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The low-energy physics of fractional quantum Hall (FQH) states—a paradigm of strongly correlated
topological phases of matter—to a large extent is captured by weakly interacting quasiparticles known as
composite fermions. In this paper, based on numerical simulations and effective field theory, we argue that
some high-energy states in the FQH spectra necessitate a different description based on parton
quasiparticles. We show that Jain states at filling factor ν ¼ n=ð2pn� 1Þ with integers n, p ≥ 2 support
two kinds of collective modes: In addition to the well-known Girvin-MacDonald-Platzman (GMP) mode,
they host a high-energy collective mode, which we interpret as the GMP mode of partons. We elucidate
observable signatures of the parton mode in the dynamics following a geometric quench. We construct a
microscopic wave function for the parton mode and demonstrate agreement between its variational energy
and exact diagonalization. Using the parton construction, we derive a field theory of the Jain states and
show that the previously proposed effective theories follow from our approach. Our results point to partons
being “real” quasiparticles which, in a way reminiscent of quarks, become observable only at sufficiently
high energies.
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I. INTRODUCTION

Since their discovery, fractional quantum Hall (FQH)
phases continue to attract attention for their exotic topo-
logical properties [1–5], including the recent experimental
observations of fractional statistics of their underlying
charged quasiparticles [6,7]. A highly successful theoretical
approach for a large class of FQH states is based on
reformulating the problem in terms of weakly interacting
quasiparticles known as composite fermions (CFs) [8]. The
CF approach exists in its microscopic and field-theoretic
incarnations. The microscopic formulation has proven to be
extremely successful in producing accurate wave functions
for the ground state and low-lying excited states [9]. The
field theory due to Halperin, Lee, and Read (HLR) [10]
predicts the composite Fermi liquid (CFL) nature of the
gapless state in the half-filled Landau level (LL) and

describes the underlying mechanisms for the formation
of non-Abelian paired states [5,11].
Recently, the field theory of CFs underwent a major

transformation when Son [12] explained how the lowest
LL (LLL) projection could be incorporated into the HLR
theory. This was accomplished by noting that particle-hole
(PH) symmetry becomes an exact symmetry of the FQH
problem if the electrons are restricted to the LLL. The PH
symmetry is implemented utilizing a Dirac description of
CFs and a massless version of the Galilean invariance [13].
Among the successes of the Son-Dirac theory [12] is the
calculation of the spectrum of collective modes [14] near
filling factor ν ¼ 1=2 and the calculation of the projected
static structure factor [15], in accordance with the general
Ward identities [16,17]. The Son-Dirac theory [12] applies
to FQH states in the vicinity of ν ¼ 1=2. More generally,
for FQH states in the Jain sequence of filling factors
ν ¼ n=ð2pn� 1Þ, this approach is not valid due to the
lack of PH symmetry: States around ν ¼ 1=ð2pÞ get
mapped to states near ν ¼ ð2p − 1Þ=ð2pÞ upon PH trans-
formation. Several kinds of effective theories are proposed
to treat the general Jain states with p > 1 [18–22].
One crucial piece of data needed to understand the

general Jain sequence is encoded in the neutral collective
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modes they support. Since the work of Girvin, MacDonald,
and Platzman (GMP) [23,24], it has been known that all
FQH fluids support a collective excitation that can be
viewed as a (LLL-projected) density wave on top of the
electronic ground state—the gapped analog of the roton
excitation in liquid helium [25]. This collective mode has a
microscopic description in terms of a “single-mode
approximation” (SMA), which has been extensively tested
numerically [26–28] and detected experimentally using
inelastic light scattering [29–32]. Recent work [15,33,34]
points out that the long-wavelength limit of the GMP mode
exhibits a novel property: As the momentum q → 0, the
density wave excitation can be interpreted as an emergent
quantum geometry. This geometric degree of freedom is
dubbed the “FQH graviton,” since it carries angular
momentum L ¼ 2 [27,34–36] suggestive of the spin-2
elementary particle. The FQH graviton is hidden from
conventional probes for collective modes such as inelastic
light scattering [29–32], since these probes are limited to
finite momenta. In contrast, recent works [37–40] show that
the graviton can be directly excited in a dynamical quench
experiment, where the band mass or dielectric tensor of the
two-dimensional electron gas is suddenly made anisotropic
or the magnetic field is abruptly tilted (see also a recent
proposal using surface acoustic waves [41]).
An important clue about how to approach the general

Jain series comes from a recent work [42], where it is
demonstrated that the theories of Refs. [20,21], as written,
are inconsistent with LLL projection, because they violate
the bound on the projected static structure factor discovered
by Haldane [43]. The authors of Ref. [42] argue that the
only way to remedy the field theory is to postulate an
existence of a collective spin-2 mode similar to the usual
GMP magnetoroton mode. This mode supplies the missing
contribution to the structure factor and ensures the con-
sistency of the field theory with LLL projection.
In this paper, we study the neutral collective modes of the

general Jain series at filling ν ¼ n=ð2pn� 1Þ using the
parton construction, at both the microscopic and field-
theoretic levels. The parton picture of elementary particles
was originally introduced by Feynman to describe the high-
energy physics of hadrons [44,45]. In the FQH context, the
microscopic version of the parton construction was intro-
duced by Jain [46] as a generalization of the CF theory to
describe a wider class of FQH states, especially even
denominator states, while its field-theoretic version was
formulated by Wen [47] to provide a mean-field derivation
of certain non-Abelian FQH states.We describe a new parton
construction that naturally incorporates the LLL projection.
In our parton theory, the LLLDirac electron is broken down
into two partons Ψe ¼ Ψp · ϕ, where the fermionic parton
Ψp forms a Jain state in the primary sequence at filling
ν ¼ n=ð2n� 1Þ, while the bosonic parton ϕ forms a
Laughlin state at filling ν ¼ 1=½2ðp − 1Þ�. This construction
implies the effective theories studied in Refs. [20,21,42].

The parton construction naturally leads to two neutral
collective modes: the GMP mode of the fermionic parton
and the GMP mode of the bosonic parton; see Fig. 1 for an
illustration. The former mode is also captured by the CF
theory in the form of a CF exciton—promoting one CF
from the highest filled CF-Landau level to the lowest
unoccupied CF-Landau level [9]. In the long-wavelength
limit of our interest, the two approaches, GMP and CF
exciton, yield similar results [27,28], and we use the two
terms interchangeably. In contrast, the focus of the present
paper is the GMP mode of bosonic partons, a new type of
excitation that is not captured by the GMP and CF theories.
The paper is organized as follows. In Sec. II, we discuss

the parton field theory, rederive the previous results of
Refs. [20,21,42], and explain the origin of the collective
modes, paying special attention to the LLL projection. In
Sec. III, we give the microscopic parton construction and
propose LLL-projected trial wave functions for the collec-
tive modes, evaluating their variational energies. In
Secs. IV and V, we perform a detailed numerical study
of the collective modes at ν ¼ 2=7 and 2=9. We show that
the two modes can be distinguished not only by their
energy, but also by their chirality [in the case of states in the
Jain sequence n=ð2pn − 1Þ] as well as by their clustering
properties. We also study the geometric quench and
observe two independent oscillation frequencies that indi-
cate the existence of two modes. Similarly, we show that
the dynamical structure factor, at low wave numbers, is
heavily concentrated on the two collective modes, despite

CF exciton

Parton mode

Ground state

FIG. 1. Schematic representation of the spin-2 collective modes
of the ν ¼ 2=9 Jain state. The low-energy CF exciton mode is
shown in blue, while the high-energy parton mode is shown in
yellow. The green dot represents the ground state, and the shaded
region represents the continuum of excitations. The circle and
arrows together denote a composite fermion [boson] which is a
bound state of an electron (circle) and an even [odd] number of
vortices (arrows). In the long-wavelength limit, we also refer to
the CF exciton mode as the GMP mode, as the two describe
similar physics in this limit.
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the bosonic parton mode occurring at very high energy. Our
results provide evidence that partons emerge as fundamen-
tal quasiparticles of the p > 1 Jain FQH states when probed
at sufficiently high energies. Moreover, these results high-
light the qualitatively different physics between states lying
in the primary and secondary Jain sequences. We conclude
in Sec. VI by discussing some open problems and future
directions. Appendixes contain further derivations and
numerical data for other filling factors, including FQH
states of bosons.

II. EFFECTIVE FIELD THEORY

One approach to an effective field theory for general Jain
FQH states is based on the requirement that in the parent
CFL state the CF has a fractional Berry phase around its
Fermi surface [18,19]. A different approach postulates that
the Dirac CF with Berry phase π interacts with a Chern-
Simons (CS) term with the coefficient ðp − 1Þ=ð8πpÞ
[20,21]. The term is motivated partly by the empirically
observed “reflection symmetry” of the I-V curves near
ν ¼ 1=ð2pÞ [48,49]. The CS term manifestly breaks PH
symmetry; however, it is not clear what forces the CF to
have a Berry phase of π. Still, the −2πν Berry phase at
filling ν ¼ 1=4 is demonstrated numerically [21]. The
study of the Berry curvature shows that the π Berry
phase comes from a singularity at momentum 0, while
−πðp − 1Þ=p is smoothly distributed in momentum space.
In this section, we expose a field-theoretic version of the

parton construction. This allows us to derive the effective
Lagrangian for the Jain series at filling ν ¼ n=ð2pn� 1Þ
from a microscopic starting point and an appropriate mean-
field approximation. The two main ingredients in the
construction are (i) parton decomposition of the electron
operator and (ii) LLL projection implemented via the
duality discovered by Son [12]. The effective theories
studied in Refs. [20,21] follow from our construction.
We further show that the extra spin-2 mode discussed in
Ref. [42] corresponds to the collective mode of partons. We
assume that our theories are defined on R3 and neglect
nonlocal information. Careful discussion of the parton
construction can be found in Refs. [50,51].

A. Dirac formulation of electrons
in the lowest Landau level

To start, we consider the problem of interacting non-
relativistic electrons and show, following Son [12], that this
problem is equivalent toDirac electrons once the LLL limit is
taken. The Lagrangian for interacting electrons is given by

L ¼ iψ†D0ψ −
1

2me
jDiψ j2 þ

gB
4me

ψ†ψ − V intðjψ j2Þ; ð1Þ

where g is the g factor, V intðjψ j2Þ is the interaction potential,
and Dμ ¼ ∂μ − iAμ with Aμ the external electromagnetic

vector potential corresponding to the magnetic field B.
When g ¼ 2, we can take the limit me → 0 to con-
fine the electrons to the LLL. To do so, we rewrite the
Lagrangian as

L¼ iψ†D0ψ −
1

2me
ðDx− iDyÞψ†ðDxþ iDyÞψ −V intðjψ j2Þ:

ð2Þ

Next, we introduce the Hubbard-Stratonovich field χ as
follows:

L ¼ iψ†D0ψ þ iψ†ðDx − iDyÞχ þ iχ†ðDx þ iDyÞψ
þ 2meχ

†χ − V int: ð3Þ

The limit me → 0 is now smooth, and we can discard the
mass term for χ.
Finally, we introduce the LLL Dirac electron

Ψe ¼
�
ψ

χ

�
; ð4Þ

in terms of which the Lagrangian is given by

L ¼ iΨ̄eγ
μDμΨe − V int: ð5Þ

When dealing with relativistic degrees of freedom, we have
to be careful with the filling fraction. Indeed, if ψ forms a
FQH state at filling νNR, then Ψe must form a FQH state at
filling ν ¼ νNR − 1=2 [12,52].

B. Parton construction

Now we are ready to perform the parton construction.
Note that the theory [see Eq. (5)] is already projected to the
LLL. Our main concern is to preserve this property. We
assume that the nonrelativistic electron ψ forms a Jain state
at νNR ¼ n=ð2pnþ 1Þ. Then, the relativistic LLL electron
Ψe is at ν ¼ n=ð2pnþ 1Þ − 1=2. We represent the LLL
Dirac electron as a product of two partons, one fermionic,
Ψp, and one bosonic, ϕ, as

Ψe ¼ Ψp · ϕ: ð6Þ

The Dirac fieldΨp has electric charge q1 ¼ 1=p (we set the
electron charge to unity), and ϕ has the electric charge
q2 ¼ 1 − 1=p, so that q1 þ q2 ¼ 1 and the charge of the
electron is recovered. We have to gauge the relative U(1)
between Ψp and ϕ, which leaves the electron operator
invariant to ensure that no unphysical states are introduced.
This is accomplished by using a U(1) gauge field α to be
introduced shortly.
After we introduce the partons, we must choose a mean-

field state for each parton. We assume that Ψp forms a
Jain state at filling ν ¼ n=ð2nþ 1Þ − 1=2 and ϕ forms a
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Laughlin state at filling ν ¼ 1=½2ðp − 1Þ�. This results in
the Lagrangian

L ¼ iΨ̄pγ
μ½∂μ − ðiq1Aμ − iαμÞ�Ψp − V intðΨpÞ

þ iϕ†ð∂0 − iq2A0 − iα0 þ j∂i − iq2Ai − iαij2Þϕ
− VintðϕÞ; ð7Þ

where V int describes the residual interaction between the
partons allowing them to form the aforementioned mean-
field states.
We analyze this mean field using an effective theory that

respects the LLL projection. To do that, we dualize the
fermionic parton and map the parton Jain state of Ψp to an
integer quantum Hall (IQH) state of the dual Dirac parton
Ψd at filling ν ¼ nþ 1=2.
The effective Lagrangian for ν ¼ n=ð2pnþ 1Þ is

L ¼ iΨ̄dγ
μð∂μ − iaμÞΨd −

1

4π
ðq1Ã − αÞ ∧ da

þ 1

8π
ðq1Ã − αÞ ∧ dðq1Ã − αÞ

þ iϕ†ð∂0 − iq2A0 − iα0 þ j∂i − iq2Ai − iαij2Þϕ
− VintðϕÞ; ð8Þ

where a is a U(1) gauge field [12] and we also enforce
the massless Galilean invariance, which is generally present
in the LLL [13]. To leading order, this requires an inclusion
of the spin connection ω with the vector potential as
follows:

Ã ¼ Aþ p
2
ω: ð9Þ

The Dirac field Ψd represents the electrically neutral
composite Dirac parton, and ϕ is the bosonic parton
forming the ν ¼ 1=½2ðp − 1Þ� Laughlin state. The two
interact via the gluing U(1) gauge field α. Equation (8)
is the central result of this section. The collective modes are
spin-2 excitations of Ψd (or, alternatively, Ψp) and spin-2
excitations of ϕ. In the remainder of the section, we argue
that Eq. (8) is the correct effective theory of LLL electrons
forming a Jain state at ν ¼ n=ð2pnþ 1Þ.

C. Response theory

We would like to make sure that the effective theory
given in Eq. (8) gives the correct Hall conductivity and
Wen-Zee shift. As a side result, we derive theories
introduced in Refs. [20,21].
First, we integrate out the high-energy bosonic parton ϕ,

which generates the following contribution to the effective
Lagrangian:

Lϕ ¼ 1

4π

1

2ðp − 1Þ ðq2Aþ αÞdðq2Aþ αÞ

þ 2ðp − 1Þ
4π

1

2ðp − 1Þ ðq2Aþ αÞdω: ð10Þ

Second, we integrate out the gluing gauge field α. The
equation of motion for α takes the form

α ¼ −
p − 1

p

�
aþ 1

2
ω

�
; ð11Þ

which leads to the following effective Lagrangian:

L¼ iΨ̄dγ
μð∂μ− iaμÞΨd−

p−1

8πp
ada−

1

4πp
Adaþ 1

8πp
AdA

−
2p−1

8πp
adωþ 1

4π

2p−1

2p
Adω: ð12Þ

The first line in Eq. (12) is the Lagrangian studied in
Refs. [20,21]. The second line is the coupling to the spin
connection.
To obtain the linear response functions, we need to

integrate out the composite Dirac parton Ψd. To do so, we
follow the method outlined in Refs. [13,53]. The effective
Lagrangian generated from integrating out Ψd is

LΨd
¼ 1

4π

�
nþ 1

2

�
adaþ nðnþ 1Þ

4π
adω: ð13Þ

Integrating out a from Eqs. (13) and (12) gives the induced
Lagrangian that encodes the Hall conductivity and the shift

L ¼ n
2pnþ 1

1

4π
AdAþ nðnþ 2pÞ

2pnþ 1

1

4π
Adω; ð14Þ

which confirms the correct Hall conductivity and the shift
for the Jain state at ν ¼ n=ð2pnþ 1Þ.

D. Negative Jain series and reflection symmetry

The states in the negative Jain series at ν ¼ n=ð2pn − 1Þ
are obtained by applying the particle-hole transformation to
the Dirac parton

nþ 1

2
→ −

�
nþ 1

2

�
: ð15Þ

The resulting response action is then simply

L ¼ 1

4π

nþ 1

2pðnþ 1Þ − 1
AdAþ n½−ðnþ 1Þ þ 2p�

2pnþ 1

1

4π
Adω;

ð16Þ

which is just the negative Jain series with n0 ¼ nþ 1.
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This particle-hole transformation is not the particle-hole
symmetry of the LLL electrons near half filling. This
transformation does not have to preserve the spectrum of
the original electron problem. It does, however, preserve
the spectrum of the Dirac partons, since they are close to
half filling and it does not affect the spectrum of ϕ at all.
This may explain why enforcing the reflection symmetry
discussed in Ref. [20] is the right strategy. This trans-
formation changes the chirality of the parton state, sug-
gesting that the lower-energy collective modes for positive
and negative Jain series have different chiralities, while the
high-energy collective mode has the same chirality.

E. Collective modes

Next, we discuss the collective modes. Qualitatively, the
presence of two collective modes is explained as follows.
At small wave numbers, we can excite either the quadru-
pole mode of the dual Dirac parton Ψd or the quadrupole
mode of the bosonic Laughlin parton field ϕ. To show this
rigorously, we start with Eq. (8).
First, we analyze the bosonic Laughlin state. This

analysis follows the original bimetric discussion in
Ref. [34]. The putative effective bimetric theory that
includes the GMP mode takes the form

L ¼ −
2ðp − 1Þ

4π
βdβ −

1

2π

�
p − 1

p
Aþ α

�
dβ

−
s
2π

ωdβ −
ς

2π
ω̂dβ −H½ĝ�; ð17Þ

where β is the gauge field in the U(1) Chern-Simons theory
describing the topological order and s and ς are phenom-
enological coefficients to be fixed shortly, while ĝ and ω̂
are the dynamical degrees of freedom describing the
fluctuations of the spin-2 degrees of freedom [34]. The
Hamiltonian H½ĝ� can be chosen to be H ¼ mgTrðgĝ−1Þ
[38], where mg is the mass of ĝ. Next, we integrate out the
topological field β. The equation of motion

β ¼ −
1

2

�
1

p
Aþ 1

p − 1
αþ s

p − 1
ωþ ς

p − 1
ω̂

�
ð18Þ

leads to the Lagrangian

L ¼ 1

4π

1

2ðp − 1Þ
�
p − 1

p
Aþ α

�
d

�
p − 1

p
Aþ α

�

þ 1

4π

2s
2ðp − 1Þ

�
p − 1

p
Aþ α

�
dω

þ 1

4π

2ς

2ðp − 1Þ
�
p − 1

p
Aþ α

�
dω̂ −H½ĝ�: ð19Þ

Whenmg is large, ĝ ¼ g and ω̂ ¼ ω. In this limit, we get the
Lagrangian of Eq. (12) studied in the previous section. That
Lagrangian leads to the correct shift S. Thus, we get a
constraint (same constraint as in bimetric theory)

S ¼ 2ðsþ ςÞ: ð20Þ

To fix ς, we need to compute the static structure factor.
To do this, we add the first line in Eq. (12) to Eq. (19) and
integrate out α to obtain

L ¼ iΨ̄cγ
μð∂μ − iaμÞΨd −

1

8π

�
1 −

1

p

�
ada −

1

4πp
Ada

þ 1

4π

2ς

2p
ðA − aÞdω̂þ 1

8πp
AdA

þ 1

4π

1þ 2s
2p

ðA − aÞdω: ð21Þ

This is the final Lagrangian describing the parton Dirac
Fermi liquid coupled to the bimetric theory of the Laughlin
state. The last term can be dropped by turning off the
background geometry. The coefficient ς still has to be fixed.
When ω̂ ¼ ω and 2ðsþ ςÞ ¼ 2ðp − 1Þ, this Lagrangian
gives back Eq. (12).
Equation (21) is not exactly the same theory as in

Ref. [42], because there is a coupling between Dirac
and bimetric theory due to the term ½1=ð4πÞð2ςÞ=
ð2pÞ�ðA − aÞdω̂. In Appendix D, we perform a detailed
calculation of the projected static structure factor, which
reveals that ς ¼ p − 1 and s ¼ 0, in agreement with
Ref. [42]. Upon reflection, this is not surprising. To the
leading order in gradients, no term can couple the spin-2
fluctuation of the Fermi surface to the parton geometric
degree of freedom. The leading term to induce such
coupling takes the form of a gravitational Chern-Simons
and should affect q6 correction to the projected static
structure factor.

III. WAVE FUNCTION FOR THE PARTON
COLLECTIVE MODE

In this section, based on the microscopic parton con-
struction, we propose a trial wave function to capture the
parton mode. As we show below, a description of this
collective mode lies beyond the purview of the CF theory.
We start with a brief introduction to the microscopic
version of the parton theory of the FQH effect (FQHE).
Jain generalized his CF theory to introduce the parton

theory of FQHE [46], where the partons are nonrelativistic
fermions that occupy IQH states (with this definition, CF
states are a subset of parton states, but, throughout this
work, we reserve the phrase parton state to denote a non-CF
state). The parton theory constructs trial wave functions for
an FQHE state as a product of IQH wave functions. Until
very recently, none of the parton states were found to be
relevant to describe experimentally observed states. In the
past few years, there has been a resurgence [54–68] in the
parton theory whereby it now appears that viable candidate
parton states can be constructed for all FQH plateaus
observed to date that do not fit the paradigm of weakly
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interacting CFs (see Refs. [61,69] for a summary of these
works). These works should be viewed as complementary
to ours, since they almost exclusively focus on ground
states whereas we are interested in excitations that lie high
up in the spectrum. Furthermore, they deal with states that
lie outside the Jain sequence, while in this article we look at
only states that reside in the Jain series.
We note here that, in the microscopic version of the

parton theory, IQH states of nonrelativistic fermions are the
building blocks, and, in this section, we follow this
convention. This should be contrasted with the description
given in the previous section where the partons are either
Dirac fermions or bosons and form FQH states.
Nevertheless, as we show below, the wave functions we
propose can be cast in a form that closely resembles the
corresponding states that we construct in the previous
section using a field-theoretic treatment.
We first begin by introducing Jain’s CF ansatz to

represent the FQHE ground states of our interest [8].
The CF ground state wave function at ν ¼ n=ð2pn� 1Þ
is given by

ΨJain
n=ð2pn�1Þ ¼ PLLLΦ

2p
1 Φ�n; ð22Þ

where Φn is the Slater determinant state of n-filled LLs of
electrons (with Φ−n ¼ ½Φn��) and PLLL implements pro-
jection to the LLL as is appropriate in the high magnetic
field limit. The Laughlin-Jastrow factor ΨLaughlin

1=ð2pÞ ¼ Φ2p
1 [2]

attaches 2p vortices to each of the electrons to turn them
into CFs. Thus, the FQHE ground state of electrons at ν ¼
n=ð2pn� 1Þ can be viewed as the ν� ¼ n IQH state of
composite fermions carrying 2p vortices. Similarly, the
excitations of FQH states can be constructed by appealing
to this mapping to IQH states. In particular, the lowest-
lying neutral excitation termed the CF exciton (CFE) is
obtained by replacing Φn in Eq. (22) by Φex

n , where an
exciton (ex) is a particle-hole pair with the hole residing in
the LL indexed by n − 1 and the particle in the LL indexed
by n. The Jain wave functions provide an excellent
description of the Coulomb states obtained from exact
diagonalization in the LLL [9,60,61,70,71]. A nice feature
of these wave functions is that they can be evaluated in real
space for hundreds of electrons using the Jain-Kamilla (JK)
method of projection [9,72–76].
The Jain wave function can be interpreted as being

composed of (2pþ 1) partons [46] with 2p partons, each
of charge e1 ¼ ð−eÞn=ð2pn� 1Þ, forming a ν ¼ 1 IQH
state and one parton, of charge e�n ¼ �ð−eÞ=ð2pn� 1Þ,
forming a ν ¼ �n IQH state. The low-energy excitations of
the ν ¼ n=ð2pn� 1Þ are constructed from excitations in
the ν ¼ �n IQH state, since je�nj ≤ je1j (equality holds
only for n ¼ 1) which results in a smaller Coulomb penalty.
This is the reason why the low-lying CFE mode is made up
of a particle-hole pair in the Φ�n factor. However, high-
energy modes can arise from excitations in the ν ¼ 1 IQH

state. As we show below, it is precisely an excitation of this
kind, namely, a particle-hole pair in the Jastrow factor, that
forms the parton mode. This argument shows why the
parton mode is absent in the Laughlin fractions. Although
the ν ¼ 1=ð2pþ 1Þ Laughlin state is also made up of
(2pþ 1) partons, the partons are all of the same kind; i.e.,
they all form a ν ¼ 1 IQH state. Thus, the particle-hole pair
excitation can be created only in a Φ1 factor, and, thus, we
do not end up with any additional modes besides the CFE
one. More generally, any Jain state can host at most two
spin-2 modes, since it harbors only two kinds of partons.
With this background in place, we next introduce the

wave functions for the CF exciton and parton modes.
The wave function for the CFE mode is given by
ΨCFE

n=ð2pn�1Þ ¼ PLLLΦ
2p
1 Φex

�n. In contrast, the wave function

for the parton mode, for n, p ≥ 2, is given by

Ψparton mode
n=ð2pn�1Þ ¼ PLLLΦex

1 Φ
2p−1
1 Φ�n

∼ ðPLLLΦex
1 Φ

2p−3
1 Þ × ðPLLLΦ2

1Φ�nÞ
¼ ΨCFE

1=½2ðp−1Þ�Ψ
Jain
n=ð2n�1Þ; ð23Þ

where ΨCFE
1=½2ðp−1Þ� ¼ ΨCFE

1=ð2p−1Þ=Φ1. The wave function for

the parton mode given in Eq. (23) is the central result of this
section. In Eq. (23), the ∼ sign indicates that the projection
to the LLL is carried out separately on two parts of the wave
function in order to facilitate its evaluation for large
systems. We expect that such details of the projection do
not affect the qualitative nature of the state and lead to
only minor differences in its quantitative properties
[76,77]. Note that the CFE mode can also be projected
in a similar fashion which results in the wave function
ΨCFE

n=ð2pn�1Þ ∼Ψ1=½2ðp−1Þ� ×ΨCFE
n=ð2n�1Þ. Written in this form as

a product of a bosonic Laughlin state times a Jain state
(with or without excitations), these wave functions closely
resemble the analogous states constructed in the previous

FIG. 2. Coulomb energies of the CF exciton and parton modes
at ν ¼ 2=7. Different system sizes are plotted with different
symbols with the smallest system with N ¼ 12 electrons and the
largest with N ¼ 40. In the long-wavelength limit, the high-
energy (red) mode extrapolates to an energy of approximately
0.15, while the low-energy (blue) mode extrapolates to approxi-
mately 0.05 in Coulomb units.
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section using field-theoretic techniques. The wave function
of Eq. (23) also demonstrates that, for p > 2, the additional
Jastrow factors do not lead to any extra parton modes, since
PLLLΦ

2p
1 Φex

1 ¼ Φ2
1PLLLΦ

2p−2
1 Φex

1 ; ∀p ≥ 2 [76].
In Fig. 2, we show the energies of the CF exciton and

parton modes at ν ¼ 2=7 (see Appendix A for the dis-
persions of the two modes at ν ¼ 2=9). These energies are
obtained as Coulomb expectation values of the wave
functions given above in the spherical geometry [78].
Throughout this work, we quote energies in units of
e2=ðϵlÞ, where ϵ is the dielectric constant of the back-
ground host and l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
is the magnetic length at

magnetic field B. In Fig. 3 below, we show that the energies
of the two modes in the long-wavelength limit coincide
with the part of the spectrum in which the dynamical
structure factor has maximal support.
Next, we turn to the chirality of the modes. The low-

energy CFE mode at 2=9 and 2=7 stem from the 2=5 and
2=3 parts of the wave function, respectively. Therefore, the
CFE mode at 2=9 and 2=7 has the same chirality as that of
the GMP mode in the 2=5 and 2=3 states, respectively. On
the other hand, the high-energy mode arises from the CFE
of the 1=2 Laughlin state and, therefore, has the same
chirality as that of the GMP mode of the 1=2 Laughlin state
(in our convention, the GMPmode of the Laughlin state has
a negative chirality). These observations allow us to predict
that (i) the chirality of the two modes is the same at 2=9 and
is negative and (ii) the chirality of the two modes at 2=7 is
opposite to each other with the CFE mode having a
chirality þ and the parton mode having a chirality of −.
At ν ¼ n=ð2pnþ 1Þ, the effective magnetic field seen by
all the partons is in the same direction as the electrons.
In contrast, at ν ¼ n=ð2pn − 1Þ, the parton forming the

n-filled LL IQH state experiences a magnetic field that is
opposite to that of the electrons (the other partons see a
magnetic field that is parallel to that of the electrons). Thus,
the chirality of a mode is simply determined by the sign
of the effective magnetic field seen by the parton hosting
the excitation. We confirm these predictions by explicitly
evaluating the chiral dynamical response functions in
Fig. 4 below.
Finally, we note that a different version of the wave

function for the modes can be obtained by following the
GMP construction, i.e., by acting with the LLL projected
density operator on the ground state. However, the density
operator selectively acts only on a particular part of the
wave function: In essence, we apply the density operator
ρðq⃗Þ onto the unprojected Jain wave function but project
it into the LLL in different ways. These lead to the
following wave functions for the two modes: (i) the primary
low-energy mode ΨGMP

n=ð2pn�1Þ ∼Ψ1=½2ðp−1Þ� × ΨGMP
n=ð2n�1Þ and

(ii) for n, p ≥ 2, the secondary high-energy mode
ΨGMP

1=½2ðp−1Þ� × Ψn=ð2n�1Þ, whereΨGMP ¼ ρ̄ðq⃗ÞΨwithΨ being

the ground state wave function and ρ̄ðq⃗Þ the LLL-projected
density operator. Unlike the parton and CF-exciton wave
functions given above, these GMP-based wave functions
are expected to work well only in the long-wavelength
limit [27,28].

IV. DYNAMICAL RESPONSE FUNCTIONS

In this section, we compute the dynamical structure
factor and chirality-resolved spectral functions, which
allows one to directly probe the existence of parton modes
in unbiased microscopic simulations using exact diagonal-
ization. In order to identify collective modes, we compute
dynamical response functions IðEÞ defined by

IðEÞ ¼
X
n

jhEnjÔj0ij2δðEn − E0 − EÞ; ð24Þ

where Ô is an operator (to be specified below) and the sum
runs over all eigenstates jEni with energies En, with j0i
denoting the ground state at energy E0. We model the FQH

FIG. 3. Dynamical structure factor SLðEÞ at ν ¼ 2=7 for
N ¼ 10 electrons on the sphere, plotted as a function of linear
momentum ql ¼ L=R, where L is the angular momentum and R
is the sphere radius, and energy E is measured relative to the
ground state energy. The two modes are indicated by arrows.

FIG. 4. Spectral functions for the generalized pseudopotentials
Vσ
m;s with chirality σ at ν ¼ 2=7. Two dominant peaks, at energies

E ≈ 0.14 and E ≈ 0.04, have opposite chiralities. Data are for
N ¼ 10 electrons on the sphere.
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system by following the standard procedure [78,79] by
placing N electrons on a compact domain, such as the
sphere or torus, threaded by Nϕ magnetic flux quanta. In
the main text, we primarily focus on the FQH state at
ν ¼ 2=7, which occurs at a shift S ¼ 2 and belongs to the
secondary Jain sequence of CF states (see Appendixes for
results at other filling factors).
Before presenting results for spectral functions, we note

that the evaluation of Eq. (24) potentially requires summing
over a large number of eigenstates. For this, we make use
of the rotational symmetry on the sphere and target about
40–60 lowest eigenstates in each angular momentum L
sector using the Lanczos method. We further “polish” the
eigenstates by running Lanczos iterations using the L2

operator, to ensure that the eigenstates are rotationally
invariant to machine precision.
Choosing Ô to be the projected density operator, ρ̄L, the

spectral function in Eq. (24) is nothing but the dynamical
structure factor [30,80,81]. This dynamical structure factor
SLðEÞ is evaluated for the ν ¼ 2=7 state and shown in
Fig. 3. To facilitate comparison with the infinite plane
geometry, SLðEÞ is plotted as a function of the planar
momentum ql ¼ L=R, where R ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
Nϕ=2

p
is the radius

of the sphere. We approximate the delta function in Eq. (24)
by a Gaussian with width 5 × 10−3. We observe that most
of the contribution to SLðEÞ comes from the mode at the
energy slightly below E ≈ 0.05, which is identified with the
GMP mode below. However, there are weaker yet clearly
visible signatures of an additional collective mode around
the energy E ≈ 0.13. Note that we can also observe some
contribution to SLðEÞ from states at large momenta. In
Ref. [30], those are interpreted as local distortions of the
quasiparticle-quasihole droplets.
To identify the collective modes more accurately,

we perform a finer characterization of the dynamical
response by choosing Ô in Eq. (24) to be one of the
anisotropic pseudopotentials Vσ

m;s with a given chirality
σ ¼ � [37,41,82,83]. This allows us to probe systemati-
cally how the system responds to a particular type of metric
deformation. For example, mass anisotropy leads to a
predominantly quadrupolar metric deformation [82,84];
hence, we can fix s ¼ 2. On the other hand, m contains
information about the clustering properties of the electrons.
In the absence of anisotropy, m becomes the relative
angular momentum which is associated with the standard
Haldane pseudopotential [78]. Finally, for the definition of
chirality, we adopt the convention stated in the previous
section; i.e., σ ¼ − is the chirality of the GMP mode of the
Laughlin state at ν ¼ 1=3 [83].
Anisotropic spectral functions for the ν ¼ 2=7 state are

shown in Fig. 4 for m ¼ 1, 3, 5 and σ ¼ � (with s ¼ 2).
Since anisotropic pseudopotentials break the L2 symmetry,
these spectral functions are evaluated in the Lz ¼ 0 sector
and they are only a function of the energy E. Moreover, the
spectral functions are normalized such that the integrated

IðEÞ, summed over both chirality sectors, is approximately
equal to 1. From Fig. 4, we conclude that ν ¼ 2=7 has two
dominant peaks in its spectral response, supporting the
existence of two collective modes in the long-wavelength
limit. The chirality of these modes is opposite at ν ¼ 2=7
but can be the same at other fillings, e.g., ν ¼ 2=9, as we
shown in Appendix A.
The spectral function peaks in Fig. 4 are naturally

accounted for by considering the parton wave function
of Eq. (23) and that of the usual CF exciton. At ν ¼ 2=7,
the high-energy mode is ΨJain

2=3 ×ΨCFE
1=2 . When two particles

approach each other, ΨJain
2=3 vanishes as the first power of

their interparticle spacing r while ΨCFE
1=2 does not vanish, so

overall the parton mode vanishes as r. Therefore, the high-
energy mode is expected to have a peak in the m ¼ 1
spectral function. By contrast, the low-energy mode is
ΨCFE

2=3 ×ΨLaughlin
1=2 . Now, ΨCFE

2=3 vanishes as r while ΨLaughlin
1=2

vanishes as r2, so overall the wave function vanishes as r3

when two particles are brought close to each other. Thus,
the low-energy mode has m ¼ 3. In general, at ν ¼
n=ð2pn� 1Þwith n, p ≥ 2, the high-energy mode hasm ¼
1þ 2ðp − 2Þ [1 from the Jain state at ν ¼ n=ð2n� 1Þ and
2ðp − 2Þ from the CFE of the bosonic Laughlin state at
ν ¼ 1=½2ðp − 1Þ�], while the low-energy mode has m ¼
1þ 2ðp − 1Þ [1 from the CFE of the Jain state at ν ¼
n=ð2n� 1Þ and 2ðp − 1Þ from the bosonic Laughlin state
at ν ¼ 1=½2ðp − 1Þ�]. The spectral function shown in Fig. 4
is consistent with these clustering properties. We note here
that these clustering properties hold only approximately for
eigenstates of the LLL-projected Coulomb interaction.
Finally, we observe in Fig. 4 that the energies correspond-
ing to peaks in the spectral functions are in quantitative
agreement with the variational estimates of the collective
mode energies shown in Fig. 2.

V. QUENCH DYNAMICS

In this section, we show that the multiple collective
modes can be probed using a geometric quench [37]. This
quench targets the spin-2 degrees of freedom in the long-
wavelength limit. One way to drive this type of quench is to
suddenly introduce anisotropy in the electron’s effective
mass tensor, which can be experimentally implemented by
tilting the magnetic field. It has been demonstrated that
such mass anisotropy quenches indeed excite the spin-2
GMP modes of the Laughlin state [37] and the bilayer
Halperin state [39].
Our implementation of the geometric quench is conven-

iently performed in the torus geometry [79]. In momentum
space, the FQHHamiltonian is given byH ¼ P

q V̄qρ
σ
qρ

σ0
−q,

where ρq is the density operator projected to a Landau level
and V̄q ¼ ð2π=jqjÞjFqj2 is the Fourier transform of the
Coulomb interaction, dressed by the LL form factor Fq.
The form factor Fq ¼ exp½−gabm qaqbl2=4� is determined by
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the 2 × 2 mass tensor gm [33] (with Einstein’s summation
convention implicit). In the isotropic case, we have
gm ¼ 1, where 1 is the identity matrix. We initialize the
quench by instantaneously changing gm from identity to
diagfα; 1=αg at time t ¼ 0, and we monitor the fidelity
FðtÞ ¼ jhΨð0ÞjΨðtÞij, i.e., the overlap between the initial
state jΨð0Þi and the evolved state jΨðtÞi.
The results for fidelity dynamics at ν ¼ 2=7 are shown in

Fig. 5. The postquench fidelity FðtÞ oscillates clearly with
multiple frequencies (inset in Fig. 5). To extract the
dominant frequencies, we calculate the discrete Fourier
transform jF ðωÞj of FðtÞ. We observe two groups of
pronounced peaks in jF ðωÞj, which are centered around
frequencies ω ¼ 0.05 and ω ¼ 0.13, respectively. These
dominant peaks within two narrow frequency windows are
strong evidence of two spin-2 collective modes in the long-
wavelength limit. Moreover, the energies of these two
modes reflected in the quench dynamics are consistent with
those estimated from the dynamical structure factor (Fig. 3)
and spectral functions (Fig. 4) on the sphere geometry.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we argue that high-energy spectral proper-
ties of FQH states harbor evidence for the existence of
partons—the bona fide quasiparticles of these strongly
correlated topological quantum fluids. While at sufficiently
low energies partons remain hidden to conventional probes,
such as transport, their presence is revealed at high energies
by exposing the FQH system to a geometric quench or
acoustic wave absorption [41]. The parton collective mode,
identified in this work, emerges as the missing ingredient
that ensures the consistency of the field-theoretic descrip-
tion of general Jain FQH states [42].
While extensive numerical calculations suggest that

genuine parton modes do not exist in states belonging
to the primary Jain sequence (see Refs. [37,83] and
Appendix B), we demonstrate their existence in the
secondary Jain sequence n=ð4n� 1Þ with n ≥ 2. For
Jain states where CFs have a vorticity 2p > 4, we again
anticipate the existence of only two spin-2 modes, since

they too are composed of only two kinds of partons. Thus,
we expect that the physics of the n=ð6n� 1Þ states is
similar to that of the n=ð4n� 1Þ states. Furthermore, the
bosonic Jain states at n=½ð2p − 1Þn� 1� exhibit similar
physics, since they are related to the Jain states at
n=ð2pn� 1Þ by a Jastrow factor (for concrete examples,
see Appendix C). In this work, our discussion is restricted
to the Jain states, and, in the future, it would be worth
exploring the nature of high-energy collective modes of
other FQH fluids, in particular, non-Abelian FQH fluids.
It is worth emphasizing that the secondary graviton

should be distinguished from other high-energy collective
modes, such as those obtained by exciting CFs across
multiple CF-Landau-like levels [70,85–87] or excitations in
which the CF vorticity is altered [88]. The latter high-
energy modes typically exist in all Jain fractions, including
the Laughlin ones, unlike the modes we identify here,
which occur only at Jain fractions n=ð2pn� 1Þ when n,
p ≥ 2. Moreover, these modes are also characterized by
higher spin in the effective theory description [13,15],
which makes them fundamentally different from the modes
discussed here. For example, these modes would have a
weak response to mass anisotropy quenches considered
here, since those primarily excite the quadrupolar spin-2
modes [37].
It would be interesting to further explore the utility of the

effective field theory [Eq. (8)] at describing the gapless
composite Fermi liquid states at filling ν ¼ 1=ð2pÞ as well
as their pairing instabilities that would describe gapped
states at these even-denominator fillings [89]. When it
comes to gapped states in the vicinity of ν ¼ 1=ð2pÞ, it
would be interesting to perform the wave number expan-
sion to one more order and compute the projected static
structure factor to the sixth order in momentum expansion.
At this order, the leading large n contribution is of the form
n=p [16], and it cannot be written as a sum of contributions
from the boson and fermion sectors. This calculation
requires careful treatment of the framing anomaly gener-
ated by integrating out partons as well as Chern-Simons
terms [90,91].
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Note added.—Recently, we became aware of the work of
Nguyen et al. [92]. The authors of Ref. [92] also discuss the
additional graviton mode in the Jain states at ν ¼ 2=7
and 2=9.

APPENDIX A: ν= 2=9 JAIN STATE

In the main text, we numerically demonstrate the
existence of two types of collective modes in the ν ¼
2=7 Jain state. Here, we show that similar results are
obtained at other fractions belonging to the ν ¼ n=ð4n� 1Þ
series, focusing, in particular, on ν ¼ 2=9. On the spherical
geometry, the ν ¼ 2=9 Jain state occurs at shift S ¼ 6.
Figure 6 shows the dynamical structure factor and

anisotropic response functions evaluated for the ν ¼ 2=9
state with N ¼ 8 electrons on the sphere. The dynamical
structure factor has a large weight on eigenstates near the
energy E ¼ 0.04, which corresponds to the GMP collective
mode in the long-wavelength limit. In contrast, at higher
energies, we do not see clear evidence of the second
(parton) mode. However, the parton mode appears clearly
in the anisotropic spectral function, shown on the right in
Fig. 6. Here, we observe two pronounced peaks, with
energies E ≈ 0.04 and E ≈ 0.15, in the negative chirality
sector. The response in the positive chirality sector, on the
other hand, is strongly suppressed—see the inset to the
right in Fig. 6. The identification of the two modes and their
energies is in agreement with the wave functions of the
CF-exciton and parton modes shown in Fig. 7 below.
Furthermore, as explained in Sec. III, the chirality of the
parton mode at ν ¼ 2=9 is indeed expected to be the same
as that of the GMP mode, since the effective magnetic field
seen by all of the partons is in the same direction as for the
electrons.
The results of the geometric quench for electrons at

ν ¼ 2=9 interacting via LLL-projected Coulomb interac-
tion are shown in Fig. 8. We indeed observe two peaks near
the frequencies ω ¼ 0.04 and ω ¼ 0.15 in the Fourier
transform of the postquench fidelity, supporting the exist-
ence of two spin-2 modes. While the quench in Fig. 8 is
simulated using torus geometry, the values of two dominant
frequencies are found to be in good agreement with the
peaks of the anisotropic spectral functions on the sphere

shown in Fig. 6. Nevertheless, comparing with the sphere
spectral functions in Fig. 6, we also notice that the
low-frequency peaks have a considerably larger magnitude

FIG. 6. Left: dynamical structure factor SLðEÞ at ν ¼ 2=9 for
N ¼ 8 electrons on the sphere, plotted as a function of linear
momentum ql ¼ L=R, where L is the angular momentum and R
is the sphere radius, and energy E is measured relative to the
ground state energy. Right: spectral functions for the generalized
pseudopotentials Vσ

m;2 with chirality σ ¼ − for ν ¼ 2=9 state.
Two dominant peaks, at energies E ≈ 0.15 and E ≈ 0.04, have the
same chirality. The inset shows that the analogous spectral
functions in σ ¼ þ sectors are strongly suppressed. Data are
for N ¼ 8 electrons on the sphere.

FIG. 7. Coulomb energies of the CF exciton and parton modes
at ν ¼ 2=9. Different system sizes are plotted with different
symbols with the smallest system with N ¼ 12 electrons and the
largest with N ¼ 40. In the long-wavelength limit, the high-
energy (red) mode extrapolates to an energy of approximately
0.11, while the low-energy (blue) mode extrapolates to approxi-
mately 0.04 in Coulomb units.

FIG. 8. Fourier transform of the postquench fidelity (inset) for
the mass anisotropy quench on a torus with the square unit cell.
Data are presented for N ¼ 8 and 10 fermions at ν ¼ 2=9. We
choose the Coulomb interaction with α ¼ 1.1.
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than the high-frequency peak. This may be a consequence
of small systems that we can simulate using exact diag-
onalization and the fact that finite-size effects are stronger
at ν ¼ 2=9 compared to ν ¼ 2=7. Further evidence of the
importance of finite-size effects comes from the big differ-
ence in the low-frequency peaks between N ¼ 8 and
N ¼ 10 electrons, suggesting that larger sizes are necessary
to suppress the finite-size fluctuations.

APPENDIX B: ABSENCE OF THE PARTON
MODE IN THE ν= 1=5 LAUGHLIN STATE

AND ν= 2=5 JAIN STATE

The absence of the secondary collective mode is estab-
lished numerically for the ν ¼ 1=3 Laughlin state [83,93].
Here, we provide similar numerical evidence for the
absence of the parton mode in the ν ¼ 1=5 Laughlin
state and ν ¼ 2=5 Jain state. In Fig. 9, we compute the
anisotropic spectral functions for these two states. For both
states, the data are consistent with a single dominant peak
in the negative chirality sector, the same as that of the ν ¼
1=3 state. In the case of the ν ¼ 1=5 state, we find that the
integrated V1;2 spectral function (before normalization) is
smaller by an order of magnitude compared to those of V3;2

and V5;2 spectral functions; hence, we omit it from Fig. 9.
Beyond spectral functions, we look for the existence of

the parton mode directly by measuring the response of the

FQH system to the geometric quench. At ν ¼ 1=3, it is
shown that such dynamics are governed only by a single
frequency corresponding to the energy of the GMPmode in
the long-wavelength limit [93]. Here, we study the geo-
metric quench also for ν ¼ 1=5 and ν ¼ 2=5 FQH states. In
Fig. 10, we can see that the quench dynamics has only one
dominant frequency in both cases, thus confirming the
absence of the secondary spin-2 mode at these fillings. Our
numerical results at ν ¼ 1=5 are consistent with those of
Ref. [94], where the authors show microscopically that the
1=5 Laughlin phase has only a single graviton mode.
From the perspective of wave functions, in principle,

one can construct states like PLLLΦ�2Φ1Φex
1 . Because of

technical difficulties with projection to the LLL, we are
not able to construct these wave functions explicitly.
Based on previous numerical calculations for the model
Hamiltonian of the 1=3 Laughlin state as well as the
Coulomb interaction (where there is evidence for only a
single mode [93]), which apply to 2=3 by particle-hole
conjugation, we conjecture that the aforementioned state
is projected out. If the state PLLL½Φ2��Φ1Φex

1 is a valid
spin-2 state, then there will be two spin-2 modes at 2=3
(the CFE mode is seen in the spectral function), which
is not consistent with the previous numerical findings.
This premise is also consistent with the effective field
theory, where it is shown that a Dirac fermion at

FIG. 9. Spectral functions for the anisotropic pseudopotentials
Vσ
m;2 with chirality σ. (a),(b) the ν ¼ 1=5 Laughlin state has a

dominant peak at energy E ≈ 0.06 with negative chirality. The
peak is broader than in other cases, and the spectral function has
about 25% weight in the positive chirality sector, possibly due to
strong finite-size effects. (c),(d) The ν ¼ 2=5 state has a single
dominant peak at energy E ≈ 0.08 with the same chirality at
the ν ¼ 1=5 state. Data are for N ¼ 7 electrons (ν ¼ 1=5) and
N ¼ 10 electrons (ν ¼ 2=5) on the sphere.

(a)

(b)

FIG. 10. Fourier transform of the postquench fidelity (inset) for
the mass anisotropy quench on a torus with the square unit cell.
Data are presented for (a) N ¼ 5, 6, 7 fermions at ν ¼ 1=5 and
(b) N ¼ 8, 10, 12 fermions at ν ¼ 2=5. We choose the Coulomb
interaction with mass anisotropy α ¼ 1.3 in (a) and α ¼ 1.1 in
(b). For the ν ¼ 1=5 state in (a), the different behavior for N ¼ 6
likely results from the electrons’ tendency to form a hexagonal
Wigner crystal.
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n=ð2n� 1Þ, for large n, hosts only a single collective mode
with spin-2 [13].
Finally, we also provide a heuristic argument for the

absence of the parton modes. Among the entire family of
parton states (here, we can also include the composite
fermion states) that have been considered to date, the ones
that seem to be relevant are the ones that can be projected
into the LLL using the JK method [73]. The wave function
PLLLΦ�2Φ1Φex

1 , due to a paucity of the Jastrow factors,
cannot be projected into the LLL state using the JK method.
On the other hand, for the states that we construct,
projection into the LLL can be carried out using the JK
method as shown in Eq. (23). Essentially, enough factors of
Φ1 that facilitate a projection into the LLL using the JK
method likely help in building good correlations in the
wave function [56].

APPENDIX C: BOSONS

While FQH states are naturally formed by electrons,
they can also arise in systems of bosons, e.g., realized by
ultracold atoms—see, e.g., Refs. [95,96] and the recent
review in Ref. [69]. For any fermionic FQH state, an
analogous bosonic FQH state can be obtained by dividing
its wave function through with an overall Jastrow factorΦ1,
which leads to a fully symmetric wave function under
exchange of any two particles. The filling factors of the
corresponding fermionic and bosonic FQH states are
related by ν−1f ¼ ν−1b þ 1. In particular, the bosonic Jain
state at ν ¼ n=½ð2p − 1Þn� 1� is related to its fermionic
counterpart at ν ¼ n=ð2pn� 1Þ. Here, we focus on the
bosonic states ν ¼ 2=5 and ν ¼ 2=7, whose fermionic
analogs are ν ¼ 2=7 and ν ¼ 2=9, respectively. The
Wen-Zee shift of these bosonic states can similarly be
shown to be S ¼ 1 and S ¼ 5, respectively. For general
sequences of Jain states, the physical properties of bosonic
versions of Jain states are found to largely mirror those of
fermionic Jain states [96,97].
In Fig. 11, we show the dynamical structure for bosons at

ν ¼ 2=5 and ν ¼ 2=7 on the spherical geometry. In both
cases, most of the spectral weight is carried by the GMP
mode at low energies (E≲ 0.1). In the case of ν ¼ 2=5, we
also observe an additional mode in the long-wavelength
limit at energy E ≈ 0.5. On the other hand, at ν ¼ 2=7 we
observe only weak signatures of the second mode, similar
to the fermionic case at ν ¼ 2=9 in Fig. 6.
Clearer signatures of the two modes can be seen in the

anisotropic spectral functions shown in Fig. 12. Recall that
these spectral functions are evaluated from the matrix
element of anisotropic pseudopotentials, Vσ

m;s, where we
fix s ¼ 2 to probe quadrupolar response and m ¼
0; 2; 4;… is even, since the wave function for bosons must
be symmetric. At both filling fractions, we observe two
pronounced peaks in the spectral response, occurring
roughly at energies E ≈ 0.05 and E ≈ 0.5. The two modes

corresponding to these peaks have opposite chirality
at ν ¼ 2=5 and the same chirality at ν ¼ 2=7, similar to
the corresponding results for fermions. We note that the
variational wave functions, based on CF excitons and
partons, can be directly generalized to the bosonic case
by dividing the fermionic wave functions by a factor of Φ1.
The variational energy of such wave functions is found to
match closely the energies at which the peaks occur in
Fig. 12 (data not shown).
Finally, we also study geometric quenches for bosonic

Jain states at ν ¼ 2=5 and ν ¼ 2=7. In the Fourier transform

FIG. 11. Dynamical structure factor SLðEÞ on the sphere
geometry plotted as a function of linear momentum
ql ¼ L=R, where L is the angular momentum and R is the
sphere radius, and energy Emeasured relative to the ground state,
in units of e2=ðϵlÞ. Left: N ¼ 8 bosons at filling ν ¼ 2=5,
corresponding to fermionic filling ν ¼ 2=7. Right: N ¼ 8 bosons
at filling ν ¼ 2=7, corresponding to fermionic filling ν ¼ 2=9.

FIG. 12. Spectral functions for the generalized pseudopoten-
tials Vσ

m;2 with chirality σ for bosons at ν ¼ 2=5 and ν ¼ 2=7,
corresponding, respectively, to fermionic filling factors ν ¼ 2=7
and ν ¼ 2=9. Similar to the fermionic case, we observe two
dominant peaks at both filling factors, corresponding to two
collective modes. The chirality of the two modes is different (the
same) at ν ¼ 2=5 (ν ¼ 2=7). Data are for N ¼ 8 electrons on the
sphere.
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of the postquench fidelity of bosons interacting via
Coulomb potential (Fig. 13), we observe clear signatures
of two dominant frequencies at both filling factors. These
frequencies further match the long-wavelength limits of
the two collective modes extracted from the parton and
CF-exciton wave functions and are also in agreement with
the dynamical structure factor, thus confirming the exist-
ence of two spin-2 degrees of freedom, similar to the
fermionic case in Figs. 5 and 8.

APPENDIX D: CALCULATION OF THE
PROJECTED STATIC STRUCTURE FACTOR

To compute the static structure factor, we use the large n
approach developed in Refs. [14,42,98]. Namely, we turn
off the background geometry and treat the Dirac parton, in
the large n approximation, using collective variables u�l
describing the angular momentum l distortion of the Dirac
parton Fermi surface. We outline the calculation, referring
the reader to the original works for a detailed discussion of
the Dirac CF Fermi liquid theory. Below, we show that the
calculation of the static structure factor completely factor-
izes and there are just two independent contributions: one
coming from the Fermi liquid, and the other coming from
the bimetric theory.
To implement this program, we need the following

ingredients from Ref. [42]. First, the equations of motion
for the collective variables are

_u0 ¼ −vFð∂u1 − ∂̄u−1Þ; ðD1Þ

_u1 ¼ −ið1þ F1Þ
b̄vF
kF

u1 − vFð1þ F0Þ∂u0
− vFð1þ F2Þ∂̄u2 þ ē; ðD2Þ

_u2 ¼ −ið1þ F2Þ
b̄vF
kF

u2; u−i ¼ u⋆i ; ðD3Þ

where Fi are the Landau parameters and vF and kF are the
Fermi velocity and momentum, respectively. The latter is
determined by the Luttinger theorem [42], which is
expected to hold for composite partons [21]

k2F
4π

¼ ρ̄CF ¼
1

4π

p − 1

p
b̄þ B

4πp
; ðD4Þ

where R̂ is the curvature of the metric ĝij. We also need the
relation between composite fermion density and u0:

ρCF ¼
kF
2π

u0 ⇒ _u0 ¼
p − 1

2kFp
_bþ ς

2p
∂0R̂
2kF

: ðD5Þ

We are interested in expressing the fluctuation of electron
density δρe in terms of variables u�l and R̂. To do this, first
observe that the electron density is given by

ρe ¼
B − b
4πp

þ ik2F
2πB

ð∂u1 − ∂̄u−1Þ þ 1

4π

ς

2p
R̂: ðD6Þ

Following the steps from Ref. [42], we get a simple
expression for the time derivative of ρe:

_ρe ¼ −i
vFk2F
2πB

ð1þ F2Þð∂ _u2 − ∂̄ _u−2Þ þ ς

2p
∂0R̂
4π

�
1 −

b̄
B

�
:

ðD7Þ

Finally, removing the time derivative and using that
b̄ ¼ B=ð2pnþ 1Þ, we find that the density fluctuation is
given by

δρe ¼ −i
vFk2F
2πB

ð1þ F2Þð∂u2 − ∂̄u−2Þ þ νς

4π
R̂: ðD8Þ

The calculation of the static structure factor

s̄ðqÞ ¼ 1

ρ̄e
hδρeð−qÞδρeðqÞi ðD9Þ

completely factorizes. The first term is studied in Ref. [42],
whereas the second term is exactly the same as in the
bimetric theory [34], which results in

(a)

(b)

FIG. 13. Fourier transform of the postquench fidelity (inset) for
the mass anisotropy quench on a torus with the square unit cell.
Data are for (a)N ¼ 6, 8, 10 bosons at ν ¼ 2=5 and (b)N ¼ 8, 10
bosons at ν ¼ 2=7. We choose Coulomb interaction with mass
anisotropy α ¼ 1.1.
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s̄4 ¼
1

8
ðnþ 1þ ςÞ ¼ 1

8
ðnþ 2p − 1Þ: ðD10Þ

The last equation is the known value of s̄4. This fixes the
value of ς:

ς ¼ p − 1 ⇒ s ¼ 0: ðD11Þ

Thus, at least to the lowest order in gradients, the two
theories do not interact with each other. Using SMA on the
Dirac Fermi liquid theory, we can decouple the spin-2
mode from the rest of the collective modes u�l with l > 2.
In this limit [98], Dirac CF Fermi liquid theory is equivalent
to a bimetric theory with ς0 ¼ ðnþ 1Þ=8. As a result,
we expect that the geometric quench dynamics, studied
in Sec. V, is going to be a sum of two oscillations
with frequencies corresponding to the gaps of the two
spin-2 modes.
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