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A B S T R A C T   

Background: Indices of ventilation heterogeneity (VH) from multiple breath washout (MBW) have been shown to 
correlate well with VH indices derived from hyperpolarised gas ventilation MRI. Here we report the prediction of 
ventilation distributions from MBW data using a mathematical model, and the comparison of these predictions 
with imaging data. 
Methods: We developed computer simulations of the ventilation distribution in the lungs to model MBW mea-
surement with 3 parameters: σV, determining the extent of VH; V0, the lung volume; and VD, the dead-space 
volume. These were inferred for each individual from supine MBW data recorded from 25 patients with cystic 
fibrosis (CF) using approximate Bayesian computation. The fitted models were used to predict the distribution of 
gas imaged by 3He ventilation MRI measurements collected from the same visit. 
Results: The MRI indices measured (I1/3, the fraction of pixels below one-third of the mean intensity and ICV , the 
coefficient of variation of pixel intensity) correlated strongly with those predicted by the MBW model fits 
(r = 0.93, 0.88 respectively). There was also good agreement between predicted and measured MRI indices 
(mean bias ± limits of agreement: I1/3 :−0.003 ± 0.118 and ICV :−0.004 ± 0.298). Fitted model parameters were 
robust to truncation of MBW data. 
Conclusion: We have shown that the ventilation distribution in the lung can be inferred from an MBW signal, and 
verified this using ventilation MRI. The Bayesian method employed extracts this information with fewer breath 
cycles than required for LCI, reducing acquisition time required, and gives uncertainty bounds, which are 
important for clinical decision making.   

1. Introduction 

Ventilation heterogeneity (VH) refers to the unevenness of inspired 
air distribution in different lung regions during breathing. It is an early 
and prominent feature of lung diseases such as cystic fibrosis (CF), 
bronchiectasis, asthma and COPD (Horsley and Wild, 2015; Downie 
et al., 2007; Gonem et al., 2014; Verbanck et al., 1998). Clinical 
assessment of VH in the lung is performed by the multiple breath 
washout test (MBW), from which the most commonly used primary 
outcome is the lung clearance index (LCI) (Robinson et al., 2013). LCI is 

now well established, particularly in CF where it is a sensitive, robust 
measure of early disease, and responsive to clinical status (Horsley et al., 
2007). However, LCI utilises a relatively small proportion of the gas 
washout data collected: the alveolar gas concentrations, and specifically 
those preceding the first and last washout breaths. Alternative VH 
indices from MBW, such as moment ratios (Saidel et al., 1975) and 
phase-III slopes (Verbanck and Paiva, 1990), have been developed but 
are less commonly used as they are more sensitive than LCI to other 
factors besides ventilation heterogeneity (Robinson et al., 2013; Hors-
ley, 2009), including variations in tidal volume and gas diffusivity. One 
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current limitation to widespread clinical use of LCI as a pulmonary 
function test is the time required for data collection (Robinson et al., 
2013). Although LCI appears robust to earlier test thresholds to some 
extent, this may be at the cost of reduced sensitivity and the practice is 
not widespread (Egger et al., 2016; Green et al., 2016; Hannon et al., 
2014; Shaw et al., 2020; Daynes et al., 2021). 

Hyperpolarised gas ventilation MRI allows for visualisation of the 
ventilation distribution in the lung (Deninger et al., 2002). Patients 
inhale a bolus of hyperpolarised tracer gas (129Xe or 3He) which is 
imaged during a short breath hold (as in this study), dynamically during 
the respiratory cycle (Wild et al., 2003) or over several cycles (Horn 
et al., 2014). This enables the identification of small ventilation defects 
that are not detected by spirometry (FEV1) or LCI, and the method is 
therefore highly sensitive to early lung disease progression (Horsley and 
Wild, 2015; Smith et al., 2017, 2020). Ventilation MRI also provides a 
3-dimensional representation of the distribution of lung disease, 
allowing regional changes to be identified and tracked. Furthermore, 
MRI can identify lung regions where tidal flow is entirely obstructed, 
which would not normally contribute to the MBW signal. This powerful 
technique is therefore potentially more informative about the nature 
and severity of lung disease. We have previously reported a good cor-
relation between MRI markers of airway obstruction and LCI in patients 
with CF (Smith et al., 2017, 2018). The availability of these paired data 
presents a unique opportunity to link clinically usable measures of gas 
washout with detailed lung imaging in order to better inform under-
standing of MBW and to develop more sophisticated washout metrics. 

To improve the clinical viability of MBW, we have developed a 
Bayesian method for inferring the distribution of ventilation directly 
from MBW data. Underlying the method is an efficient three-parameter 
model of gas ventilation and transport in the lung similar to previous 
models in this area. The benefit of the method presented here is that 
uncertainty in the predictions is readily quantified by the Bayesian 
methodology, and where there are multiple viable solutions all are given 
weight relative to their probability of explaining the observed data. The 
model predictions have been compared to independent measurements of 
the VH from ventilation MRI, directly testing the validity of the inferred 
parameters and the predicted ventilation distribution. 

The aim of this study was to develop computational software to 
predict the ventilation distribution in individual subjects using raw 
MBW data and to use this to produce robust indices of VH that directly 
correspond to those measured directly with ventilation MRI. A second-
ary aim was to test whether the measures derived using this new method 
were robust at shorter test times. 

2. Methods 

Table 1 introduces the mathematical symbols that are used in this 
section prior to their first use in the text. 

2.1. Study design and recruitment 

As part of a longitudinal observational study, children and adults 
with CF were recruited from three UK specialist centres (Smith et al., 
2020, 2018). At recruitment, patients had to be over the age of five 
years, be clinically stable for four weeks prior to their visit and achieve 
an FEV1 > 30% predicted within the previous six months. This study was 
approved by the Yorkshire and Humber - Leeds West Research Ethics 
Committee (REC reference: 16/YH/0339). Parents/guardians of chil-
dren and all adult patients provided written informed consent. For this 
analysis we have used data from a single visit when patients completed 
both MRI and MBW, including supine MBW (since this corresponds to 
the same position as the MRI procedure, and so minimises the effect of 
changes due to body position or gravity (Ramsey et al., 2017; Smith 
et al., 2017)). 

2.2. Ventilation MRI 

Ventilation MRI was performed on a 1.5 T GE HDx scanner (GE, 
Milwaukee, WI, USA) using hyperpolarised helium-3 (3He) using a 
transmit-receive vest coil (CMRS, Milwaukee, WI, USA) and a three- 
dimensional (3D) steady state free precession ventilation imaging 
sequence as described previously (Horn et al., 2014). Images used in this 
study were acquired during a breath-hold at end-inspiratory tidal vol-
ume following the inhalation of a predetermined fixed volume of test gas 
from their resting functional residual capacity (FRC). The volume of gas 
was titrated based on the subject’s height and consisted of scaled doses 
of 3He balanced with nitrogen (Smith et al., 2018). 

Contiguous ventilation MR images of the coronal plane were ac-
quired with slice thickness of 5 mm and pixel size ranging from 
2.73 × 2.73 mm to 3.28 × 3.28 mm (depending on patient lung size). 
For each slice, a mask was manually derived from 1H images (acquired 
during the same breath hold as the 3He MRI) to determine which pixels 
corresponded to positions inside the lung cavity (excluding visible air-
ways). The masked images were eroded by one pixel to avoid edge ef-
fects. The intensity (brightness) of each pixel is taken as a relative 
measure of the gas concentration at that point. This is used as a proxy for 
the local ventilation rate, and is used to characterise VH in two ways (see  
Fig. 1):  

• Measuring the ‘poorly ventilated’ fraction of the lung by I1/3. That is, 
the fraction of pixels with intensity less than one-third of the mean 
(as used previously to define ventilation defects (Collier et al., 
2018)).  

• Calculating the total coefficient of variation of the normalised pixel 
intensity, ICV. 

Table 1 
A list of all mathematical symbols and notation used in the text, and what they 
represent.  

Symbol (s) Description of use 
i Index of lung units and dead space compartments in the 

compartmental lung model. 
j Index of volume elements in the compartmental lung model. 
k Index of breath number in processed MBW data. 
n Time-step index in processed MBW data. 
s Voxel index in MRI data (simulated or observed). 
I1/3 Proportion of the masked 3He MRI image with voxel brightness less 

than 1/3 of the mean. 
ICV Coefficient of variation in brightness of masked 3He MRI image. 
LCIz Lung clearance index measured by MBW (mean from 3 test repeats), 

z = 2.5, 5,10, 20, 40 is the termination threshold used in % of 
equilibrium SF6 concentration. 

VFRC Functional residual capacity (L) measured by MBW (mean from 3 
test repeats). 

VFDS Fowler dead-space (L) measured from CO2 curve during MBW 
(mean from 3 test repeats – each test is the median value of all 
washout breaths). 

V
(pleth)
FRC 

Functional residual capacity (L) measured by plethysmography 
Ṽ0, ṼD Initial guess for model parameters V0 and VD, used to set model 

priors. 
V(inh)

k , V(exh)
k Volume of inhalation and exhalation respectively for breath k of an 

MBW test. 
NII , NIII Number of data-points used to represent phase-II and phase-III parts 

of each breath (NII = NIII = 4 used throughout). 
{V0,VD, σv} Compartmental lung model parameters setting the FRC, dead-space 

volume and VH respectively. 
{vij, c(p)ij ,c(d)ij ,

gij}
Properties of the volume element j in dead-space compartment i: 
gas volume, inert gas concentrations (proximal end and distal end), 
and inert gas volumes respectively. 

{Ci,Vi,Gi} Properties of the lung unit i: inert gas concentration, gas volume 
and inert gas volume respectively. 

Nc Number of lung units in the model (Nc = 50 used throughout) 
vmax Re-discretisation volume used for mixing-step (vmax = 0.2VD used 

throughout)  
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Note these are measures of global ventilation heterogeneity which 
can be predicted from MBW data, other common MRI indices such as 
CVmean Marshall et al. (2017) or ΔR Horn et al. (2017) quantify spatial 
heterogeneity and are not considered here. 

2.3. Pulmonary function tests 

MBW was performed using a modified open-circuit Innocor device 
(Innovision, Glamsbjerg, Denmark) (Horsley et al., 2008) using 0.2% 
sulphur hexafluoride (SF6) tracer gas in air. MBW tests were collected in 
triplicate in the supine position. Spirometry and body plethysmography 
were performed to international standards (Miller et al., 2005; Wanger 
et al., 2005) using a PFT Pro (Vyaire, Basingstoke, UK). All tests were 
performed on the same day. Either MBW or MRI was performed first, 
followed by the other. Spirometry was always performed last to mini-
mise the influence of VH redistribution due to a forced manoeuvre. 

MBW data were analysed using a software package for Igor Pro v6 
(Wavemetrics Inc., Lake Oswego, OR, USA) as previously described 
(Hannon et al., 2014). We extracted from this analysis the following 
parameters for each patient: LCI2.5, lung volume at FRC (VFRC), and 
Fowler dead-space from CO2 curves (VFDS) (Fowler et al., 1952). We also 
re-computed LCI for different termination thresholds (5%, 10%, 20%, 
40% of initial concentration). 

2.4. Compartmental lung model 

Fig. 2 provides schematic overview of the model-fitting process, 
which this section describes in detail. 

2.4.1. Processing of MBW data for model fitting 
Raw MBW data were outputted as plain text files. Processing of these 

raw data was carried out using a custom-built C++ program in line with 
recommendations (Robinson et al., 2013). Corrections for re-breathed 
SF6 were not applied as these are simulated in the model. In summary:  

1. Gas traces from each MBW are corrected for the flow-gas delay (as 
measured during device calibration).  

2. The data are separated into inhalations and exhalations, with a 
filtering step to ensure that flow fluctuations near to zero are not 
counted as separate breaths.  

3. Exhaled volumes are corrected to body temperature, pressure, water 
vapour saturated (BTPS) by multiplying the measured flow by 1.016. 
Then, inhaled volumes are all scaled by a constant factor to give 
unitary respiratory quotient for the whole test.  

4. Fowler dead space (FDS) volume was measured using the CO2 traces, 
and functional residual capacity (FRC) approximated as outlined in 

Robinson et al. 2013 (Robinson et al., 2013). The median FDS over 
all valid breaths in each test was used as the test average, then VFDS 

was taken as the mean of this over all the test repeats of an indi-
vidual. Similarly, VFRCwas the mean FRC measured in this step over 
all test repeats.  

5. Finally, exhalations are down-sampled to 10 points per breath: these 
were the start and end points, 4 evenly spaced points in phase II 
(defined as exhaled volume between VFDS/2 and 3VFDS/2), and 4 in 
phase III (defined as between 3VFDS/2 and 0.95 V(exh)

k ), where V(exh)
k is 

the total exhalation volume of breath k. This down-sampling was 
achieved by linearly interpolating from the nearest concentration 
measurements in the dataset. Inhalations were down-sampled to a 
single step between inhalations, as the inspired gas trace is approx-
imately zero during washout and therefore not used in the fitting 
process. We label the time-steps with index n and the associated 
volume change as ΔVn ′. 

2.4.2. Compartmental lung model 
As in Bates and Peters (Bates and Peters, 2018), the computational 

lung model comprises Nc = 50 lung units of equal size with total volume 
V0 at FRC, with each compartment connected to independent 
dead-space compartments of equal size with total volume VD. As in 
Mountain et al. Mountain et al. (2018), the relative inflation rate x of 
each compartment is drawn from a lognormal probability distribution 
with unit mean 

P(x) = 1

xσV

̅̅̅̅̅
2π

√ exp

(
− (ln x − μ)2

2σ2
V

)
, where μ = −σ2

V

2
.

where σV is the VH parameter. Once the x values have been drawn 
(xi ∼ P(x) for i = 1,..,Nc), they are normalised so that the mean is x = 1. 
The model simulates advection of the inhaled/exhaled volumes 
measured from MBW through the dead-space and into/out of the lung 
units via the transport of discrete volume elements. These volume ele-
ments therefore effectively form a Lagrangian grid for the 1D network of 
dead-space components. Each element j is indexed sequentially from 
distal to proximal end in each dead-space compartment i = 0,…Nc 
(where i = 0 is the common-dead space and i = 1, ..,Nc the private dead- 
space compartments corresponding to the acinar units with the same 
index). An element has volume vij, and concentration values c(p)ij and c(d)ij 
defined at its proximal (mouth) and distal (acinar) ends respectively. 
These elements are shifted along each time-step by the volume inhaled 
proximal to them, or exhaled distal to them, as shown in Fig. 3. A more 
detailed description of the simulation of each timestep is given in Sup-
plementary Text S1. 

Fig. 1. Examples of MR indices I1/3 and ICV for 
two patients. Patient 1 (blue) has low VH, 
whereas patient 2 (orange) has high VH. (a) 
Histogram of pixel intensity (normalised to 
have unit mean, as indicated by the vertical 
thick grey line). The blue dotted and orange 
dot-dashed lines show 1 standard deviation 
from the mean for patient 1 and 2 respectively. 
The standard deviations of this normalised dis-
tribution are the ICV values (as given in the 
figure). (b) The cumulative distributions of 
pixel intensity for the same two patients. Where 
these curves cross 1/3 of the mean pixel in-
tensity (indicated by the thick grey line) cor-
responds to the I1/3 value on the vertical axis 
(the blue dotted line for patient 1, and orange 
dot-dashed line for patient 2), as this is the 
proportion of the distribution below this value. 
(For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)   
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This model has a number of shared features with previous methods 
for similar applications, as cited above. It is a stochastic model so sim-
ulations with the same distribution parameter (σv), will have slightly 
different ventilation distributions, as in Mountain et al. Mountain et al. 
(2018). The number of compartments in the model (Nc) dictates how 
similar an individual realisation of the ventilation distribution is to the 
lognormal distribution used to generate it. 

2.4.3. Model parameter estimation 
Adaptive Bayesian Computation Sequential Monte Carlo (ABC-SMC) 

(Toni et al., 2009) was used for each individual’s data. The flow data 
from MBW is taken as a model input, and the SF6 concentration is the 
output to be fitted against. Parameters sets are drawn and evaluated to 
build a (posterior) probability distribution for their actual values 
through an iterative refinement process, as previously described (Toni 
et al., 2009) and detailed in Supplementary Text S2. 

The parameter prior distributions we assumed uniform and inde-
pendent as: 

V0 ∼ U (VFRC/2, 2VFRC),VD ∼ U (VFDS/2, 3VFDS), σV ∼ U (0, 4).

The range bounds are defined using their estimated quantities from 
MBW processing (see 2.4.1) where VFRC is the estimated FRC (mean of 
three tests) and VFDS the test median Fowler dead-space (mean of three 
tests), whereas σV is given a broad plausible range. 

The posterior parameter sets are used to predict the alveolar venti-
lation distribution measured by imaging (as detailed in the previous 
section) and compared directly to those measurements in the same pa-
tient. The final number of iterations required in the ABC-SMC algorithm 
was set adaptively (see Supplementary Text S2 for full details). 

2.5. Statistical analysis 

Data were analysed in Matlab (v. R2020a) (MATLAB, 2020). The 
MAP values for parameters were estimated using kernel density esti-
mation (KDE) on the posterior parameter distributions (see Fig. 2 for an 
example). The KDE used 1000 points with default Matlab settings for the 

Fig. 2. Sketch of the relations between the multiple breath washout (MBW) data, Bayesian (ABC-SMC) model, and imaging data. The raw MBW data (top-left) consist 
of flow rate (black line), SF6 trace (green line), and CO2 trace (not shown), where the black arrow in the plot indicates switch of gas source (from wash-in to 
washout). This is processed and split into fewer measurement points in order to be fitted by the model. The model is fitted to the processed data by searching over 3 
parameters for each individual. Initially, parameter values are drawn from the prior distributions (blue histograms in bottom-left); the outcome of the ABC algorithm 
is the posterior distribution of parameters shown in orange in the bottom-right. In both cases the solid lines show a kernel density estimation (KDE) of the distri-
bution, and the most likely parameters (maximum a posteriori) were taken as the peaks of the KDE curves for the posterior distributions. The accepted simulations are 
also used to predict the probability distribution of ventilation MRI indices I1/3 and ICV (middle-right), as well as the ventilation distribution (expressed as a probability 
density function in the top-right, black line is the median, the dark orange region is the interquartile range, and pale orange the central 95%). The outcomes are then 
compared to the 3He MRI data (top-centre) where the blue histogram (top-right) shows the normalised probability distribution function of masked image intensity, 
which in this example closely matches the model prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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bandwidth, the maximum value was then interpolated by fitting a 
quadratic function to a 5-point stencil around the maximum of the dis-
cretised function and solving for the point where its gradient was equal 
to 0. 

The Pearson correlation r was used to quantify correlation between 
measured and predicted values of the same quantities. Agreement of 
these values was measured by Bland-Altman analysis. Variability in 
MBW derived indices (VFRC and LCI) was quantified by the standard 
deviation over 3 tests. To compare measures of different properties we 
have used Spearman’s rank correlation coefficient ρ, these are labelled 
as such in the figures. A p-value of < 0.05 was considered statistically 
significant. 

3. Results 

3.1. Parameter identifiability and convergence of the fitting model 

We varied the discretisation parameters NII, NIII and Nc to test for 
convergence of the inferred parameters to those used to generate arti-
ficial data from a single model realisation. The results are given in 
Supplementary Figs. S1, S2 and S3. The parameters chosen to fit the 
data, given in Table 1, represent the optimum balance between accuracy 
and performance. 

Supplementary Fig. S3 shows the parameter recovery from simulated 
data. We see that, for the full range of σV tested (up to 1.5), this het-
erogeneity parameter is recovered well (within the uncertainty limits). 
However, we observe that the volume parameters are poorly estimated 
at very high VH. 

3.2. Patient population 

Paired MRI and LCI data were available for 25 children and adults 
with CF, with FEV1 z-scores ranging from − 5.32–1.10, and LCI ranging 
from 6.8 to 16.8. Table 2 shows the patient demographics and lung 
function of all subjects. 

3.3. Prediction of physiological parameters and MRI-measured ventilation 
distribution from MBW data 

Fig. 4(a) and (c) compare the measured I1/3 and ICV values with those 
predicted from simulations fitted to the MBW data. There is a strong 
correlation for both measures (r = 0.93 and r = 0.87 respectively). The 
Bland-Altman analysis of the predictions vs. measurements in Fig. 4(b) 
and (d) shows negligible mean biases of the two meas-
ures:−0.003 ± 0.118 and −0.004 ± 0.298 respectively (± 2 S.D.). The 
uncertainty approximation appears to explain most but not all of the 
prediction error: for ICV, 18 (72%) measured values fell within the 
predicted 95% prediction intervals, whilst for I1/3 it was 20 (80%). 

Supplementary Fig. S4 compares the posterior model parameters to 
their MBW counterparts. Figs. S4(a) and (b) show that the parameters V0 
and VD agree well with the MBW measured values VFRC and VFDS in the 

Fig. 3. Sketch of a single simulation step where the cylinders represent volume elements inside dead-space compartments, and the spheres represent lung units. The 
shading in red indicates the concentration of SF|6 gas. (a) On inhalation a new element (blue outline) is added to the proximal end (top) of the common dead space, 
and the same amount of volume is removed from the distal end (bottom), as indicated by the dashed black line. This removed volume (blue) is split into volumes for 
each private dead-space based on their ventilation rate. These are added to the proximal end of each dead-space and the same volume is removed from the distal end 
(dashed line). This removed gas volume (blue) is then added to the volume of gas in the lung units. (b) On exhalation, the reverse process happens, and there is a re- 
discretisation of the volumes that are extruded from the private dead-spaces at the mixing point where they are combined. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Patient characteristics of the dataset. Age, height and weight 
are median values with the range in brackets, the lung function 
indices below are given as mean ± standard deviation. FEV1: 
forced expiratory volume in 1 s; LCI2.5: lung clearance index 
measured at the conventional endpoint of expired gas con-
centration 2.5% of the starting concentration; VFRC: lung vol-
ume at functional residual capacity; I1/3: fraction of pixels on 
MRI with low ventilation (below 1/3 of the mean); ICV: coef-
ficient of variation of inhaled helium measure by image 
intensity.   

All subjects 
Subjects (female) 25(10) 
Age years 17.5 (8.9—43.7) 
Height cm 162 (133—189) 
Weight kg 55.0 (27.5—95.0) 
FEV1% pred. 76.5 ± 23.0 
FEV1 z-score − 1.89 ± 1.81 
LCI2.5 supine 10.5 ± 3.2 
VFRC supine (L) 1.50 ± 0.47 
I1/3 0.146 ± 0.140 
ICV 0.569 ± 0.210  
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majority of cases (r = 0.88 and 0.76 respectively). Fig. S4(c) shows that 
there is strong correlation between the VH parameter σV and LCI 
measured by MBW (r = 0.93). 

Furthermore, the fitted parameters of the ventilation model show 
interdependence. Figs. S5(a) and (b) shows that increased ventilation 
heterogeneity σV results in an increase of the fitted FRC volume (V0) and 
dead-space volume (VD) relative to the value directly computed by 
MBW. These differences are due to the assumptions underlying both the 
model and the MBW measures themselves, which break down at high 
VH, as explained in the discussion. Supplementary Fig. S5(c) also shows 
that the uncertainty in predictions increases with VH. 

In the majority of cases, the imaged ventilation distributions show 
good agreement with those predicted by the model (Fig. 5). These fits 
are quantified in Supplementary Table S1, where it is shown that they fit 
the ventilation distributions better than a single parameter distribution 
fit directly to the imaging data. Supplementary Fig. S6 shows two ex-
amples of fitted SF6 curves compared to MBW data. 

3.4. Impact of shorter washout 

To measure the effect of shortening the MBW test time, we computed 
the LCI and model fits for increasing MBW termination thresholds 
(retaining the same model priors for V0 and VD). As the termination 
threshold is raised, LCI correlates strongly with MRI indices for thresh-

olds of 10% and below (Table 3), but this correlation drops off rapidly 
for larger thresholds. 

Fig. 6 also shows that LCI values correlate much less strongly with 
LCI2.5 values as the threshold is increased, however the model parameter 
σV remains practically unchanged up to the 20% threshold, and still 
correlates strongly with its initial values even at 40% termination 
threshold (r = 0.91 for σV vs. r = 0.69 for LCI). As shown in Table 3, the 
correlation of σV with MRI indices of VH (I1/3 and ICV) is also better 
maintained at the 20% threshold compared to LCI. Agreement of the 
model predicted MRI parameters is just as strong at 20% termination 
threshold as it is at 2.5%. Two examples of model fits for increasing 
threshold are given in Supplementary Fig. S7. 

4. Discussion 

We have developed a method to predict the ventilation distribution 
in the lungs directly from MBW data. The results show good agreement 
with the distribution measured by hyper-polarised gas ventilation MRI 
(Fig. 4). The CF patient cohort in this study displayed varying levels of 
lung function, with 5/25 subjects having LCI < 8 and FEV1 > 90% ex-
pected, implying VH within the normal limit. Therefore, we were able to 
test the model across a full spectrum of LCI values. The shape of the 
ventilation distribution was also well characterised in the majority of 
cases (Fig. 5 and Supplementary Table S1). This method therefore makes 

Fig. 4. (a) Model predicted I1/3 versus MRI 
measured values. (b) Bland-Altman plot of I1/3 
(predicted minus measured versus the mean of 
the two). (c) Model predicted ICV versus MRI 
measured values. (d) Bland-Altman plot of ICV 
(predicted minus measured versus the mean of 
the two). Key: MAP = Maximum a posteriori 
(most likely measurement value from ABC-SMC 
algorithm), IQR = Interquartile range (central 
50% of sampled posterior distribution from 
ABC-SMC algorithm), 95% range (central 95% 
of sampled posterior distribution from ABC- 
SMC), and LOA = limits of agreement (2 stan-
dard deviations either side of the mean).   
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the MBW and MRI results more directly comparable. This method also 
has an advantage over LCI in that it incorporates the interdependence of 
the inferred FRC, dead-space and ventilation heterogeneity. 

In addition, the model predictions of VH remained consistent as the 
test-data were truncated, remaining more strongly correlated with the 
predictions from the full dataset than LCI (Fig. 6 and Table 3). Other 
studies have shown that LCI specificity and sensitivity decreases with 
increasing termination threshold (Hannon et al., 2014). The model we 
have developed is robust up to a 20% termination threshold, suggesting 
that washout time could be reduced by approximately 75% on average. 
LCI, on the other hand, proved to be consistent with MRI measures only 
up to a 10% termination threshold. This demonstrates that we can 

extract sufficient information about VH from the early breaths of 
washout curves to characterise the full ventilation distribution, although 
this requires confirmation in broader datasets. It should be noted that 
the prior distributions of the model parameters were still generated 
using estimated FRC from the full washout (VFRC), so the model pre-
dictions are not entirely independent of classic MBW indices, but these 
priors are sufficiently broad to not bias the inferred parameters. How-
ever, closed-circuit wash-in can be used to calculate more accurate 
priors for FRC during wash-in (Horsley et al., 2016). Thus, combining 
our model with closed-circuit wash-in could greatly reduce overall test 
time while retaining the sensitivity to VH. Even in the case of nitrogen 
washout, the shortened washout time would also allow a quicker 

Fig. 5. Comparison of MRI measured ventilation distributions (blue histograms, normalised by mean pixel intensity in lung region) against those predicted by 
modelling. The black line shows the median, the darker orange region the interquartile range, the light orange region the central 95%, and the red dotted line the 
mean of the MRI ventilation distributions predicted from the final set of accepted simulations from ABC-SMC for each histogram. In the inset of each graph is printed 
the Kolmogrov-Smirnov (K-S) statistic and the root-mean squared error (RMSE) of the median predicted distribution (vs. the observed distribution). A bin-width of 
0.16 was used to visualise these distributions. Each figure (a)-(y) shows the result for one of the 25 patients in this study. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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recovery between tests. 
This work complements the wealth of literature around predicting 

the ventilation distribution in the lungs from inert gas washout tests 
(Bates and Peters, 2018; Mountain et al., 2018; Gomez et al., 1964; 
Lewis et al., 1978; Prisk et al., 1995; Saidel et al., 1980; Wagner et al., 
1974; Whiteley et al., 1998). The underlying compartmental lung model 
is similar to that of previous studies including the widely used methods 
of Lewis et al. Lewis et al. (1978) and the Multiple Inert Gas Washout 
Technique (Wagner, 2012). As in the more recent models (Bates and 
Peters, 2018; Mountain et al., 2018) we have used the actual MBW 
measured flow-rate as an input to simulations to account for the effects 
of variations in breath volumes (which is common in young subjects or 
those who have trouble regulating their breath volume). However, we 
designed the model to be discretised into large time-steps (10 per 
exhalation), improving model efficiency and enabling the use of 
Approximate Bayesian Computation. Bayesian inference approaches 
have previously only been used to extract data from the end-tidal con-
centrations in MBW (Mahar et al., 2018), but not to predict the 

ventilation distribution. Moreover, though the link between ventilation 
distribution and MBW curves has been studied in detail using biophys-
ical modelling (Foy et al., 2017, 2018; Mitchell et al., 2012; Verbanck 
et al., 2020) and benchtop experiments (Motta-Ribeiro et al., 2018), ours 
is the first study to have validated predictions of the ventilation distri-
bution in a clinical setting using direct imaging measurement in the 
same patients. 

The model also has some limitations. First, it assumes that gas 
transport to the lung units occurs in parallel, which is not a true repre-
sentation of the branching airway network. Second, diffusion in the 
alveolar region was modelled here as instantaneous. Part of the mech-
anism to generate phase-III slopes (Gustafsson, 2007), particularly for 
gases with high molecular weight such as SF6, was therefore missed. This 
intra-acinar mixing is below the MRI resolution and furthermore the 
molecular weight of the gases used for the two tests are different, and so 
one might expect a systematic bias in VH predictions, which is not seen 
in Fig. 4. This suggests that either this cohort is dominated by convective 
VH or the existence of some unknown compensatory factors. Third, it is 

Table 3 
Results of truncating MBW data. The median of the washout duration per test for all subjects is given with the range in square brackets. The washout duration per test is 
measured for each individual by taking the mean duration of the washout period (from time of first inhalation of room air to the end of 2nd exhalation following the 
termination threshold) over their three tests. Correlations between MRI indices of VH (I1/3 and ICV) and MBW measures (LCI and model-fitted σV) are given in terms of 
their Spearman rank ρ-values, while agreement between model-predicted and measured MRI indices are given as mean bias ± 2 standard deviations.  

MBW test termination threshold Median washout duration per test (s) I1/3 ρ-value ICV ρ-value Model agreement 
LCI σV LCI σV I1/3 ICV 

2.5% 97.0 [57.3 – 215.2]  0.82  0.80  0.75  0.70 -0.003±0.118 -0.004±0.298 
5% 73.9 [41.6 – 137.1]  0.81  0.83  0.74  0.71 0.004±0.121 -0.000±0.287 
10% 47.0 [32.5 – 93.6]  0.86  0.82  0.76  0.72 0.003±0.126 0.005±0.291 
20% 27.9 [23.1 – 58.8]  0.72  0.81  0.65  0.72 -0.007±0.117 -0.016±0.282 
40% 19.2 [11.0 – 38.2]  0.59  0.77  0.51  0.67 -0.017±0.154 -0.034±0.311  

Fig. 6. Summary of measurements from shortened MBW tests versus baseline measurements. (a) Comparison of patient LCI values (mean of 3 test repeats) at 
different termination thresholds (5%, 10%, 20%, and 40% of initial concentration). The error bars show the standard deviation (over test repeats) and the dotted lines 
show linear fits. Corresponding Pearson correlation coefficients are given next to the fit they relate to (and in the same colour). (b) Comparison of fitted (maximum a 
posteriori) values for the model VH parameter σ(x)

V at the different termination thresholds (x = 5%, 10%, 20%, and 40% as shown by y-axes labels) plotted against 
σ
(2.5)
V (all x-axes). Error bars show the IQR of the predicted values and the grey dashed line is the unity line. The black dotted lines show the linear fit for each plot 

with corresponding Pearson correlation. All p values for the linear fits shown are p < 0.001. 
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implicit in the model that the ventilation distribution is the same on 
inhalation and exhalation, regardless of breath volume or flow rate. 
These factors both affect airway closure and reopening, which may 
explain some of the discrepancy between predictions and outcomes. 
Fourth, the model in its current form is designed to model inert exoge-
nous gases, such as SF6, extensions will be required to simulate exchange 
of N2 or CO2 as measured by certain MBW devices. Finally, an inherent 
difficulty of parameter identifiability occurs when VH is large enough to 
mean that some lung regions have very low specific ventilation, and it 
appears that the actual size of this unventilated region is occasionally 
poorly accounted for in this model (see Supplementary Fig. S8 for a 
detailed example). This leads to poorer estimates of the lung volumes 
(both FRC and dead-space) and greater parameter uncertainty when VH 
is very high, as seen in Supplementary Figs. S3 and S5. Related to this is 
the assumption of an underlying continuous distribution that is used to 
generate the discrete ventilation distribution in the model (in this case 
lognormal), which places a restrictive prior on the shapes of distribution 
that can be predicted (e.g. multi-modal distributions are much less likely 
to be predicted). Future improvements of the model will be aimed at 
addressing these issues and testing in larger and broader datasets. 

Notwithstanding these limitations, the concept of this approach has 
been justified. Future refinement will be required to include more 
realistic acinar mixing effects and lung mechanics. To achieve this in a 
computationally efficient way, we may need to employ new approaches 
to dimensionality reduction (Whitfield et al., 2020) and homogenisation 
(Yoshihara et al., 2017) of acinar and airway transport simulations. The 
Bayesian framework laid out here will also aid in these developments, 
since Bayesian model selection (Toni et al., 2009) (which the algorithm 
(Whitfield, 2021) is programmed to perform) can be used to compare 
the ability of different models to adequately explain the data indepen-
dently of external verification. 

In conclusion, our results demonstrate that this model can use an 
individual’s MBW test data to predict ventilation distribution in their 
lungs, and for the first time this been corroborated these predictions 
with regionally resolved ventilation imaging. This method will enable 
clearer interpretation of clinical data, more direct comparison between 
ventilation imaging and MBW data, and help to enable reductions in test 
time that are required to improve clinical practicality. Furthermore, by 
translating more abstract indices of VH (e.g. LCI or σV) into more 
interpretable measures (e.g. the fraction of lung which is poorly venti-
lated I1/3) this work adds clinical value. Finally, this work is also the first 
example of a physiological model fitted to patient washout data using 
Bayesian parameter estimation, which will provide clinicians with all 
important estimates of uncertainty in physiological inferences. 

Data Availability 

The simulation code used in this manuscript is publicly available and 
cited in the text. 
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