofoil at an angle of attack601

of 9◦, a chord-based Reynolds number of Re = 23000 and a free stream Mach602

number of M = 0.3 (see section 3.2 for the numerical details). In contrast to603

the plane Poiseuille example, this flow is unsteady and turbulent. Therefore,604

the mean-flow is used for linearisation. This time-averaged base-flow is shown605

in figure 9. Similarly to the work of Yeh & Taira (2019), and Ribeiro et al.606

(2020) who considered a resolvent analysis with the same base flow, we consider607

the resolvent modes at spanwise wavenumbers β = 0 and 20/π. As the linear608

operator is unstable, a discounting parameter of α = 0.63 is used (Jovanović609
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Figure 9: The streamwise velocity component of the base flow.
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Figure 10: The optimal gains against the Strouhal number for flow past an
aerofoil. Our analysis will focus on the optimal gain which occurs at St ≈ 5.22

for β = 0 and St ≈ 5.90 for β = 20π (both highlighted with a black +).

2004). The gain-frequency relationships are shown in figure 10. Similarly to the610

previous examples, we focus our subsequent analysis on the frequencies at which611

the peak gain is obtained.612

Let us begin our analysis by briefly examining the modes obtained from a full613

resolvent analysis for our chosen parameters. For full details, see the paper by614

Yeh & Taira (2019). The spanwise linearised momentum component of the forcing615

mode and its corresponding response for our two spanwise wavenumber choices616

are showcased in figure 11. In both cases, the forcing is similar, consisting of617

slanted structures near the leading edge of the aerofoil on the suction side. The618

response modes are both located in the shear layer further downstream of the619

leading edge but differ in their spatial structures. For β = 0, there is a larger620

spatial support with the mode shape extending both vertically and horizontally621

about the shear layer, whereas for β = 20π the response aligns much more tightly622

with the shear. This agrees with the findings of Yeh & Taira (2019) who state623

that for an increased forcing frequency or wavenumber the shear layer is needed624

to support the resulting smaller-scale fluctuations.625

Now that we have characterised the L2-norm SVD-based results, we turn our626

attention towards the sparse-optimisation-based modes. Figure 12 shows the627

sparse forcing and response modes. In both spanwise wavenumber cases, the628

optimisation procedure has identified a single spatial momentum-based structure629
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(a) Full forcing mode (β = 0). (b) Full response mode (β = 0).

(c) Full forcing mode (β = 20π). (d) Full response mode (β = 20π).

Figure 11: The full resolvent modes for aerofoil flow at St = 5.22 for β = 0 and
St = 5.90 for β = 20π. The linearised component of the streamwise momentum

is shown.

(a) Sparse forcing mode for β = 0 (b) Sparse response mode for β = 0

(c) Sparse forcing mode for β = 20π (d) Sparse response mode for β = 20π

Figure 12: The sparse resolvent modes for aerofoil flow at St = 5.22 for β = 0
and St = 5.90 for β = 20π. The linearised component of the streamwise

momentum is shown.

for the forcing mode, with the density and pressure contributions being negligible.630

This illustrates the effectiveness of the sparse procedure, which in this case was631

not only able to sparsify the spatial structure, but has also sparsified the physical632

makeup of the forcing, indicating that a momentum-based forcing provides the633

optimal sparse gain in dynamics. It is also worth highlighting that, even though634

we have only a single-location forcing that, the response mode is qualitatively the635

same as the full case.636

To provide additional insight into the chosen spatial location, we now examine637

the resolvent wavemakers, which are shown in figure 13. For both values of β,638

the wavemakers display a large positive region in the mean-flow shear layer.639

This is not unexpected, since regions of shear translate to regions of high non-640
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(a) Wavemaker (β = 0). (b) Wavemaker (β = 20π).

Figure 13: The resolvent wavemakers for aerofoil flow at St = 5.22 for β = 0 and
St = 5.90 for β = 20π. The linearised component of the streamwise momentum

is shown.

(a) Surface forcing on the suction side of
the aerofoil (β = 0).

(b) Surface forcing on the suction side of
the aerofoil (β = 20π).

Figure 14: The surface forcing on the suction side of the aerofoil at St = 5.22 for
β = 0 and St = 5.90 for β = 20π. The sparse components are shown with a star.

normality in the linearised Navier–Stokes operator, which underpins sensitive641

areas for forcing. In fact, in the full-SVD forcing modes, we directly see this,642

as the forcing modes in both cases are primarily located in this shear region.643

The sparse forcing locations are also situated in this region and are located near644

the maximum value of the full-SVD forcing mode. Whilst this may show that645

choosing the largest value of the forcing mode is a good candidate for the sparse646

forcing mode, we emphasise that the optimisation procedure is not biased by647

any knowledge of the full forcing mode, and all physical mechanisms and spatial648

locations are weighted equally.649

Whilst forcing in the shear region may provide the optimal response, it is rather650

impractical for flow actuation purposes. Therefore, we conclude this section by651

using the windowing matrix B to conduct our analysis on the surface of the652

aerofoil. Figure 14 shows the forcing distribution along the suction side of the653

aerofoil as a function of the distance along the chord xc. In the full resolvent654

analysis, most of the forcing is concentrated near the leading edge of the aerofoil,655

agreeing with the non-windowed case. In both spanwise wavenumber cases, the656

sparse mode is once again a single-point momentum-based forcing and is located657

at the maximum value for the kinetic energy of the full forcing mode. This658

provides the optimal compromise between forcing with (ρu)′ at its maximum659

value and (ρv)′ at its maximum, which in the full case is located to the left of660

(ρu)′. Even though there is a (ρE)′-component, this is simply a consequence of the661

kinetic part of the energy, since (ρE)′ = ρ′‖u0‖2/2+ρ0u
′·u0+P ′/(γ−1), and there662

is no thermodynamic contribution to the linearised total-energy. The importance663
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of grouping momentum together into one coherent strategy is evident from the664

figure, as the directional information of the actuation is crucial in both the full665

and sparse resolvent analyses to achieve the optimal gain. This information would666

otherwise be lost. Moreover, by grouping the momentum together we strike a667

compromise between choosing a forcing that is optimal for each isolated velocity668

component.669

5. Conclusion670

By reformulating an optimal-input analysis as a Riemannian optimisation prob-671

lem, we are able to tailor a resolvent analysis to uncover sparse forcing modes and672

their corresponding response modes. By designing a cost functional based on the673

ratio of the energy gain to the L1-norm of the forcing, we are able to find forcing674

modes that provide the largest gain whilst being spatially sparse. To test the675

method within the context of resolvent analyses performed on steady base-flows676

and time-averaged mean-flows, we considered two flow examples: plane Poiseuille677

flow in the linearly stable regime and the turbulent flow past an aerofoil.678

For plane Poiseuille flow, two forcing frequencies were considered. At the first679

frequency, located at the maximum gain of the full-SVD analysis, the sparse680

forcing mode consisted of an α = 1 stripe at a single y-location, just above the681

critical layer. Conversely, for the second frequency located at the second peak of682

the full analysis, the forcing consisted of a single spatial forcing near the α = 2683

critical layer. For the first case, utilising an α = 1 forcing is critical in obtaining684

a high gain, and therefore the optimisation only sparsifies the forcing in the y-685

direction. However, in the second case, there is a much lower separation in the686

effectiveness of different forcing mechanisms, as indicated by the ratio of the687

singular values, meaning that the sparse procedure is able to sparsify further688

whilst still providing a large gain.689

In the turbulent flow past an aerofoil, all sparse modes consisted of single690

spatial locations, with the sparsification procedure also identifying momentum-691

based forcing as the optimum physical mechanism. For two different spanwise692

wavenumbers an analysis of the resolvent wavemakers shows that forcing in693

the shear layer provides the optimal gain, with the sparse procedure focusing694

on the location of the maximal value of the full forcing modes. To identify695

an implementable actuator position, we also considered a windowed analysis696

where the forcing modes are confined to the surface of the aerofoil. Again, we697

achieve single-point momentum-based actuation positions which are found to698

be a compromise among the optimal locations for each independent velocity699

component. This emphasises the importance of designing an appropriate vector700

for the L1-norm, as the directional information would have been lost had we not701

grouped momentum together.702

Overall, the sparse optimisation procedure provides an unbiased optimal spar-703

sification of the flow and is able to adapt to the different forcing strategies704

available at different frequencies. Although the aerofoil results show that choosing705

the maxima of the SVD is a good candidate for a sparse forcing vector, the706

plane Poiseuille example shows that both single-point and multi-point forcing707

modes can be found depending on the low-rank nature and physical mechanisms708

furnished by the resolvent. Based on our results, it can be postulated that in709

more complex systems, such as those stemming from aeroacoustic or combustion710

problems, where multiple physical mechanisms are at play, the sparse resolvent711
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would be able to adapt to the optimal physical mechanisms present at each712

frequency, and would even be able to combine in an optimal sparse way these713

different mechanisms in order to achieve the largest gain. Investigating the sparse714

optimisation procedure on these types of flows would therefore be an interesting715

future direction of study. Furthermore, as the choice of cost functional for the716

purpose of sparsification is not unique, the design of other functionals, such as717

those that could allow for a tuning of sparsity versus gain, provides another area718

for future investigation.719

Although we have not considered them in our study, we further note that720

recent efforts have been made to extend resolvent analysis to both periodic721

flows (Padovan et al. 2020) and also to the non-linear regime (Rigas et al.722

2021). As the techniques we have presented carry over to both these cases723

without significant modification, these present interesting avenues for future724

investigations. Moreover, the usefulness of Riemannian optimisation in tailoring725

input-output analyses to specific flow applications is not limited to our sparse726

analysis. As well as being able to design cost functionals in order to uncover727

different aspects of the resolvent, the manifold to which we confine the forcing728

modes can be changed. The result is a rich landscape of possibilities in which729

resolvent analyses can be extended, with the traditional SVD-based approach730

being just one such choice.731
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Appendix A. Convergence results740

In this appendix, we consider the numerical details of the optimisation procedure.741

In order to provide an overview we will present the results stemming from742

the plane Poiseuille example at ω = 0.278 considered in section 4 which is743

representative of all cases considered in this paper.744

Figure 15 shows how the results of the optimisation procedure depend on δ.745

We can see from figures 15a and 15c that there is an initial region in which the746

optimisation procedure has a large L1-norm and that the gain is in line with that747

obtained from the SVD. After δ = 2−5 the pseudo-Huber norm starts to behave748

more like the L1-norm, as shown in figures 15b and 15d, and both the gain and749

the L1-norm of the forcing decrease. At δ = 5−7 the pseudo-Huber norm and750

the L1-norm have converged, and we can stop the optimisation procedure. These751

figures also highlight the strong dependence of the gain on the L1 norm of the752

forcing for these examples, with the gain decreasing almost exactly in line with753

the L1 norm.754

Also shown in figures 16a and 16b is the norm of the gradient provided by the755

optimisation procedure as a function of the number of iterations. For the case of756

ω = 0.278, the number of iterations is in line with the work of Foures et al. (2013),757

with perhaps a few more iterations needed in our case. The number of iterations758

required as well as the non-smoothness of the gradient norms is indicative of759
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Figure 15: Dependence of the results on δ for the plane Poiseuille flow examples
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conjugate gradient algorithm for plane
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(b) Convergence behaviour of the
conjugate gradient algorithm for plane
Poiseuille flow at ω = 1.14 and δ = 5−7.

Figure 16

the difficulty of the gradient-based optimisation. This is especially highlighted760

by figure 16b, where the optimisation terminates earlier due to a stagnation of761

the cost functional. This showcases the importance of using both a relaxation762

parameter δ as well as an optimisation procedure such as the conjugate gradient763

algorithm in order to achieve converged results.764
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