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Assessing the feasibility of monocular visual simultaneous localization

and mapping for live sewer pipes: a field robotics study

Mathew H. Evans1, Jonathan M. Aitken1, Sean R. Anderson1

Abstract— Sewer pipes are important to inspect for damage
and blockages. Mobile robots with cameras are a natural
choice for inspecting sewers, and indeed CCTV inspection using
tethered mobile platforms is a well-established commercial
approach. It therefore makes sense to also explore the use
of camera data for localising defects for targeting subsequent
repair. Visual odometry (VO) methods have been researched
for robot localisation in pipes but the full visual simultaneous
localisation and mapping (vSLAM) problem has received little
attention. Whilst VO focuses on estimating the current pose of
the robot, vSLAM focuses on building a map, as well as pose
estimation, which should increase accuracy and robustness –
both important for the future use of autonomous robots in
sewer inspection. In particular, it is not known if one crucial
element of vSLAM – loop closing using appearance-recognition
methods – works effectively in sewer pipes due to problems of
perceptual aliasing – where the high degree of visual similarity
in image frames can lead to incorrect loop closures causing the
vSLAM system to fail. The aim of this paper is to assess the
feasibility of vSLAM for sewer pipes using real world data.
The results demonstrate that whilst perceptual aliasing is a
problem, appearance-recognition using bag-of-words methods
can be used effectively. This demonstrates for the first time that
full vSLAM systems are potentially useful for the sewer pipe
environment.

I. INTRODUCTION

Sewer pipes require inspection and maintenance through-

out their life-span in order to detect blockages and damage

[1]. Technologies for inspecting sewer pipes are reviewed in

[2], and include closed-circuit television (CCTV) inspection

[3]. In the future, untethered, autonomous, mobile robots

have the potential to perform inspection but they would have

to accurately localize themselves within the pipe network

in order to locate damage and faults for repair. This is a

challenging problem because sewer pipes are typically buried

underground, preventing the reception of GPS signals. In

addition, water utilities’ maps of their pipe networks can

often be incomplete and contain errors due to discrepancies

arising between planned pipe replacement and actual work

undertaken, lack of precise record keeping and loss of data

(pipes can be tens of years old). Therefore, robots need

accurate systems for simultaneous localization and mapping

(SLAM) [4]–[6].

Cameras are usually included on pipe inspection robots so

that human operators can visually inspect the pipes, including
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the robots MAKRO [7], KANTARO [8], MRINSPECT [9],

PipeTron [10] and EXPLORER [11]. This makes them a

natural sensor choice for navigation, and in fact cameras have

long been used for localization in pipes, e.g. using image

mosaicking [12], and more recently with modern keyframe

optimization methods for monocular visual odometry (VO)

in natural gas pipes [13], [14] and sewer pipes [15]. Depth

cameras have also been used for VO in sewers, which slightly

simplifies the problem [16], [17]. In related work, camera-

inspection has been used in structure-from-motion (SFM)

methods to perform 3D reconstruction of sewer pipes [18].

Whilst the VO problem and the SFM problem have been

studied in sewer pipes, the full visual SLAM (vSLAM) prob-

lem including loop closing and appearance-based recognition

has not yet been well investigated in this type of environment.

VO is quite distinct from the full vSLAM problem because

the primary goal in a VO system is to only estimate the

current pose of the camera, for which a system will tend to

use recent frames. In contrast, the goal of a vSLAM system is

to estimate a map along with the pose, and the system will

tend to use frames across the full time history to perform

map and pose estimation. This has the potential to lead to

increased accuracy but also increased robustness, because

the vSLAM system enables matching to data observed much

earlier in time.

The accuracy of robot mapping and localisation is im-

portant in sewer pipes because fault detection can lead

to expensive and disruptive excavations for repair in busy

streets, so it is critical to locate the fault at the first attempt

when excavating. Also, robustness is critical because it is

important that sewer robots do not become lost in pipes,

leading to additional problems such as blockages and costly

operations for robot recovery.

A key aspect of vSLAM compared to VO is loop clos-

ing, typically using appearance-based recognition methods

[19]. Appearance-based recognition would appear to be a

challenging problem in sewer pipes because of perceptual

aliasing, which is where errors are made in place recognition

due to 1. false positives where one place is mistaken for

another due to high similarity in appearance, and 2. false

negatives where there is a failure to recognise a previously

visited place because it’s appearance is indistinguishable

from other places. However, appearance-based recognition in

sewer pipes has not yet been investigated (to our knowledge),

which is an important research gap to address, in order to

characterise to what extent these methods can succeed.

The aim of this study is to investigate the feasibility of

using monocular vSLAM for mapping and localization in



Fig. 1. Experimental data. (a) The sewer inspection robot used to collect the modern CCTV data. (b) The inspection rig and view along the road where
the sewer inspection took place for modern CCTV data. (c) The robot inside the manhole insertion point at the start of the inspection for the odern CCTV
data. (d) An alternative view of the above-ground inspection route for the modern CCTV data. (e) A top-down map view of the sewer pipe route for the
modern CCTV data. (f) An example image frame from the video recorded by the inspection robot for the modern CCTV data. (g)-(j) Examples of image
frames from the historic sewer inspection videos.

sewer pipes, where we place particular emphasis on evaluat-

ing the use of appearance-based recognition in loop closing.

We make use of state-of-the-art visual SLAM methods -

ORB-SLAM3 [20], which is a recent update of the well-

known ORB-SLAM2 algorithm [21].

In order to perform this study, we make use of a number of

real-world data-sets from CCTV inspection of sewer pipes.

These are a relatively unique data sets because they include

data from different types of sewer pipe construction, camera

technologies and image quality. In addition, it presents chal-

lenging problems for visual SLAM because the environment

and inspection is real, not a synthetic, lab-based experiment.

Hence, lighting, motion and visual features are not in the

control of the experimenter and present a more stringent

and realistic test of the SLAM system. The videos include

varying levels of running water, pipe debris and corrosion.

A limitation of this study is that it uses monocular vSLAM

methods, which are subject to scale ambiguity, which makes

full quantitative assessment difficult at this stage. However,

the setup is sufficient to test the accuracy of appearance-

based recognition in terms of successful loop closures, which

is the primary aim of the paper, and also to assess feasibility.

The sewer pipe data sets divide into two (see Fig. 1): The

first data set is from a recent real-world CCTV inspection

where we were able to accompany the sewer inspection team

- this enabled us to perform proper camera calibration and

make multiple runs for subsequent testing and analysis. The

second data set is a collection of historical CCTV inspec-

tions, that are from a number of different types of sewer

pipe collected over many years. This data set is advantageous

for evaluating the robustness of vSLAM methods across

different types of sewer pipe environment but due to its

historical nature, the opportunity for camera calibration was

not available, so the absolute accuracy would be less than

normally expected.

II. METHODS

A. Modern CCTV data collection

Modern CCTV data was collected by a professional sewer

surveying team from Severn Trent Water at a location in

Derbyshire under the supervision of the authors. A tethered

Mini-Cam Proteus ATEX camera robot crawler system (Fig.

1(a), minicam.co.uk) was lowered into live sewer pipes.

Camera images could be inspected in real time from a com-

puter terminal in an inspection van, from which the camera

robot was remotely controlled. The robot was driven along



Fig. 2. Appearance-based recognition and mapping in modern and historical CCTV data. (a-e) Example stills from pipe inspection CCTV showing the
diverse visual environments, lighting conditions and image quality. (f-j) FAB-MAP results for each example video shown in (a-e). Each row in the image
plot shows the probability that the current image has been seen previously. Maximum probability frame for each row is marked with grey dot. Dark line of
dots along the diagonal show new frames being correctly identified as novel. Off-diagonal entries show confusion due to aliasing. (k) Summed probability
of previous frames being most similar to the current frame (f-j) for sequential frames back in time. (l) Cumulative sum of results in (k).

the pipe from one manhole location to the next manhole

inspection chamber, as determined through visual inspection

of the camera images (40.48m distance). Distance travelled

as measured by the tether encoder was written on to the

camera images in real time. This process was repeated twice

in the same pipe to provide data to test place recognition and

loop closure.

Camera calibration was performed using OpenCV chess-

boards (9x6, 71mm and 42mm square diameter) [22] and

Matlab (Mathworks) calibration routines. Images for cali-

bration were collected above ground during the site visit by

the authors.

B. Historical CCTV data collection

Historical CCTV data was gathered from a number of

different sewer inspection teams across many years by

colleagues in the Department of Civil Engineering at the

University of Sheffield. Survey locations were withheld but

are broadly from the South Yorkshire area as well as one

video from Japan. These surveys were conducted by experi-

enced camera operators using professional grade equipment

for the time, but vary in camera image quality, lighting

conditions and camera movement - some involve simple

linear movement along the pipe while others feature frequent

pans and tilts to allow close visual inspection of pipe defects.

In all cases the camera operators made notes of the pipe

condition which were ‘burned’ as text on to the videos,

posing a further challenge for VO and vSLAM.

C. Data preparation

All videos were manually inspected for occlusion and

errors. Selected videos were transcoded to high-quality

grayscale PNG images using FFMPEG (ffmpeg.org).

For ORB-SLAM3 results videos were transcoded at the

camera acquisition rate (25fps). FAB-MAP expects images

to be from distinct places and not consecutive video frames,

therefore videos were down-sampled to 1 frame per second

to reduce redundancy from frame to frame.

D. The visual SLAM system

To perform visual SLAM in this paper we use the ORB-

SLAM3 algorithm, which consists of three parallel threads of

1. tracking, 2. local mapping, and 3. loop closing. The algo-

rithm uses the ORB feature for both tracking and mapping,

which is fast to compute, rotation invariant and provides

good invariance to different viewpoints.1 The ORB-SLAM3

algorithm uses the same main elements as ORB-SLAM2

[21], whilst providing additional functionality for features

such as multiple maps - the core functionality is described

below.

1) Tracking: The tracking part of ORBSLAM3 performs

pose estimation using feature matching (with ORB features)

and bundle adjustment.

Initial pose estimation is either performed using the pre-

vious frame (if the previous frame was successfully tracked)

using a constant velocity motion model, or if tracking has

been lost, using global relocalization.

After the initial camera pose estimation, a local map is

projected into the frame, where the local map is defined as

the set of keyframes that shares map points with the current

frame. The pose is then optimised with respect to all the

local map points found in the frame.

In the last step of this stage, the current frame can

be defined as a new keyframe if it satisfies a number of

conditions, i.e. 1. that more than 20 frames have passed since

last global relocalization, 2. that more than 20 frames have

passed since last keyframe insertion, 3. that the current frame

contains at least 50 points and 4. the current frame tracks less

than 90% of the last keyframe.

1The results in this paper were obtained using the open source imple-
mentation of ORB-SLAM3 at https://github.com/UZ-SLAMLab/
ORB_SLAM3



Fig. 3. Visual odometry on modern and historical CCTV data. (a) Example video frame from the modern CCTV dataset. (b) Frame in (a) with detected
ORB features overlaid in green. (c) Example pointcloud (black/red points) and keyframe trajectory (blue/green) from the video in (a). Red points are
‘active’ reflecting points from the current and most recent frames, black points are older and saved as a map for future use. (d) Point cloud at the end
of tracking the full 40m length of pipe, showing a straight cylinder shape reflecting good performance. (e-k) Evaluating ORB-SLAM3 performance on
historical CCTV data. (e,g,i) Point clouds and trajectories vary in quality from video to video. Purple keyframes in (e) reflect failed and re-initialized
tracking for video ‘JP’. (f,h,j) ORB features were successfully extracted from all examples. (k) Example high-quality straight trajectory and cylindrical
point cloud map from historical video ‘PD’.

2) Local mapping: The local mapping stage processes a

new keyframe denoted by Ki.

First, the new keyframe Ki is transformed into a bag

of words (BoW) representation, which is then added to a

covisibility graph. The covisibility graph is an undirected,

weighted graph, where each node is a keyframe and an

edge between two keyframes exists if they share a minimum

number of map points (at least 15).

In order to make the map more robust and remove outliers

due to incorrect data assocation, map points are deleted if

they do not pass a test during the first three keyframes after

creation. The test conditions are: 1. the tracking stage must

find the point in more than 25% of frames where the point

is predicted to be visible and 2. the point must be observed

from at least three keyframes after map point creation.

New map points are created by triangulating the ORB

features from the new keyframe Ki and the set of keyframes

Kc that are connected to Ki in the covisibility graph. In

the case of unmatched points in Ki, previous keyframes are

searched for matches.

Local bundle adjustment is used to process the new

keyframe Ki as well as the set of all keyframes connected

to it Kc in the covisibility graph and all map points included

in those keyframes.

In order to maintain a compact set of keyframes the local

mapping stage attempts to detect redundant keyframes and

delete them. Redundancy is assessed by checking the number

of repeated map points: those keyframes in Kc that contain

90% of map points that are in at least three other keyframes

are discarded.

3) Loop closing: Loop closing is performed on the newest

keyframe Ki using appearance-based recognition with the

BoW method and proceeds through four substages: loop

candidate detection, a similarity transformation test, fusion

of duplicated map points and pose graph optimization.

4) Implementation: In practice ORB-SLAM3 was exe-

cuted with default parameters with the exception of camera

properties (derived through calibration where possible, or

manual search) and the number of ORB image features.

On the modern CCTV data feature numbers could be varied

from 700 up to 10000 with little affect on performance (data

not shown). On the historical CCTV in some cases higher

feature numbers (2000-5000) were necessary for successful

initialization. For some videos no combination of camera

or execution parameters could be found to allow successful

initialization.

E. Appearance-based mapping

In order to test appearance-based visual recognition and

mapping in isolation from the full visual SLAM system,

we used a BoW method, similar to that used in ORB-

SLAM3, which is FAB-MAP [23]. This enabled us to study

the effectiveness of appearance-based recognition without

the complicating factors of visual odometry, and therefore

better understand the sensitivity of this approach to the

sewer environment. Analysis of FAB-MAP performance was

done in Matlab, using the open source code implementation

available at robots.ox.ac.uk/~mjc/Software.



Fig. 4. Full vSLAM with loop closure on modern CCTV data. (a) Appearance-recognition result matrix (as in 2) for two separate camera runs down the
same pipe (238 images from run 1, 216 in run 2). Dark grey circles indicate the most likely previous frame encountered. Strong off diagonal line in the
bottom left corresponds to loop closure - frames identified on run 2 that are very similar to frames in run 1. (b) Example loop closure frames corresponding
to the magenta star in (a). (c) Keyframe trajectory (purple) and feature point cloud (red) of run 2 prior to recognition of a loop closure. Run 1 keyframe
trajectory shown in blue. (d) vSLAM example following successful loop closure on run 2. Currently ‘active’ feature points (red) are aligned to previously
encountered points (black). (e) As in (d) zoomed out to show the full extent of the point cloud map.

III. RESULTS

A. Appearance-based mapping

FAB-MAP was used to determine the feasibility of

appearance-based recognition for localization and mapping

in buried pipes. FAB-MAP returns the probability that the

current image (video frame) is a new place or one that has

been seen before. If aliasing is a significant problem in this

environment, FAB-MAP will fail to recognize new image

frames as novel places. Fig 2 (f-j) shows the results of ap-

plying FAB-MAP to pipe inspection videos from both of our

datasets. In each case the majority of images are recognised

as novel places, as indicated by the prominent dark grey line

along the main diagonal. To quantify this result further we

computed the summed probability that a given frame was

novel, or the same as a previous frame for each time point

sequentially into the past (Fig 2(k). Perfect performance

would result in high probability for current/previous frame

1 and zero probability for older frames, as is broadly shown

in the figure. The cumulative probability that a new frame is

correctly identified as a novel place exceeds 80% within 50

frames for most videos (Fig 2(i)).

B. Visual odometry

We next tested the performance of visual odometry with

ORB-SLAM3 on CCTV data (Fig 3). First we applied ORB-

SLAM3 to the modern CCTV dataset. Following camera cal-

ibration ORB-SLAM3 successfully extracted ORB features

along the pipe wall and ignored the running water (see Fig

3 (b)). The algorithm constructed a cylindrical point cloud

and a straight trajectory for the full 40m length of pipe,

corresponding to the ground truth data - note that due to

the scale-free monocular setup exact quantification of the

estimated distance travelled was not possible here. However,

the results demonstrate the feasibility of using VO in this

environment (Fig 3(c,d)).

Next we tested whether visual odometry would be possible

on historical CCTV data where camera calibration is not pos-

sible, and camera motion and lighting is highly variable. Here

ORB-SLAM3 showed mixed results. In some cases good

camera and execution parameters could be found allowing

point cloud maps of the environment to be made and camera

trajectories to be recovered (Fig 3(g-k)). In other cases, due

to erratic camera movement, image occlusion or poor image

quality, no combination of camera or execution parameters

could be found. Tracking would either fail to initialize, or

tracking would fail a short way into the video (see Fig 3(e)).

It may be possible to ‘stitch’ failed trajectories together in

post-hoc analysis but that is beyond the scope of this work.

C. Loop closure and vSLAM

Finally we tested the feasibility of loop closure and full

vSLAM in live sewer pipes. First we tested whether loop

closures would be detected in FAB-MAP by concatenating

two videos from the modern CCTV dataset corresponding

to two runs of the CCTV camera robot down the same pipe

(238 images from run 1, 216 images from run 2). Fig 4(a)

shows the results of this analysis. Images from run 2 are

correctly recognised as the same place as the corresponding

images in run 1 (see the prominent off-diagonal line of dots

in the lower left segment of Fig 4(a)). An example of two

matched images from the two runs - corresponding to the

magenta star in Fig 4(a) - are shown in Fig 4(b).

ORB-SLAM3 also successfully detected loop closures on

the modern CCTV dataset. Following accurate mapping of



the pipe on run 1 the algorithm re-initializes at the start

of run 2 (Fig 4(c)). Following a short duration of tracking

the algorithm recognizes frames in run 2 as being the

same place as in run 1 and aligns the two point clouds

and trajectories (Fig 4(d)). This close correspondence is

maintained throughout the remainder of the 40m trajectory,

as shown by the alignment of currently ‘active’ points from

run 2 (red) within the previously constructed point cloud map

from run 1 (black) in Fig 4(d,e).

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper we set out to determine whether camera-

based monocular vSLAM approaches could be used for

inspecting real-world sewer pipe systems, with a goal of

using autonomous mobile robots for localising defects in

the future. We tested three approaches - appearance-based

mapping, visual odometry and visual SLAM - on a range

of modern and historical pipe inspection videos. We showed

that across different lighting and camera conditions there are

sufficient visual features to allow recognition and separation

of different images to afford robust localization and mapping.

We have shown that perceptual aliasing is a problem

in these pipe environments - FAB-MAP performance is

not perfect - but that perhaps surprisingly appearance-based

recognition can work successfully the majority of the time on

the data used here. Combining ego motion with appearance

based loop closure (as ORB-SLAM3 does) seems necessary

for robust localization in these challenging pipe environ-

ments.

Going forward it will be important to optimize lighting and

camera equipment choice for the pipe environment. Hard-

ware choices will become especially important for successful

deployment on mobile robots in smaller diameter pipes.

Finally, there is a pressing need to quantify the performance

of vSLAM methods in sewer pipes. In future work we

aim to resolve the scale ambiguity problem and determine

localization accuracy using a combination of geometric in-

formation, and multi-sensor data fusion, e.g. using IMUs

and wheel odometry. These methods will need to be applied

on multiple runs along the same pipes to assess the limits

of vSLAM accuracy in real-world buried pipe environments

over realistic survey lengths.
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