
This is a repository copy of A Framework for Generating Informative Benchmark Instances.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188731/

Version: Accepted Version

Proceedings Paper:
Dang, Nguyen, Akgün, Özgür, Espasa, Joan et al. (2 more authors) (2022) A Framework
for Generating Informative Benchmark Instances. In: 28th International Conference on
Principles and Practice of Constraint Programming (CP 2022). LIPICS

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence.
This licence allows for redistribution, commercial and non-commercial, as long as it is passed along
unchanged and in whole, with credit to the original authors. More information and the full terms of the licence
here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Framework for Generating Informative
Benchmark Instances
Nguyen Dang #

School of Computer Science, University of St Andrews, United Kingdom

Özgür Akgün #

School of Computer Science, University of St Andrews, United Kingdom

Joan Espasa #

School of Computer Science, University of St Andrews, United Kingdom

Ian Miguel #

School of Computer Science, University of St Andrews, United Kingdom

Peter Nightingale #

Department of Computer Science, University of York, United Kingdom

Abstract

Benchmarking is an important tool for assessing the relative performance of alternative solving
approaches. However, the utility of benchmarking is limited by the quantity and quality of the
available problem instances. Modern constraint programming languages typically allow the specifica-
tion of a class-level model that is parameterised over instance data. This separation presents an
opportunity for automated approaches to generate instance data that define instances that are graded

(solvable at a certain difficulty level for a solver) or can discriminate between two solving approaches.
In this paper, we introduce a framework that combines these two properties to generate a large
number of benchmark instances, purposely generated for effective and informative benchmarking.
We use five problems that were used in the MiniZinc competition to demonstrate the usage of
our framework. In addition to producing a ranking among solvers, our framework gives a broader
understanding of the behaviour of each solver for the whole instance space; for example by finding
subsets of instances where the solver performance significantly varies from its average performance.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Instance generation, Benchmarking, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.26

Supplementary Material Code: https://github.com/stacs-cp/AutoIG

Funding Nguyen Dang: is a Leverhulme Early Career Fellow
Ian Miguel: supported by EPSRC EP/V027182/1

Acknowledgements This work uses the Cirrus UK National Tier-2 HPC Service at EPCC (http:

//www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

1 Introduction

A practitioner faced with solving a new problem has a difficult choice among many solving

algorithms, whose performance on the new problem is unknown and is likely to be variable.

One approach is to draw instances from the problem to benchmark the various solvers under

consideration, i.e. an empirical study of relative performance. This approach is favoured for

computationally challenging tasks since the performance behaviour of a non-trivial algorithm

is difficult to predict and is unlikely to be susceptible to a purely theoretical analysis [10].

As Beiranvand et al. [11] argue, care must be taken to select an instance set with a variety of

difficulty for benchmarking in order to obtain the best insight into solver performance.

© Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, Peter Nightingale;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

26:2 A Framework for Generating Informative Benchmark Instances

Problem

specification

Instance

generator

model

OR Tools

graded

instances

Picat-SAT

graded

instances

Chuffed

graded

instances

Combined

graded

instances

Intermediate

results

Discriminating

results

Graded

instance

generation

Evaluating all

solvers

Discriminating

instance

generation

Yuck graded

instances

Figure 1 Flowchart of the whole AutoIG application process

Constraint programming (CP) approaches particularly benefit from empirical analysis,

since modern tool chains like MiniZinc [34] and savilerow [35] support targeting multiple

solvers from a solver-independent constraint model. These may be entirely different paradigms,

such as SAT [13], SMT [9] or indeed CP, and so can vary in performance significantly.

The need for empirical benchmarking is further supported by competitions run by several

research communities, like the MiniZinc challenge [44] in the CP community, the SAT

competition [18] and the AI planning competition [47]. Solver developers enter a competition

by providing a default configuration of their solver. Each solver supports a common interface

for specifying their input and output. The competition is then run on a set of problem

instances and the solvers are ranked with respect to their comparative performance.

In the main solver competition for CP, the MiniZinc challenge, each solver is given two

inputs: a solver-independent problem-level model and instance data written in a separate

data file. Then MiniZinc is used to instantiate and translate the solver-independent model

into input suitable for each solver. The main result of the challenge is a ranking of solvers.

More detailed results pertaining to the ranking of solvers per problem class are also published.

The selection of problem instances to be used in a competition is extremely important to

avoid conclusions that are unintentionally biased towards the chosen instances. Competitions

somewhat mitigate this problem by inviting solver authors to submit benchmark instances.

This is a promising sociotechnical attempt at alleviating the problem of bias, but it is

laborious and does not provide a comprehensive solution.

Benchmarking is not only useful for finding an overall ranking among options, but also

for finding subsets of instances where the performance of a solver is significantly different

from the performance of the same solver overall. For example, solver A might perform better

for most instances of a problem class in comparison with B, yet perform very poorly for a

particular subset of the instances. Information like this can be extremely valuable to solver

developers. A traditional competition that works by running all solvers on a fixed set of

instances can occasionally detect such cases even though it does not actively look for them.

For an informative benchmark we need a sufficient quantity of high quality instances

and the ability to dynamically explore subsets of the instance space to detect performance

discrimination. In this work we present AutoIG, a constraint-based instance generation

framework, that supports automatically generating graded instances (i.e., solvable at a certain

difficulty level for a given solver), and finding discriminating instances (i.e. easy for one

solver and difficult for another solver). In combination, these two methods can be used to

generate a large number of high-quality instances. Furthermore, they can be used to find

interesting subsets of the instance space as opposed to leaving their discovery to chance.

Figure 1 gives a flowchart for an end-to-end application of AutoIG, whose instance

generation process is explained in Section 3. Without loss of generality, the flowchart lists the

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:3

four solvers used for the evaluation of AutoIG in this paper. Section 4 explains the choice

of these solvers and the five problem classes we use. Both stages of AutoIG can be applied

to other solvers and solver configurations. The AutoIG process has two main inputs: a

problem specification (in the form of a MiniZinc model in this paper) and a problem specific

instance generator. The instance generator is parameterised to allow AutoIG to generate a

variety of instances. There are two main places where we can extract results from AutoIG,

evaluating all solvers on the combined set of graded instances (marked intermediate results in

the flowchart, see Section 6) and evaluating the results of discriminating instances (marked

discriminating results in the flowchart, see Section 7). AutoIG source code and all data and

models used in this paper are available at https://github.com/stacs-cp/AutoIG.

The main contributions of this paper include:

1. A novel constraint-based framework for generating informative benchmark instances

which combines two approaches (graded and discriminating instance generation) that

were previously used in isolation [4, 3].

2. Support for MiniZinc and hand-written instance generators. The new system accepts a

user-defined generator as a constraint model, thus allowing problem-specific knowledge to

be injected into the instance generation process.

3. Support for the evaluation of local search solvers in addition to systematic solvers. The

instance evaluation also considers both solution quality and running time.

4. An extensive evaluation on five problems from the MiniZinc challenge, showing that we

can gain new interesting insights that complement the competition’s results.

2 Related Work

A series of papers uses evolutionary algorithms and applies instance space analysis methods to

problems in machine learning (classification [32], regression [33], clustering [17]) and in com-

binatorial optimisation (personnel scheduling [24], bin packing [27], course timetabling [16]).

They use evolutionary algorithms to generate problem instances [43, 42], whereas we take a

constraint-based approach. Part of their work is analysing existing instances in benchmark

suites and visualising the hardness distribution of instances for particular problems; our

framework can be fruitfully combined with their detailed analysis and visualisation methods.

Instance generators have been applied to hard problems in Operations Research as well.

For example, NSPLib [48] provides an instance generator and large sets of nurse rostering

instances. Their instance generator characterizes an instance through various complexity

indicators, including problem sizes, preference distribution measures, coverage distribution

measures, and time related constraints. They implement a dedicated procedure for generating

instances with properties corresponding to the values of specific indicators as parameters.

For the knapsack problem, [37] uses instance generators to identify the regions of the instance

space that contain difficult instances. For the traveling thieves problem, [14] uses instance

generators that discriminate between more than two options simultaneously.

In communities such as SAT, there have been various works [41, 21] that try to address

the generation of instances with desired properties. The SAT competition [19] organisers

partly crowdsource the creation of the evaluation set. They require participants to send 20

new instances each, guaranteeing that the competition is run on instances mostly unseen to

the solver developers prior to the competition. In addition, a set of previously used instances

is manually and carefully selected, using various criteria such as hardness and variety.

The problem of generating a good set of benchmark instances is also studied in the AI

planning community [45]. SMAC [23], a tool for optimizing algorithm parameters, is paired

CP 2022

26:4 A Framework for Generating Informative Benchmark Instances

Figure 2 An illustration of irace’s tuning process.

with hand-coded programs to generate many sets of instances that smoothly scale in difficulty.

Afterwards, a subset of the generated sets is selected, according to various criteria such as

difficulty and fairness. This results in a set of instances that better reflect the differences

between planners when compared to the instances used in the competition.

A related field of study is algorithm configuration/selection, including portfolio-based

approaches (SATZilla [49, 50], CPHydra [36], sunny-CP [8, 28]). For these purposes it is

important to have a sufficient number of instances with a variety of difficulties that can

discriminate between the options [39].

3 Constraint-based Automated Instance Generation

Following the approaches in [4] and [3], our instance generation system AutoIG makes use

of the essence constraint modelling pipeline [1] and the automated algorithm configurator

irace [29]. The system receives as input a problem description model, a parameterised

instance generator written as a constraint model (referred to as the generator model), the

solver(s) for which we want to generate graded or discriminating instances, and the types of

instances we are interested in (SAT or UNSAT or both). The role of the essence pipeline is

to express the generator model and to create candidate instances by solving instances of the

generator model (referred to as generator instances), while the role of irace is to search in

the parameter space of the generator model, or in other words, to sample in the generator

instance space, to find configurations that can give us candidate instances with the desired

properties. In this section, we first describe the search procedure of irace (Section 3.1). We

then explain how irace and constraint modelling are combined in the instance generation

process of AutoIG (Section 3.2). Finally, we discuss in detail how each candidate instance

is evaluated during AutoIG search using gradedness or discriminating criteria (Section 3.3).

3.1 irace’s Tuning Process

irace [29] is a general-purpose automated algorithm configuration tool for finding the best

configurations of a parameterised algorithm. One of its key ideas is racing [30]: using

statistical tests to eliminate poor configurations early, avoiding wasting computational budget

on less promising areas of the configuration space. irace leverages this idea with an iterated

procedure where each iteration is a race among several configurations. Figure 2 illustrates

irace’s tuning process. At the first iteration, a number of random configurations are

generated, and a race started by evaluating all configurations on a subset of a given instance

set, on a number of random seeds if the algorithm studied is stochastic, or a combination

of both. A statistical test is applied to identify and eliminate the worst configurations.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:5

Listing 1 A fragment of an example for racp problem

1 % --- Fragment of MiniZinc model (succ: the immediate successors of tasks) --

2 array [int(1..n_tasks)] of set of int(1..n_tasks): succ;

3 % --- Fragment of generator model, in Essence ---

4 given n_tasks_t : int(1..60) given s_density : int(1..5)

5 find succ: matrix indexed by [int(1..n_tasks_t)] of set of int(2..n_tasks_t)

6 such that sum([|succ[t]| | t : int(1..n_tasks_t)])/n_tasks_t = s_density

7 % --- Fragment of an example generator instance, in Essence ---

8 letting n_tasks_t = 6 letting s_density = 2

9 % --- Fragment of an example candidate instance, in MiniZinc ---

10 succ = [{2, 4, 5, 6}, {3, 4, 5}, {4, 5, 6}, {6}, {6}, {}];

Evaluation proceeds with the remaining configurations and a statistical test is conducted

again. This is repeated until only a few good configurations remain or when the budget for

the current race has been used. The race is then finished and the surviving configurations

are used to update a sampling model. In the next iteration, new configurations are generated

based on the updated sampling model and a new race is started. Tuning terminates when a

given number of evaluations is exhausted, and the best configuration(s) recorded are returned.

3.2 AutoIG’s Instance Generation Process

We give an example of the instance generation process in Listing 1, based on racp (see

Section 4 for details). Fragments of a problem description model, a generator model, a

generator instance, and a candidate instance are shown. In this example, a parameter (succ)

of the problem description model (line 2) is written as a decision variable in the generator

model (line 5). The creation of succ is controlled by tunable integer parameters of the

generator model: n_tasks_t (equivalent to n_tasks in the original problem description);

and s_density. Given an instance of the generator model sampled by irace (line 8), a

candidate instance (line 10) can be created by solving the generator instance.

AutoIG utilises irace for searching in the configuration space of the generator model.

The instance generation process starts with irace creating a number of random generator

configurations (a configuration is an instance of the generator model, or in short, a generator

instance). Each configuration is then evaluated using the procedure described in Algorithm 1

and a penalty is given back to irace for the statistical test. The tuning of irace then

proceeds as normal, interleaving using constraint solving to generate new instances and to

evaluate them, and using feedback from the evaluation process to eliminate non-promising

configurations and to update the sampling model.

During each configuration evaluation, the generator instance G is first solved via the

essence pipeline (line 3 of Algorithm 1), whose solving procedure includes two translation

steps by the automated constraint modelling tool conjure [6, 5] and by savilerow followed

by a call to the constraint solver minion [20]. If G is unsatisfiable or if it is too large to

go through the pipeline, a very large penalty is returned so that irace will remove the

configuration from the current race immediately (line 5). If G is not solved by minion within

the current evaluation, a penalty of 1 is returned. Otherwise, the new candidate instance I

is added to the solution history of G to ensure that in the subsequent evaluations of this

configuration, the same instance will not be generated again. Solution history is implemented

via adding a negative constraint table into the minion input of G, and this table is constantly

updated every time G is evaluated during the tuning. Finally, the candidate instance I is

evaluated using one of the two instance evaluation procedures described in Algorithm 2 (for

CP 2022

26:6 A Framework for Generating Informative Benchmark Instances

Algorithm 1 An evaluation of a generator configuration

1: Input: generator model M , generator instance G, solution history HG

2: Output: penalty p

3: r ← solve(M, G, HG) ▷ solve the generator instance G using the essence pipeline

4: if r is either UNSAT or timeout on savilerow then

5: return +∞ ▷ return a very large penalty, irace will discard G immediately

6: if r is timeout on minion then

7: return 1

8: I ← the instance generated by r

9: Add I into HG

10: p← Evaluate I using either GRADED or DISCRIMINATING procedure

11: return p

Algorithm 2 An evaluation of an instance using gradedness criteria

1: Input: problem specification P , instance I, solver S, minimum solving time tmin,

maximum solving time tmax, instance types T (that we are interested in)

2: Output: penalty p

3: procedure Graded(P, I, S, tmin, tmax, T)

4: r ← solve(P, I, S, tmax) ▷ solve I using S with time limit tmax, save results to r

5: if solving_time(r) < tmin or r is timeout then

6: return 0 ▷ I is either too easy or too difficult for S

7: if instance_type(r) ̸∈ T then

8: return 0 ▷ I is not the instance type we are interested in

9: return -1

graded instance generation) or Algorithm 3 (for discriminating instance generation), and

the corresponding penalty is returned to irace. Note that the default setting of irace uses

the Friedman test, a rank-based statistical test. This is also the setting used by AutoIG,

i.e., the magnitude of difference in the penalty values between evaluations is not taken into

account, only the rankings between them matter.

3.3 Evaluating Graded and Discriminating Instances

AutoIG’s instance generation process depends heavily on an effective way of evaluating the

quality of candidate instances. In this section, we describe the algorithms used for evaluating

whether each candidate instance is graded or for measuring their discriminating power. The

algorithms given in this section are invoked in line 10 of Algorithm 1.

To evaluate whether a candidate instance is graded, we employ Algorithm 2. This

algorithm has 6 inputs: a problem specification P of the problem under study, an instance I

and a solver S to be evaluated, the range of solving times (tmin and tmax) for the instance to

be considered graded for S (to avoid instances that are too easy or too hard to solve), and

the type of instances (T) that we are interested in (either satisfiable, unsatisfiable, or both).

The instance is first solved by S (line 4) (See Algorithm 2). Results of the solving (r) include

the status of the solving process (timeout/UNSAT/SAT), and the returned solution I (if

status is SAT). In our experiments S is called via the MiniZinc toolchain. For complete

solvers, we use the amount of time to solve the instance to completion (i.e., with a claim

of optimality for optimisation problems, or with a feasible solution returned for decision

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:7

Algorithm 3 An evaluation of an instance using discriminating criteria

1: Input: problem specification P , instance I, favoured solver SF , base solver SB , minimum

solving time tmin (for B only), maximum solving time tmax, instance types T

2: Output: penalty p

3: procedure Discriminating(P, I, SF , SB , tmin, tmax, T)

4: rF ← solve(P, I, SF , tmax) ▷ solve I using SF with time limit tmax

5: rB ← solve(P, I, SB , tmax) ▷ solve I using SB with time limit tmax

6: if rF is timeout or instance_type(rF) ̸∈ T or solving_time(rB) < tmin then

7: return 0 ▷ I is either too difficult for SF , or not the right instance type, or too

easy for SB

8: scoreF , scoreB ← MiniZinc_Score(SF , SB , P, I)

9: if scoreF = 0 and scoreB = 0 then

10: return 0

11: return −scoreF /scoreB ▷ When scoreB = 0, returns large negative number.

problems or a claim of unsatisfiablity). For local search solvers such as Yuck, since a proof

of optimality cannot be achieved for optimisation problems, we use an external complete

solver (called the “oracle”) to solve the instance to optimality (with a much longer time limit

than tmax), and use that to measure the time until S first finds the optimal solution. If the

instance turns out to be too easy for S or if the solving process times out (line 5) or the

instance type is not interesting to the users (line 7), a penalty of 0 is given back to irace.

Otherwise, the instance is considered graded and a negative penalty of −1 is returned.

Algorithm 3 is used for evaluating the discriminating power of an instance between two

solvers. Each evaluation requires two input solvers: a favoured solver SF and a base solver

SB. We want to find instances that are easy to solve by SF , while being difficult for SB.

The idea is to measure the performance of both solvers on the same instance, and search for

instances that maximise the difference in performance. To avoid cases where the performance

difference may be due to time measurement sensitivity, we impose a minimum solving time

tmin on the base solver SB, i.e., the discriminating instances must be non-trivial to solve

by SB . Similar to the gradedness evaluation, AutoIG also allows focusing on a particular

instance type during the generation process.

The evaluation of the discriminating property starts by applying SF and SB on the

given instance (lines 4 and 5, Algorithm 3). If the instance does not satisfy our acceptance

conditions (incorrect type, too easy for the base solver SB or unsolvable by the favoured

solver SF (line 6)) a penalty of 0 is returned. Otherwise, we calculate the discriminating

power of the instance and use it as feedback to irace. The discriminating power is calculated

as the ratio between the performance of the favoured solver and the base solver, and the aim

of the tuning process is to maximise this ratio. To take into account both solving time and

solution quality when evaluating the performance of a solver, we use the complete scoring

approach of the MiniZinc competitions. After calculating the MiniZinc scores of both

solvers (line 8), the discriminating score is calculated as the MiniZinc score of SF divided by

the MiniZinc score of SB and the negation of that ratio is returned to irace (line 11). Note

that when both MiniZinc scores are equal to 0, the discriminating score is set to 0 (line 10).

The MiniZinc (complete) score for calculating the relative performance of two solvers

on an instance can be found on the competition website (https://www.minizinc.org/

challenge2021/rules2021.html#assessment). For completeness, in the rest of this

section we will describe this score calculation in detail.

CP 2022

26:8 A Framework for Generating Informative Benchmark Instances

Algorithm 4 Check whether one solver performs better than another in terms of solution quality

1: Input: solver A, solver B, problem model P , instance I

2: procedure IsBetter(A, B, P, I)

3: if P is a decision problem then

4: return solved(A, P, I) and not solved(B, P, I)

5: else

6: return (solved(A, P, I) and not solved(B, P, I)) or

7: (optimal(A, P, I) and not optimal(B, P, I)) or

8: (quality(A, P, I) is better than quality(B, P, I))

Algorithm 5 MiniZinc score calculation between two solvers.

1: Input: solver A, solver B, problem model P , instance I

2: procedure MiniZinc_Score(A, B, P, I)

3: if IsBetter(A, B, P, I) then

4: scoreA ← 1, scoreB ← 0

5: else if IsBetter(B, A, P, I) then

6: scoreA ← 0, scoreB ← 1

7: else if solved(A, B, P, I) then

8: scoreA ← time(B, P, I)/(time(A, P, I)+time(B, P, I))

9: scoreB ← 1− scoreA

10: else

11: scoreA ← scoreB ← 0

12: return scoreA and scoreB

Given a solver S, a problem model P and an instance I, the following information is

collected for the calculation: time(S, P, I) – the solving time of S on I; solved(S, P, I) –

whether a correct solution or a correct unsatisfiability result for I is returned by S; qual-

ity(S, P, I) – the best objective value obtained by S; and optimal(S, P, I) – whether a claim

of optimality is returned by S. Based on those information, the function IsBetter(A, B, P, I)

(Algorithm 4) determines whether solver A is clearly better than solver B in terms of solution

quality, for decision problems (line 4) and for optimisation problems (lines 6-8).

Finally, the MiniZinc complete score when comparing two solvers on an instance I is

calculated in Algorithm 5. The calculation starts with checking whether one of the two

solvers is better than the other in term of solution quality (lines 3-6). If that is not the case,

there are two possibilities. First, I is solved by both solvers, and for optimisation problems,

the same solution quality is achieved by both. In that case the normalised solving times

are used as the scores. Second, both solvers fail to solve I, and in that case a score of 0 is

returned for both. Note that this is slightly different from the scoring used in the MiniZinc

competitions, where the scores of 1 and 0 are given to A and B, respectively. This is because

the final competition ranking is based on the Borda counting system, where the score is

calculated for all pairs of solvers, including the same pair in the opposite order.

4 Case Studies

In this section we describe the five problems that are used to evaluate AutoIG, and also

the set of four solvers that are used in our experiments. The five problems being used in

this study are taken from the latest MiniZinc Challenges. They are chosen with the aim

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:9

of covering a variety of different problem properties, including the existence of redundant

and symmetry breaking constraints, the usage of different global constraints, and a range of

problem domains. In this section, we give a brief overview of those problems and how their

instance generation problems are modelled.

Multi-Agent Collaborative Construction problem (macc) [26]: This is a planning

problem that involves constructing a building by placing blocks in a 3D map using multiple

identical agents. Ramps must be built to access the higher levels of the building. The

objective is to minimise the makespan (primary) and the total cost (secondary).

In addition to the basic parameters of a macc instance indicated in the problem specifica-

tion (i.e., the number of agents, the time horizon and the map sizes), the instance generation

process should include information about the building itself as this is likely to affect instance

difficulty. Therefore, two parameters and related constraints are added to the generator

model to represent the density of the building on the ground level and its average height.

Carpet Cutting problem (carpet-cutting): The Carpet Cutting Problem [40] is a

packing problem in which room and stair carpets composed of rectangular sections must be

packed onto a carpet roll of fixed width and whose length must be minimised. The problem

is complicated by the ability to rotate the carpets to aid in the packing process.

This problem requires substantial instance data, including the specification of the con-

stituent rectangles of each carpet, their dimensions, and the permitted carpet rotations.

There are several implicit constraints on this data that are not captured in the original

MiniZinc model and hence these must be injected into the instance generation process

through our generator specification. In particular, the rectangles that comprise a carpet

must not overlap and must form a contiguous shape, as well as have bounded sizes so as to

avoid trivially unsatisfiable instances.

Mario problem (mario): The Maximum Profit Subpath Problem is a routing problem

that requires us to find a path in a graph where the path endpoints are given. This path is

subject to two main constraints, where the sum of weights associated to arcs in the path is

restricted (fuel consumption), while the sum of weights associated to nodes in the path has

to be maximized (reward).

Regarding the instance generation process, in addition to the basic parameters, the amount

of reward per node is represented as a non-negative integer array, while the non-negative cost

for each arc is represented as a 2-dimensional matrix. There are a few implicit constraints

not represented in the MiniZinc model, where the initial and goal nodes are different and

have 0 reward, and the cost matrix is symmetric on the diagonal.

Resource Availability Cost Problem (racp): The Resource Availability Cost Prob-

lem [25] is a scheduling problem with activities that are non-interruptible and have a fixed

duration. The problem includes precedence constraints between pairs of activities i, j (that

require activity i to be completed before activity j begins), arranged in a directed acyclic

graph. There are a set of renewable resources, and each activity (when running) requires a

given amount of each resource. All activities must be completed by a given deadline. Each

resource has a cost per unit, and the objective is to minimise the peak costs of the resources.

The durations of activities, unit costs of resources, and resource demands of activities

are all matrices of integers without complex constraints. However, the precedence graph

(represented as a set of successors for each activity) has implicit constraints that are not

represented in the MiniZinc model. Firstly, it must be acyclic, and we achieve this by

mapping activities to numbered layers and allowing only edges from lower to higher-numbered

layers. Secondly, we ensure that each activity has at least one predecessor and at least one

successor (except the dummy first and last activities).

CP 2022

26:10 A Framework for Generating Informative Benchmark Instances

Discrete Lot Sizing problem (lot-sizing): The Discrete Lot Sizing and Scheduling

Problem [22, 46] (CSPLib 58) requires us to find a production schedule for a set of orders, each

with a due date within a planning horizon. There are various costs associated with production,

such as setup, changeover and stocking costs, the sum of which must be minimised.

This problem requires substantial instance data including the type and due date of each

order, and moreover a table of changeover costs between orders. There are a number of

implicit constraints on this data, including a dummy order type 0 which incurs 0 cost to

change to/from, and the fact that the changeover costs for the remaining order must obey the

triangle inequality. Again, these are not captured in the original MiniZinc model and hence

must be injected into the instance generation process through our generator specification.

We investigate the performance of four solvers, also taken from the MiniZinc challenges,

on the problems described above using our framework. They are chosen such that a variety

of solving techniques and different competition rankings are included. The solvers are:

OR-Tools [2] (version 9.2) – a systematic solver from Google that combines CP, SAT, and

linear programming techniques; Picat-SAT [51] – a SAT compiler for the multi-paradigm

programming language Picat which uses kissat [12] as the underlying SAT solver; Chuffed [15]

(version 0.10.4) – a clause learning CP solver which was not a participant of the challenges

but was used in the score calculation process to rank participating solvers; and Yuck [31]

(version 20210501) – a constraint-based local search solver.

OR-Tools has consistently won the last several competitions and Picat-SAT has received

multiple silver medals. Yuck is the winning solver in the Local Search category of the 2020

and 2021 competitions. However, its ranking was generally low when compared to OR-Tools

and Picat-SAT. In particular, based on the competition data, it was completely dominated

by OR-Tools on the five problems considered.

5 Experimental Setup

The first set of experiments are on generating graded instances. For each problem, we first

generate graded instances for each solver via an AutoIG experiment with a budget of 2, 000

runs. Note that a run is an evaluation of a generator configuration. The gradedness criteria

is defined as being solvable by the given solver with the time ranging from 10 seconds (to

avoid trivial instances) to 20 minutes (the time limit used by the MiniZinc Challenge).

Following the competition approach, MiniZinc translation time is included in the total time

measured. Since Yuck is a local search solver, we use OR-Tools (with a budget of 1 hour)

for checking whether a solution returned by Yuck is optimal. After all graded instances

are collected, we then randomly select 50 graded instances from each experiment to get a

combined benchmark instance set for each problem. Finally, we evaluate the performance of

all four solvers on the combined instance set.

The second set of experiments are on generating discriminating instances. Since OR-Tools

has consistently shown very strong performance on the competition data, the main aim of

these experiments is to see whether we can find instances where OR-Tools is performing

worse than the other two participating solvers being considered. We do this without loss of

generality: our discriminating instance generation procedure can be applied to any pair of

solvers. We compare two solvers (Picat-SAT and Yuck) against OR-Tools. For each solver

we conduct two separate AutoIG experiments, one where we search for instances that are

solved more quickly by OR-Tools and one for the opposite case. The same AutoIG budget

and memory limit as in graded experiments are used. To avoid instances where the difference

between the performance of two solvers is due to fluctuations in running time measurement,

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:11

Figure 3 Number of graded instances generated.

a minimum requirement of 10 seconds is imposed on the solving time of the base solver, i.e.

instances that can be trivially solved by the base solver are discarded.

All experiments were performed on a computing node of a High Performance Computing

cluster. Each node is equipped with two 2.1 GHz, 18-core Intel Xeon processors and 256 GB

RAM. Each solver except Yuck is given a memory limit of 8GB via the runsolver tool [38].

For Yuck, the memory limit is controlled directly via the Java Runtime Environment (JRE).

For solving the generator models, time limits of 5 and 10 minutes are given to savilerow

and minion, respectively. In this work, we focus on the Free Track of the competitions.

Therefore, all solvers are called via the MiniZinc toolchain with a single core and with

the free search option being passed to the solver. Although AutoIG supports focusing on

generating either only SAT or only UNSAT instances, in this work we allow both types of

instances to be generated.

6 Results on graded instances

First we describe the sets of graded instances produced by AutoIG for the five problems

(Section 6.1) and discuss insights obtained from analysing the results. Then in Section 6.2

we combine the sets of graded instances for each problem, and re-evaluate the four solvers

using the combined sets of instances, showing substantially different relative performance in

some cases compared with the competition instances.

6.1 Graded instance generation

For each problem, Figure 3 shows the number of graded instances obtained per solver within

the given budget. While we can achieve more than a few hundred graded instances in most

cases, there are cases where we are only able to generate a small number of instances. For

example, with OR-Tools on carpet-cutting and mario, we generate only 4 and 1 graded

instances, respectively. In addition, the numbers are fairly small for Yuck on macc and

carpet-cutting. There is a large variation in the number of graded instances we are able

to generate for different problems and solvers (shown in Figure 3).

The differences in the number of graded instances returned by each experiment suggest

that the performance of the solvers varies significantly when solving instances drawn from

the same instance space. In order to better understand the performance distribution of

each solver we investigate the details of the search space of AutoIG. More specifically,

we check the status of each configuration evaluation run and measure their frequency, as

detailed in Figure 4. For OR-Tools on carpet-cutting and mario, only a small number

of graded instances are found, but this same outcome has entirely different causes. For

carpet-cutting, almost half of the runs are with unsolvable generator configurations, and

for the rest the candidate instances are mostly trivially proved unsatisfiable by OR-Tools.

CP 2022

26:12 A Framework for Generating Informative Benchmark Instances

Figure 4 Frequency of all run statuses, including generator-unsolved (generator instance
is UNSAT or unsolvable); graded (a graded instance is obtained); too-difficult (the candid-
ate instance is unsolvable by the considered solver within the time limit); too-easy-SAT and
too-easy-UNSAT (the candidate instance is too easy, i.e., solved within less than 10 seconds); and
others (the considered solver fails due to unexpected errors such as incorrect returned answers).

Figure 5 Solving time of graded instances generated for each pair of problems and solvers. Note
that the instances presented here are the graded instances found for each solver independently. The
performance of these solvers on the combined set of graded instances can be seen in Figure 6.

For mario, the majority of the runs produce instances that are trivially satisfiable. Once

we understand the underlying reason for the lack of graded instances, we can rectify each

of these shortcomings: for carpet-cutting, expert knowledge on the problem may be

added as constraints to the generator model to avoid trivially unsatisfiable instances, while

for mario, the current instance space may be too easy for OR-Tools and we may want to

increase the upper bounds of some of the generator parameters. On the other hand, the

situation is completely different for Yuck: the small number of graded instances obtained

for macc and carpet-cutting is largely due to the fact that the majority of instances

generated are too difficult to solve.

In addition to the run statuses, the distribution of solving time of graded instances also

gives us interesting insights into the performance of different solvers, as illustrated in Figure 5.

Notably, many graded instances for mario and racp are close to the lower bound of graded

instances; this is true for all solvers. Nevertheless, AutoIG is able to find challenging graded

instances, which can take several hundred seconds to solve, for all solvers on those two

problems (except for OR-Tools on mario). For carpet-cutting, OR-Tools and Chuffed

can solve most graded instances quickly, while Picat-SAT and Yuck take more time in general.

Finally, for macc and lot-sizing, the solving time distributions of all four solvers are more

well-spread, indicating a good diversity of difficulties among the generated graded instances.

Note that for the majority of graded instances generated, the MiniZinc flattening times

are generally marginal compared to the time taken to solve them. This indicates that the

more difficult graded instances are actually challenging for the solvers themselves, and can

be useful for solver developers to improve their solver performance.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:13

Figure 6 MiniZinc Borda (complete) scores of each solver on the MiniZinc Challenges instance
set (left) and on the combined graded instance set generated by AutoIG (right).

6.2 Comparison of Solver Performance on Graded Instances

We combine all graded instances to construct a diverse set of instances for each problem.

We then evaluate all four solvers on the combined set and rank them using the Borda

(complete) scoring method of the MiniZinc Challenge (https://www.minizinc.org/

challenge2021/rules2021.html). More specifically, for each problem, 50 graded

instances are uniformly sampled from the set of graded instances for each solver. In cases

where there are less than 50 graded instances available, we just take them all. For comparison,

we also evaluate those solvers on the instances used in the competition. There are 5-10

instances per problem, as some problems are re-used over two different competitions.

Figure 6 shows the scores on the competition instances (left) and on the combined graded

instances generated by AutoIG (right). There are similarities between results on the two

sets of instances. Performance of OR-Tools and Chuffed remain strong in most cases, followed

by Picat-SAT. For macc, carpet-cutting and mario, the overall rankings of the four

solvers on both groups are almost the same. However, results on the graded set do show

certain changes in relative performance of all solvers. For example, the scores of Yuck on

the graded instances are no longer zero for macc and carpet-cutting, and the score for

mario increases noticeably. This indicates that Yuck is actually not completely dominated

by all other solvers on those three problems as suggested by the competition data. For racp,

the ranking has changed significantly: OR-Tools swaps places with Chuffed, and Picat-SAT

swaps places with Yuck. For lot-sizing, Picat-SAT is no longer ranked higher than Chuffed.

Thanks to the solution checking process being integrated into each evaluation, we also

found a number of cases from the combined graded sets where incorrect answers are returned,

which can be of separate interest to the solver developers. There were 41 (out of 183) macc

instances and 90 (out of 154) carpet-cutting instances (from the subset of graded instances

generated for other solvers) where Yuck reports objective values of infeasible solutions.

Generating a larger number of graded instances for each solver and analysing them using

the presented methods gives more information in comparison to a typical competition’s result,

which would be a ranking of the solvers. In Section 7 we apply the discriminating instance

generation feature of AutoIG to gain even more insight into solver performance.

7 Results on Discriminating Instances

Results on MiniZinc competition data indicate that OR-Tools is a very strongly performing

solver on the 5 problems considered. It completely dominates Yuck, i.e., Yuck gets zero score

on all competition instances when compared directly to OR-Tools. OR-Tools also wins over

Picat-SAT on all instances of mario and racp, on 9 out of 10 instances of lot-sizing, and

CP 2022

26:14 A Framework for Generating Informative Benchmark Instances

Figure 7 Number of discriminating instances generated per favoured and base solver pair.

Figure 8 Distribution of scores (of the winning solver) on discriminating instances generated.

on 8 out of 10 instances of carpet-cutting. However, detailed results obtained from the

evaluation on graded instances suggest that this may not always be the case. For example,

there are 31 instances evaluated on racp where Picat-SAT performs better than OR-Tools,

and 58 macc instances where Yuck performs better. In this section, we use the discriminating

instance generation feature of AutoIG to get more insights into these cases.

Figure 7 shows the number of discriminating instances generated for the two pairs of

solvers. In the experiments on OR-Tools versus Yuck, AutoIG found 431 macc instances

and 110 racp instances where Yuck gets a better score than OR-Tools, which indicates

that Yuck is not completely dominated by OR-Tools on these two problems. On the other

hand, for carpet-cutting and mario, results suggest that Yuck may indeed be entirely

dominated by OR-Tools, as no instances were found in the experiments that favour Yuck.

Furthermore, for lot-sizing, only 3 discriminating instances favouring Yuck are found.

In the experiment on OR-Tools versus Picat-SAT, OR-Tools shows domination on both

carpet-cutting (only 2 instances where Picat-SAT is better than OR-Tools were found)

and mario (no instances favouring Picat-SAT was found). On the other three problems,

there are a good number of discriminating instances in both directions.

The number of discriminating instances tell us if winning instances for a solver can be

found, but it does not show the magnitude of the difference in performance. We can get

additional insights into comparative performance of the solvers by looking into the detailed

scores of the winning solver on discriminating instances for each experiment. As shown in

Figure 8, for macc, the median lines indicate that for all four cases, several discriminating

instances found have the highest “discriminating power”, i.e., the winning solver gets the

maximum score of 1 (the other solver, in turn, gets zero score). This type of instance is

probably the most interesting for understanding the shortcomings of a particular solver. For

carpet-cutting, on the only 2 discriminating instances where Picat-SAT has better score

than OR-Tools, the score distribution of the corresponding experiment (Picat-SAT>OR-

Tools) suggests that OR-Tools performance is not much worse. This suggests that OR-Tools

indeed dominates Picat-SAT on this problem. A similar conclusion can be reached for Yuck,

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:15

i.e., it is clear that OR-Tools is really the dominating solver on carpet-cutting since the

magnitude of the performance difference is very small even for the instances where Yuck is

faster. Similarly, for mario, OR-Tools very clearly dominates in comparison to Picat-SAT

and Yuck, as indicated by the discriminating score distributions. This is in line with what

was observed in the previous section’s results on the same problem.

Interestingly, for racp, although the number of discriminating instances of Picat-

SAT>OR-Tools is larger than of Yuck>OR-Tools as shown in Figure 7, the magnitude

of the performance difference of instances found for Yuck is generally much higher. This

observation gives a new insight that has not been revealed in all previous experiments on

gradedness: even though the performance of Yuck is dominated by other solvers in general

(i.e., it is ranked lower) and it has a smaller number of discriminating instances favouring it,

the magnitude of the performance difference is very large for these instances. This means

there exists a subset of the racp instances where Yuck’s performance is much better than

OR-Tools, while this does not seem to be the case for Picat-SAT.

The insights provided by discriminating instances could be useful in constructing a robust

portfolio of solvers for a given problem. For example, on racp, Yuck is the weakest solver by

a wide margin on the graded instances (see Figure 6) and second-weakest on competition

instances. On the graded instances, Picat-SAT performs considerably better than Yuck.

However, the results with discriminating instances show that Yuck would be a good candidate

to add to a portfolio (alongside OR-Tools) whereas Picat-SAT may not be.

8 Conclusions and Future Work

Assessing the performance of solving methods via benchmark problems is fundamental to

CP research. However, its utility is limited by the availability of problem instances that are

of suitable difficulty, and diverse (not inadvertently favouring one solver over another). We

have shown that our system AutoIG can generate large numbers of informative benchmark

instances graded for difficulty for a single solver, or that can discriminate between two solvers

(favouring one or the other). The only manual part of the AutoIG process is to capture (in

a generator model) any implicit constraints on the instances data.

The essential task of benchmarking is to compare multiple solvers and rank them.

As illustrated in our experiments, AutoIG can be used to generate graded instances

for each solver independently, and these can then be combined into one set of instances,

providing confidence that the generation process does not favour one solver or class of

solvers. Furthermore, we have shown that automatically generated instances can provide

more detailed insights than just a ranking. Instances generated by AutoIG can reveal cases

where a solver is weak or even faulty, providing valuable information to solver developers.

Finally, discriminating instances can reveal parts of the instance space where a generally weak

solver performs well relative to others, and therefore could be useful as part of a portfolio.

There are various directions for future improvement. First, the diversity of instances

found during search can be taken into account to increase the quality of the final instance set.

This would require a definition of diversity, which could be based on problem-specific instance

features or on general constraint programming features such as the fzn2feat features [7].

Secondly, similar to the series of work on Instance Space Analysis (e.g. [32, 24, 16]), a detailed

visualisation of the instance space based on performance data collected from the tuning and

evaluation process of AutoIG would provide further insights into performance of the solvers

under study. Again, instance features would be needed for such analysis.

CP 2022

26:16 A Framework for Generating Informative Benchmark Instances

References

1 essence modelling pipeline:. https://constraintmodelling.org/.

2 Google OR-Tools, 2021. Available from https://github.com/google/or-tools.

3 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, Patrick Spracklen, and Chris-
topher Stone. Discriminating instance generation from abstract specifications: A case study
with CP and MIP. In International Conference on Integration of Constraint Programming,

Artificial Intelligence, and Operations Research, pages 41–51. Springer, 2020.

4 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, and Christopher Stone. Instance
generation via generator instances. In International Conference on Principles and Practice of

Constraint Programming, pages 3–19. Springer, 2019.

5 Ozgur Akgun, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Breaking
conditional symmetry in automated constraint modelling with Conjure. In Proceedings of the

21st European Conference on Artificial Intelligence (ECAI), pages 3–8, 2014.

6 Ozgur Akgun, Ian Miguel, Christopher Jefferson, Alan M Frisch, and Brahim Hnich. Extensible
Automated Constraint Modelling. In Wolfram Burgard and Dan Roth, editors, AAAI 2011 -

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San

Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

7 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th annual ACM symposium on

applied computing, pages 1357–1359, 2014.

8 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY-CP: a sequential CP
portfolio solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 1861–1867, 2015.

9 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model checking,
pages 305–343. Springer, 2018.

10 Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya
Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, William La Cava,
Manuel Lopez-Ibanez, et al. Benchmarking in optimization: Best practice and open issues.
arXiv preprint arXiv:2007.03488, 2020.

11 Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for comparing optimization
algorithms. Optimization and Engineering, 18(4):815–848, 2017.

12 Armin Biere, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat, Paracooba entering
the SAT competition 2021. In T Balyo, N Froleyks, M Heule, M Iser, M Järvisalo, and
M Suda, editors, Proceedings of SAT Competition 2021: Solver and Benchmark Descriptions.

Department of Computer Science Report Series B, vol. B-2021-1, Department of Computer

Science, University of Helsinki, Helsinki, 2021.

13 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

14 Jakob Bossek and Markus Wagner. Generating instances with performance differences for
more than just two algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, pages 1423–1432, 2021.

15 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, 2018. Available from https://github.com/chuffed/chuffed/.

16 Arnaud De Coster, Nysret Musliu, Andrea Schaerf, Johannes Schoisswohl, and Kate Smith-
Miles. Algorithm selection and instance space analysis for curriculum-based course timetabling.
Journal of Scheduling, pages 1–24, 2021.

17 Luiz Henrique dos Santos Fernandes, Ana Carolina Lorena, and Kate Smith-Miles. Towards
understanding clustering problems and algorithms: an instance space analysis. Algorithms,
14(3):95, 2021.

18 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competition
2020. Artificial Intelligence, 301:103572, 2021.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, P. Nightingale 26:17

19 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competi-
tion 2020. Artificial Intelligence, 301:103572, 2021. doi:https://doi.org/10.1016/j.
artint.2021.103572.

20 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.
In Proceedings ECAI 2006, pages 98–102, 2006.

21 Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT instances generator. In
Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International

Joint Conference on Artificial Intelligence, IJCAI, pages 1952–1958. AAAI Press, 2015. URL:
http://ijcai.org/Abstract/15/277.

22 Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey, and Yves Deville. The stockingcost
constraint. In International conference on principles and practice of constraint programming,
pages 382–397. Springer, 2014.

23 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optim-
ization for general algorithm configuration. In Carlos A. Coello Coello, editor, Learn-

ing and Intelligent Optimization - 5th International Conference, LION 5, Rome, Italy,
volume 6683 of Lecture Notes in Computer Science, pages 507–523. Springer, 2011. doi:

10.1007/978-3-642-25566-3_40.

24 Lucas Kletzander, Nysret Musliu, and Kate Smith-Miles. Instance space analysis for a personnel
scheduling problem. Annals of Mathematics and Artificial Intelligence, 89(7):617–637, 2021.

25 Stefan Kreter, Andreas Schutt, Peter J Stuckey, and Jürgen Zimmermann. Mixed-integer
linear programming and constraint programming formulations for solving resource availability
cost problems. European Journal of Operational Research, 266(2):472–486, 2018.

26 Edward Lam, Peter J Stuckey, Sven Koenig, and TK Kumar. Exact approaches to the
multi-agent collective construction problem. In International Conference on Principles and

Practice of Constraint Programming, pages 743–758. Springer, 2020.

27 Kelvin Liu, Kate Smith-Miles, and Alysson Costa. Using Instance Space Analysis to Study the

Bin Packing Problem. PhD thesis, 2020.

28 Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing
SUNNY for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.

29 Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

30 Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11(1):193–225, 1997.

31 Michael Marte. Yuck, 2021. Available from https://github.com/informarte/yuck.

32 Mario A Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces
for machine learning classification. Machine Learning, 107(1):109–147, 2018.

33 Mario Andrés Muñoz, Tao Yan, Matheus R Leal, Kate Smith-Miles, Ana Carolina Lorena,
Gisele L Pappa, and Rômulo Madureira Rodrigues. An instance space analysis of regression
problems. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–25, 2021.

34 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,
and Guido Tack. Minizinc: Towards a standard CP modelling language. In International

Conference on Principles and Practice of Constraint Programming, pages 529–543. Springer,
2007.

35 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017.

36 Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan.
Using case-based reasoning in an algorithm portfolio for constraint solving. In Irish conference

on artificial intelligence and cognitive science, pages 210–216, 2008.

37 David Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32(9):2271–2284, 2005.

CP 2022

26:18 A Framework for Generating Informative Benchmark Instances

38 Olivier Roussel. Controlling a solver execution with the runsolver tool. Journal on Satisfiability,

Boolean Modeling and Computation, 7(4):139–144, 2011.
39 Marius Schneider and Holger H Hoos. Quantifying homogeneity of instance sets for algorithm

configuration. In International Conference on Learning and Intelligent Optimization, pages
190–204. Springer, 2012.

40 Andreas Schutt, Peter J Stuckey, and Andrew R Verden. Optimal carpet cutting. In
International Conference on Principles and Practice of Constraint Programming, pages 69–84.
Springer, 2011.

41 Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability prob-
lems. Artificial Intelligence, 81(1-2):17–29, 1996. doi:10.1016/0004-3702(95)00045-3.

42 Kate Smith-Miles, Jeffrey Christiansen, and Mario Andrés Muñoz. Revisiting where are the
hard knapsack problems? via instance space analysis. Computers & Operations Research,
128:105184, 2021.

43 Kate Smith-Miles and Jano van Hemert. Discovering the suitability of optimisation algorithms
by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2):87–
104, 2011.

44 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.
Constraints, 15(3):307–316, 2010.

45 Alvaro Torralba, Jendrik Seipp, and Silvan Sievers. Automatic instance generation for
classical planning. In Proceedings of the International Conference on Automated Planning and

Scheduling, volume 31, pages 376–384, 2021.
46 Hafiz Ullah and Sultana Parveen. A literature review on inventory lot sizing problems. Global

Journal of Research In Engineering, 10(5), 2010.
47 Mauro Vallati, Lukás Chrpa, and Thomas Leo McCluskey. What you always wanted to

know about the deterministic part of the international planning competition (IPC) 2014
(but were too afraid to ask). Knowledge Engineering Review, 33:e3, 2018. doi:10.1017/

S0269888918000012.
48 Mario Vanhoucke and Broos Maenhout. On the characterization and generation of nurse

scheduling problem instances. European Journal of Operational Research, 196(2):457–467,
2009.

49 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

50 Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown. SATzilla2012:
Improved algorithm selection based on cost-sensitive classification models. Proceedings of SAT

Challenge, 2012, 2012.
51 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.

In International Conference on Principles and Practice of Constraint Programming, pages
671–686. Springer, 2017.

	1 Introduction
	2 Related Work
	3 Constraint-based Automated Instance Generation
	3.1 irace's Tuning Process
	3.2 AutoIG's Instance Generation Process
	3.3 Evaluating Graded and Discriminating Instances

	4 Case Studies
	5 Experimental Setup
	6 Results on graded instances
	6.1 Graded instance generation
	6.2 Comparison of Solver Performance on Graded Instances

	7 Results on Discriminating Instances
	8 Conclusions and Future Work

