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Dynamic and Flexible Survival Models
for Extrapolation of Relative Survival:
A Case Study and Simulation Study

Benjamin Kearns , Matt D. Stevenson, Kostas Triantafyllopoulos,

and Andrea Manca

Background. Extrapolation of survival data is a key task in health technology assessments (HTAs), which may be

improved by incorporating general population mortality data via relative survival models. Dynamic survival models

are a promising method for extrapolation that may be expanded to dynamic relative survival models (DRSMs), a

novel development presented here. There are currently neither examples of dynamic models in HTA nor comparisons

of DRSMs with other relative survival models when used for survival extrapolation. Methods. An existing appraisal,

for which there had been disagreement over the approach to survival extrapolation, was chosen and the health eco-

nomic model recreated. The sensitivity of estimates of cost-effectiveness to different model choices (standard survival

models, DSMs, and DRSMs) and specifications was examined. The appraisal informed a simulation study to evalu-

ate DRSMs with relative survival models based on both standard and spline-based (flexible) models. Results.

Dynamic models provided insight into the behavior of the trend in the hazard function and how it may vary during

the extrapolated phase. DRSMs led to extrapolations with improved plausibility for which model choice may be

based on clinical input. In the simulation study, the flexible and dynamic relative survival models performed simi-

larly and provided highly variable extrapolations. Limitations. Further experience with these models is required

to identify settings when they are most useful, and they provide sufficiently accurate extrapolations. Conclusions.

Dynamic models provide a flexible and attractive method for extrapolating survival data and facilitate the use of

clinical input for model choice. Flexible and dynamic relative survival models make few structural assumptions

and can improve extrapolation plausibility, but further research is required into methods for reducing the varia-

bility in extrapolations.
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Health technology assessment (HTA) is the scientific

evaluation of health technologies and informs decisions

regarding whether a health technology should be funded.

For consistent decision making, all relevant costs and

consequences associated with the appraised technology

should be included in the HTA. When the treatment

affects survival, it is important that lifetime outcomes be

included in the assessment.1 Estimates of lifetime mean

survival typically require extrapolations of incomplete

survival functions. These estimates can be key drivers

of estimates of cost-effectiveness and hence funding
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decisions.2 This illustrates the importance of using

appropriate methods for extrapolation.

A recent review of methods for extrapolating survival

data in cancer appraisals concluded that current approaches

were ‘‘suboptimal,’’ with an overreliance on common sur-

vival models, which may not adequately capture the com-

plexities of hazard functions that are expected to arise from

clinical trials.3 Dynamic survival models (DSMs) have

recently been suggested as flexible models for the analysis

and extrapolation of survival data.4 These may be viewed

as relaxing the structural assumptions of common survival

models by allowing their parameters to vary over time,

with this temporal variation modeled by a time series. A

particular advantage of DSMs is that extrapolations are

based on all the data while simultaneously giving more

weight to more recent observations. This resolves the dis-

agreement in the literature over how much evidence should

be included when generating extrapolations.5–8 Despite

these advantages of DSMs, there is a dearth of examples

of their use in HTA.

Another approach to improve extrapolations is via

the incorporation of external long-term evidence, such as

general population mortality data.9–13 In particular,

additive relative survival models decompose the overall

hazard function into the sum of disease-specific (or

‘‘excess’’) hazards and general population hazards. Extra-

polations are obtained for the former, and the additive

structure ensures that the overall hazard function never

falls below the general population hazards. Models for

the disease-specific hazard function include standard

parametric models and flexible spline-based models.14–17

In addition, DSMs may be used, providing dynamic rela-

tive survival models (DRSMs), a novel method that has

not previously been evaluated.

This article has 2 primary objectives. The first is to

demonstrate the use of DSMs and DRSMs in HTA via a

reanalysis of an existing National Institute for Health

and Care Excellence (NICE) appraisal. For this apprai-

sal, estimates of cost-effectiveness were sensitive to the

choice of extrapolating model for overall survival (OS),

and a key critique of the original extrapolations was that

they fell below those of the age-matched general popula-

tion. The second objective is to perform a simulation

study, informed by the appraisal, to compare the perfor-

mance of relative survival models.

Methods

The code used for both the case-study and simulation

study is available online (https://github.com/BenKearns/

RelativeSurvival) and provides additional information.

Case Study: Squamous Non–small-cell Lung Cancer

The existing HTA was a submission to NICE as part of

their TA program.18 A NICE committee considers both

the company submission and the independent evidence

review group (ERG) critique of this as part of their

decision-making process. The NICE committee provides

recommendations on whether the technology is judged

to be cost-effective and hence whether the technology

should be recommended for routine use. For this apprai-

sal, the population of interest was people with previously

treated locally advanced or metastatic (stage IIIB or IV)

squamous non–small-cell lung cancer. The intervention

was nivolumab, and the sole comparator in the company’s

submission was docetaxel. The main evidence source was

the phase III trial CheckMate-017 (NCT01642004), which

compared nivolumab (n = 135) against docetaxel (n =

137) for the population of interest (whose previous treat-

ment was with platinum combination chemotherapy).19

Patient follow-up was between 11 and 24 mo. At the end

of follow-up, there had been 86 (63.7%) and 113 (82.5%)

deaths in the nivolumab and docetaxel arms, respectively.

The primary outcome measure was OS. Evidence on effec-

tiveness came solely from this trial, and there was no treat-

ment switching in the data used in the company’s original

submission.

For both OS and progression-free survival (PFS), the

company based their approach to extrapolation on the

guidance in NICE TSD 14.20 The assumption of propor-

tional hazards was checked both visually and via signifi-

cance tests. The company considered both standard

survival models and Royston-Parmar models (RPMs),21

with up to 2 internal knots modeled on the hazard, nor-

mal, and odds scales (corresponding to extensions of the

Weibull, lognormal, and log-logistic models, respectively)

and Akaike’s information criteria (AIC) for goodness of

fit. For OS, the assumption of proportional hazards

appeared to hold, with a log-logistic model used for doc-

etaxel. The treatment effect for nivolumab was modeled

as a fixed hazard ratio of 0.59. For PFS, the proportional

hazards assumption was judged to be violated. Hence,

the company modeled both treatments using an RPM

with 2 internal knots on the hazard scale. The probabilis-

tic base-case incremental cost-effectiveness ratio (ICER)

arising from this approach was £86,000 (all ICERs dis-

cussed in this article are given to the nearest £500 and are

per quality-adjusted life-year gained), with a survival

gain of 1.31 y for nivolumab.18 This value was robust to

alternative approaches to extrapolation for PFS but not

for OS. For example, when varying the hazard ratio

across its plausible range, the ICER varied from £55,000

to £169,000.

2 Medical Decision Making 00(0)



The independent ERG were critical of the company’s

OS extrapolations, in particular the fact that the extrapo-

lated hazard eventually fell below that of the age-

matched general population was deemed to be ‘‘wholly

implausible, and inconsistent with any clinical evidence

of treating metastatic disease.’’22 The ERG contended

that the extrapolated hazard for OS was likely to increase

over time due to aging. Despite this, they extrapolated a

constant hazard over time (using an exponential model).

This was fit from 40 wk (9.2 mo) of follow-up (a tem-

poral subset of the data), with the ERG suggesting that

this cutoff was supported by the data. The ERG’s

approach to OS extrapolation increased the company’s

base-case ICER from £86,000 to £132,000, whereas the

estimated lifetime survival gain more than halved, from

1.31 to 0.64 y. In response, the company amended their

extrapolation approach to cap the extrapolated hazard

rate so that it never fell below that of the corresponding

general population. The company’s revised base-case

ICER was £92,000, with a survival benefit of 1.16 y.23

However, the ERG remained critical of the company’s

revised approach as not reflecting an anticipated long-

term increase in hazards due to the effect of aging.24

Hence, the approach to extrapolating OS was identified

as both a key area of uncertainty and a key driver of esti-

mates of cost-effectiveness. The company fit survival mod-

els to all the available data and extrapolated a decreasing

trend in the hazard. In contrast, the ERG fit a survival

model to a subset of the available data and extrapolated a

constant value (no trend), while also criticizing the com-

pany’s original extrapolations for eventually falling below

that of the age- and sex-matched general population. The

company in turn criticized the ERG’s approach as ignor-

ing the trend in the hazard observed in the trial and lack-

ing robustness by not using all the available data.

Case Study: Reanalysis of the Clinical Effectiveness Data

Data on OS were digitized from the pivotal trial publica-

tion19 using the Engauge digitizer.25 These digitized data

were used to replicate the original individual patient data

using the algorithm of Guyot and colleagues.26,27 For

consistency with the original company submission, ini-

tially both current practice and RPMs are considered for

the docetaxel arm (providing the baseline hazard func-

tion), with DSMs introduced later. A fixed hazard ratio

is used for the nivolumab treatment effect.

Within-sample goodness of fit is measured using AIC

(there were no substantial differences when using Baye-

sian information criteria). Another measure, the inverse

evidence ratio (IER) is also used to facilitate model com-

parisons. The IER is a measure of how plausible a model

is, relative to the ‘best’ model (which has the minimum

information criteria). Let ICm be the information criteria

value (such as AIC) for model m, with minimum

value IC
�. The IER for model m is then exp (�0:5 �

½ICm � IC
��) and will be 100% for the best fitting model,

whereas values for poorly fitting models will be close to

zero.28 Hence, the IER provides an interpretable scale

for comparing model fit. Values are shown in Supple-

mentary Tables S1 and S2 and demonstrate that the log-

logistic model is the best fitting for both the standard

models and the RPMs. Estimates of the hazard function

from the second-best fitting RPM (4 internal knots, odds

scale, results not shown) were visually very similar to the

log-logistic model for both the within-sample and extra-

polated periods.

Two DSMs are evaluated: a local trend and a damped

trend model (see the supplementary material for model

specification). Both may be viewed as modeling the log-

hazard as a linear function of log-time. They differ with

regard to the behavior of their extrapolations; a local

trend model extrapolates the trend in the log-hazard

indefinitely, whereas for the damped trend model, the

extrapolated trend decreases as the extrapolation time

horizon increases. Three DRSMs were evaluated: local

trend, damped trend, and local-level implementations.

These models assume that the observed trend continued

until the excess hazard became zero, the observed trend

continued in the short term (with long-term constant val-

ues of the excess hazard), and that the excess hazard was

constant, respectively (see the supplementary material

for full descriptions). As DRSMs formally incorporate

external evidence on general population mortality, they

are anticipated to provide more plausible extrapolations

than DSMs for this case study.

To perform cost-effectiveness analyses, the company’s

three-state partitioned survival analysis economic model

was replicated in R, assuming a (lifetime) 20-y time hori-

zon with a 1-wk time cycle. Utility data and resource use

were primarily taken from CheckMate-017.18 The 2 alive

health states of ‘‘stable’’ and ‘‘progressed’’ disease were

assigned utilities of 0.750 and 0.592 (with standard devia-

tions of 0.236 and 0.315), respectively. Everybody started

in the stable health state. Results are based on a probabil-

istic sensitivity analysis with 2,000 iterations to account

for nonlinearities in the model inputs. The model struc-

ture and inputs matched those reported in the original

appraisal.18 Further details on the health economic

model are provided in the supplementary material.
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Simulation Study

An additive hazards relative survival log-logistic model

was used as the data-generating mechanism for the simu-

lation study. To ensure that this mechanism was clini-

cally plausible, it was obtained by fitting a log-logistic

model to the case-study data (docetaxel arm), simulating

from this model, and incorporating the (age-matched)

general population hazard. For each individual, 3 times

were simulated: a survival time from the log-logistic

model, a survival time from the general population

hazards (assuming a uniform distribution of deaths

within a year), and a censoring time uniformly distribu-

ted between 5 and 6 y. This length of follow-up was cho-

sen to ensure that there was sufficient data that included

the turning point in the hazard function. The observed

survival time was set to the minimum of the 3 sampled

times (with event status similarly set). For this study, 200

simulations were performed, with each having a sample

size of 300. Estimates of the ‘‘true’’ hazard function were

based on the mean of 10 million simulations. Five mod-

els were considered: a log-logistic relative survival model,

DRSMs with either a local or damped trend, and 2 flex-

ible relative survival models. These use cubic splines to

model the excess hazard and vary with how the model is

specified. One uses the specification introduced by Nel-

son and colleagues (hereafter ‘‘Nelson relative survival’’

[NRS]); the other may also be written as a flexible mix-

ture cure model. For both models, further details are

provided by Jakobsen and colleagues.15 As the data-

generating mechanism used a log-logistic model, the 2

DRSMs and the 2 flexible relative survival models were

incorrectly specified, whereas the log-logistic relative sur-

vival model was correctly specified.

The estimand was the mean of the natural logarithm

of the time-varying hazard function. The primary perfor-

mance measure used was the mean (of the) squared error

(MSE), with bias as a secondary performance measure.

For MSE, smaller values indicate better model perfor-

mance; for bias, this is indicated by values closer to zero.

To avoid results being unduly influenced by implausibly

large extrapolations, hazard estimates were capped to

not exceed 1. Bias may be viewed as estimating how close

Table 1 Cost-Effectiveness Estimates from Different Extrapolation Approaches.

Absolute Value Incremental Value

ICER (per QALY)QALYs Cost QALYs Cost

Replicated submission (no cap)
Nivolumab 1.29 £85,882 0.74 £65,470 £87,926
Docetaxel 0.55 £20,413

Replicated submission (with cap)
Nivolumab 0.95 £72,943 0.39 £54,412 £139,958
Docetaxel 0.56 £18,530

Replicated ERG approach
Nivolumab 0.66 £56,985 0.33 £40,799 £124,807
Docetaxel 0.34 £16,186

Dynamic survival models
Local trend

Nivolumab 1.06 £75,060 0.50 £56,699 £113,170
Docetaxel 0.56 £18,361

Damped trend
Nivolumab 0.87 £67,328 0.35 £49,600 £141,236
Docetaxel 0.52 £17,728

Dynamic relative survival models
Local level

Nivolumab 0.88 £67,880 0.36 £50,229 £139,657
Docetaxel 0.52 £17,651

Local trend
Nivolumab 0.99 £72,990 0.45 £54,847 £122,328
Docetaxel 0.54 £18,143

Damped trend
Nivolumab 0.86 £66,899 0.34 £49,196 £142,825
Docetaxel 0.52 £17,702

ERG, evidence review group; ICER, incremental cost-effectiveness ratio = incremental costs/incremental QALYs; QALY, quality-adjusted life-year.
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to the truth estimates are on average, whereas MSE mea-

sures both bias and variability in estimates. Further

details on the performance measures are available in the

supplementary material.

Results

Case Study

Estimates of the trend in the hazard function over time,

along with the uncertainty in these estimates are shown

in Figure 1 for the 2 DSMs. This is of particular impor-

tance as there was disagreement over the assumed trend

at the end of follow-up, with the company modeling a

decreasing trend and the ERG modeling no trend. The

trend estimate from both DSMs is initially positive fol-

lowed by a decrease. For both models, the trend becomes

negative at about half a year. For the local trend model,

the trend estimates continue to decrease, albeit with a

large degree of uncertainty. For the damped trend

model, the trend is almost zero after half a year, suggest-

ing that after this time, the assumption of a constant

hazard may be appropriate. Figure 1 suggests that mod-

els that assume monotonicity (such as the Weibull and

Gompertz) are inappropriate. In contrast, the use of a

log-logistic or lognormal model may be acceptable, as

the hazards from these can increase then decrease.

Furthermore, the confidence intervals from both models

include zero at all time points, indicating that a constant

hazard model cannot be ruled out.

A visual comparison of the fit from the 2 DSMs along

with the original company approach (log-logistic) and

ERG approach (hybrid exponential) is provided in Fig-

ure 2. The observed hazard is generally unimodal, albeit

with large variability due to small patient numbers

toward the end of follow-up. For extrapolations, esti-

mates of the annual hazard of all-cause mortality for the

age-matched general population are also included based

on 2016 UK data from the Human Mortality Data-

base,29 assuming a starting age of 63 y (the median age

of participants in CheckMate 017). For the first year of

follow-up, estimates of the hazard function from the log-

logistic and 2 dynamic models are visually similar, albeit

the peak in the hazard is more pronounced for the log-

logistic. At 1 y of follow-up, there are only 30 people

still at risk (22% of the starting sample); this small sam-

ple size may be driving the differences in model

estimates after 1 y. These differences continue into the

Figure 1 Estimates of the trend in the hazard function from 2 dynamic survival models. Solid blue line: point estimates, with

95% confidence intervals in pale blue. Black line: no trend.

Kearns et al. 5



extrapolated phase, with the largest decreases in the

hazard function observed for the log-logistic model. In

contrast, the damped trend model extrapolates almost

constant hazards; in the short term, these estimates are

very similar to those from the ERG approach, but they

become increasingly smaller than the ERG extrapola-

tions as the time horizon increases. Extrapolations from

the local trend model lie between the log-logistic and

damped trend models, eventually falling below age-

matched general population estimates at approximately

15 y, hence potentially lacking face validity.

Estimates from DRSMs are shown in Figure 3, along

with the log-logistic model and ERG approach for com-

parison. Visually, the local-level DRSM provides similar

within-sample estimates to an exponential model and

does not fit the data as well as the other models. Extra-

polations from the local level and damped trend DRSMs

are very similar to each other, illustrating that (as with

the damped trend DSM) there is a pronounced dampen-

ing of the trend before the end of follow-up. After 20 y,

hazards from all the DRSMs are greater than the general

population estimates, implying that there is a nonnegligi-

ble extrapolated excess hazard. After about 10 y, the

local trend DRSM extrapolates an increasing hazard,

suggesting that after this point, the influence of aging on

the hazard function outweighs the extrapolated decrease

in the excess hazard.

Supplementary Table S4 compares the replication

with the original company submission (using their

approach to extrapolation) with the replicated model.

Given that the individual patient-level data were

re-created, there is in general close agreement, albeit with

some underestimation of absolute costs. This is expected,

as it was not possible to include a drug acquisition cost

for the progressed disease health state. Cost-effectiveness

results from the dynamic models are provided in Table

1. For comparison, 3 replicated analyses are also shown:

� The company’s original submission (extrapolation

with a log-logistic model)
� Above, with extrapolated hazards capped by general

population hazards

Figure 2 Hazard estimates without external data. Left: within-sample, right: extrapolations. Black line: observed hazard. Red

line: general population hazard.
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� The ERG’s hybrid approach (use Kaplan-Meier esti-

mates up to 40 wks, extrapolations based on an expo-

nential fit to the remaining data)

As shown in Table 1 and Figures 2 and 3, extrapolations

can differ between the 5 dynamic models, which affects the

cost-effectiveness results. The smallest ICER occurs for the

local trend DSM (£113,000). The largest ICERs arise from

both damped trend dynamic models and the local-level

DRSM (£140,000 to £143,000). These 3 models all extra-

polate a near-constant hazard. Variation in ICERs across

the 3 DRSMs (£122,500 to £143,000) was slightly greater

than variation between the ERG approach (£125,000) and

the company submission with a cap (£140,000). Advan-

tages of the DRSMs are first that model choice may be

guided by clinical input into the likely behavior of the

long-term excess hazard and, second, that external evi-

dence is formally included as part of the model fitting pro-

cedure, instead of via a post hoc adjustment. Collectively,

this allows for a stronger emphasis on understanding the

likely behavior of the long-term excess hazard function

and the plausibility of different assumptions about this

Figure 3 Hazard estimates with external data. Left: within-sample, right: extrapolations. Black line: observed hazard. Red line:

general population hazard.

Table 2 Mean Squared Error and Bias Values, Averaged over Time.

Relative Survival Model Mean Squared Error: Mean (95% CI) Bias: Mean (95% CI)

Log-logistic 0.022 (0.020, 0.023) 0.106 (0.017, 0.195)
Nelson relative survival 0.086 (0.084, 0.089) 0.166 (0.031, 0.300)
Flexible cure model 0.202 (0.194, 0.211) 0.174 (0.039, 0.309)
Trend dynamic survival 0.089 (0.086, 0.092) 0.127 (0.059, 0.194)
Damped dynamic survival 0.122 (0.121, 0.124) 0.176 (0.103, 0.249)

Kearns et al. 7



long-term behaviour. As noted, an advantage of dynamic

models over hybrid models is the avoidance of the subjec-

tive choice of which data to use for the extrapolating

model. Estimates of cost-effectiveness can be sensitive to

this choice, as illustrated in Supplementary Figure S1.

Dynamic models also use all the data; with the ERG

approach, only a third of the original sample (45 people)

contribute to extrapolations.

Simulation Study

A graph of the true hazard function and the simulations

from this is provided in the supplementary material (Sup-

plementary Figure S2), whereas a visual comparison of

model estimates with the truth is given in Figure 4. The

correctly specified log-logistic relative survival model has

the smallest variation in extrapolations, but there is a

persistent overestimation that becomes more pronounced

as the extrapolation time increases. Of the 2 flexible mod-

els (NRS and flexible cure model [FCM]), the NRS tends

to overestimate the true hazard function, while the FCM

underestimates it. Of the 2 dynamic models, the damped

trend model has less variability in extrapolations, because

of the dampening of the trend. However, this dampening

means that, often, the decrease in the excess hazard is not

captured, leading to overestimation. All of the flexible

and dynamic relative survival models produce highly

variable extrapolations, especially when compared with

the log-logistic relative survival model.

Summary MSE and bias values are provided in Table

2, with plots of these statistics over time provided in Sup-

plementary Figure S3. Consistent with Figure 4, the log-

logistic model has the smallest variance, smallest bias,

and lowest MSE values of all the relative survival models

considered. Of the incorrectly specified models, MSE val-

ues were smallest for the NRS and trend DRSM (values

of 0.086 and 0.089, respectively) and largest for the FCM

(0.202). The trend DRSM had the smallest bias (0.127);

however, there was a lot of uncertainty in the bias esti-

mates, with each model’s confidence interval including

the bias point estimate for every other model (including

the log-logistic).

Figure 4 Relative survival model estimates of the hazard function and true values (black lines). FCM, flexible cure model; NRS,

Nelson relative survival.

8 Medical Decision Making 00(0)



Discussion

A motivating case study introduced DRSMs and demon-

strated the usefulness of relative survival models when

extrapolating survival data. This case study informed a

simulation study, which was used to compare different

relative survival models. Flexible and dynamic relative

survival models did not perform as well as the true model

but are a potentially useful approach when the true sur-

vival model is unknown. The case study illustrated sev-

eral benefits of dynamic models. This includes combining

flexible fit to the observed data with explicit modeling of

the long-term trend, incorporating external data to

inform extrapolations, and encoding clinical views on

long-term survival via model specification.

The clinical plausibility of extrapolations is very

important. Additive relative survival models ensure that

the extrapolated hazard function does not fall below that

of the general population. This is not the only measure

of extrapolation plausibility, but it is an important one

that should be considered. Different model specifications

are possible for DRSMs, reflecting different assumptions

about the long-term behavior of the excess hazard. This

flexibility in model specification and the direct interpreta-

tion of the extrapolations is a significant advantage of

DRSMs when compared with other survival models and

allows for the natural inclusion of clinical opinion about

both the natural history of the disease and the likely

mechanism of action of treatments. Basing model choice

on clinical input into the natural history of the disease is

of particular benefit, as good within-sample goodness of

fit is not a predictor of good extrapolation perfor-

mance.30 A further advantage of DRSMs is that it is

straightforward to extend these to incorporate time-

varying treatment effects that act on the disease-specific

(excess) hazard function (see the supplementary material

for specification). As the focus of the article was on dif-

ferent relative survival models, this extension was not

pursued further, but it is noted that modeling the treat-

ment effect as applying to the overall hazard can lead to

biased results, as it includes the unrealistic assumption

that treatment will reduce mortality that is unrelated to

the disease.31 In addition, an alternative to modeling a

treatment effect is to fit separate models to each arm; this

will create an implicit treatment effect, and the plausibil-

ity of any such effects should be explicitly considered.

Re-created patient-level data were used in the case

study. The re-created company submission showed close

agreement with the original submission, demonstrating

the usefulness of using re-created data. One limitation

was that it was not possible to explore the effects of cov-

ariates on survival. In particular, when estimating

relative survival, it has been demonstrated that including

age can lead to increased accuracy.32

The case-study results from the DRSMs suggest that

the ICER arising from the company’s original approach

(£88,000) is likely to be too low; depending on the long-

term prognosis of patients, the ICER is likely to be

between £122,000 and £143,000. This range of ICERs is

above the acceptable threshold for end-of life treatment,

which is typically assumed to be £50,000. Following their

original submission, the company offered a discount to

the cost of their treatment to lower the ICER (and so

improve the possibility of a positive recommendation).

The magnitude of discount required to make the treat-

ment cost-effective will be strongly affected by the extra-

polation approach used. Of the approaches evaluated

here, it is not possible to definitively state which would

be the preferred base-case analysis, but the use of a

dynamic model that incorporates external evidence

appears to be the most useful. Future research could

identify the situations in which the different DRSM spec-

ifications (including the modeling of the treatment effect)

are the most appropriate. Relative survival models that

do not bound the overall hazard by the general popula-

tion hazard are also possible.16 There is uncertainty

whether long-term extrapolated hazards should be

bounded by the general population hazards (that is, if

long-term survivors have a better prognosis than the gen-

eral population does); long-term follow-up from trials

would be able to provide insight into this.

For the simulation study, the correctly specified log-

logistic relative survival model provided the best extrapo-

lations of the models considered. Alternative standard

parametric relative survival models were not considered,

as these typically have strong parametric assumptions.

For example, the Weibull model assumes that the excess

hazard is monotonic, which is known to be inadequate

for the simulation study. In practice, the suitability of a

model with monotonic hazards may be unknown; similar

work on model choice for cure models has shown that

for standard parametric models, extrapolations can be

sensitive to model misspecification.11 The alternative

relative survival models considered in the simulation

study have very weak structural assumptions, and so

model misspecification is less of an issue. However, these

models can provide highly variable extrapolations. Fur-

ther research into reducing the variability of these extra-

polations will be very useful. This could involve the use

of other types of external evidence, such as registry data

or previous trials for the disease of interest.33 Further

research could also identify whether there are certain

situations in which 1 or more of the models considered

are of particular benefit. There were some limitations to
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this simulation study. Only a single data-generating

mechanism was considered; future work could consider

different designs such as model specification, censoring

mechanism, sample size, and length of follow-up. The

length of follow-up used here (5 to 6 y) was longer than

is often seen in HTA, which suggests that in practice,

relative survival models may perform even worse for

extrapolation. The comparative performance, as evalu-

ated here, should, however, remain similar.

In conclusion, survival data describe the occurrence

of deaths over time and so form a natural time series.

This motivates the use of dynamic models, which can

exploit the temporal evolution of the hazard function

when generating extrapolations. These models combine

flexible within-sample estimates with parsimonious mod-

els for extrapolations that have meaningful clinical inter-

pretations. These models, along with relative survival

models that incorporate external evidence on general

population mortality, have potential advantages over the

survival models currently used in HTA. In the simulation

study of this article, dynamic and flexible relative sur-

vival models had similar extrapolation performance.

These models impose minimal structural assumptions

and can provide good within-sample estimates. Further

experience of these models is required to provide more

specific guidance about the role of both dynamic models

and relative survival models in HTA.
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