
This is a repository copy of An open-source adjoint-based field inversion tool for data-
driven RANS modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188728/

Version: Accepted Version

Proceedings Paper:
Bidar, O., He, P., Anderson, S. orcid.org/0000-0002-7452-5681 et al. (1 more author)
(2022) An open-source adjoint-based field inversion tool for data-driven RANS modelling.
In: AIAA AVIATION 2022 Forum. AIAA AVIATION 2022 Forum, 27 Jun - 01 Jul 2022,
Chicago, IL, USA (and online). AIAA Aviation Forum Proceedings (2022). American
Institute of Aeronautics and Astronautics .

https://doi.org/10.2514/6.2022-4125

© 2022 by Omid Bidar. Published by the American Institute of Aeronautics and
Astronautics, Inc. This is an author-produced version of a paper subsequently published in
AIAA AVIATION 2022 Forum. Uploaded in accordance with the publisher's self-archiving
policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

An open-source adjoint-based field inversion

tool for data-driven RANS modelling

Omid Bidar∗1, Ping He†2, Sean Anderson‡1, and Ning Qin§1

1The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
2Iowa State University, Ames, Iowa, 50011, USA

This paper presents an open-source tool for using high-fidelity simulation or experimental

data to improve steady Reynolds-averaged Navier-Stokes (RANS) turbulence models. The

field inversion approach employed, involves perturbations of the production term in the model

transport equation through a spatial field and the iterative optimisation of this field such that the

error between model prediction and data is minimised. This highly dimensional inverse problem

requires the adjoint method for efficient gradient-based optimisation. It has been successfully

applied to reconstruct turbulent mean flows with limited data. However, the implementation is

a high barrier to entry as the intrusive development process involves the CFD solver, the adjoint

solutions, and the optimiser, making it a time-consuming and laborious task. In this work we

integrate open-source codes to enable a flexible framework for field inversion application, open

to all interested CFD practitioners. The software capabilities are demonstrated using three

flow cases where traditional turbulence models (Spalart-Allmaras and Wilcox 𝑘 − 𝜔 for this

work) perform poorly due to flow separation and adverse pressure gradients. The data used

include wind-tunnel experiments and direct numerical simulations, and field inversion scenarios

considered integral (e.g. lift coefficient), surface (e.g. skin friction), and volume (e.g. velocity

profiles) data, in order of decreasing sparsity.

I. Introduction
Recent years have seen a steady rise in the use of data to augment the shortfalls of Reynolds-averaged Navier-Stokes

(RANS) turbulence models in complex flow conditions. Turbulence modelling is required for the Reynolds stress tensor

in the RANS equations, and inaccuracies in existing models arise fromȷ model parameters (closure coefficients tuned

based on limited set of canonical flows); functional errors due to the mathematical formulation of the turbulence model

variables, and structural errors due to simplifying modelling assumptions, such as the Boussinesq approximation [1].

A plethora of ideas based on machine learning and data assimilation techniques have been introduced for improved

RANS turbulence modelling. These includeȷ novel machine learning architectures with embedded invariance properties

for eddy viscosity Reynolds stress models based on isotropic basis tensors [2, «]; and formulation of algebraic nonlinear

closures using gene expression programming and symbolic regression [»–6]. For comprehensive reviews the reader is

referred to the following papersȷ [1, 7, 8]. Most of the approaches just outlined are known as a priori or CFD-free

approaches, where the data-driven model is trained directly on inputs and features from high-fidelity data, and the

baseline CFD solver is not part of training. This can give rise to inconsistency between the data-driven model and the

baseline turbulence model during predictive simulations when the CFD solver becomes part of the process. This issue,

along with the detailed high-fidelity data requirement—often difficult to generate—in a priori approaches, makes the

alternative model-consistent techniques particularly appealing.

In model-consistent formulations, a number of inverse problems are solved where the goal is to reduce the error

between a turbulence model prediction and data—a process called field inversion. These approaches have also

been shown to work well with limited datasets. Broadly, two approaches to inverse modelling has been pursued in

parallelȷ ensemble-based, and adjoint-based methods. Xiao and colleagues have used the ensemble-based Kalman filter

(EnKF) approach to model the discrepancy in baseline turbulence models through eigenvalue perturbations [9]. The

advantages of this method includesȷ relatively easy code development, and the ability to compute confidence bounds

∗PhD candidate, Dept. of Automatic Control and Systems Engineering, and Dept. of Mechanical Engineering, obidar1@sheffield.ac.uk
†Assistant Professor, Department of Aerospace Engineering, AIAA Senior Member
‡Senior Lecturer, Department of Automatic Control and Systems Engineering
§Professor, Department of Mechanical Engineering, AIAA Associate Fellow, n.qin@sheffield.ac.uk

1

for the quantity/quantities of interest, albeit, complicated by the need to map the control parameters from a high to

low-dimensional space to reduce computational costs.

The alternative adjoint-based method originally proposed by Duraisamy and co-workers relies on solving a gradient-

based optimisation problem, where the derivatives of the cost function is computed using the adjoint approach. A

number of different variants of this method has been studiedȷ perturbations of the Reynolds stress anisotropy eigenvalues

[10]; perturbations of the eigenvalues as well as the eigenvectors of the anisotropy tensor [11]; and modification of the

turbulent model transport equation through a spatial scalar field defined over the entire flow domain [12, 1«]. In this

work, we use the latter since it has proven to be simple and computationally cheap relative to the other variants. Besides,

the formulations which directly address the Reynolds stress tensor have not been demonstrated to be have a far superior

improvements in the Reynolds stress predictions [8].

The adjoint-method is, in principle, capable of recovering finer scales of turbulent mean flow compared to the

ensemble-based method. However, a fully Bayesian formulation with this method is computationally expensive [12], and

most researchers have opted for deterministic formulations. Another limitation of the adjoint-based field inversion is the

time-consuming and laborious software development process due to the intrusive nature of adjoint-based optimisation,

which is a high barrier to entry for many researchers. In this work we aim to tackle this problem by introducing an

open-source tool which interested practitioners can use to study and apply the adjoint-based field inversion method.

Besides, the two field inversion approaches have not been systematically compared against consistent metrics (e.g. data

requirement, computational cost, etc.) largely due to the challenge of software implementation. The recent introduction

of DAFI [1»], an open-source tool for ensemble-based field inversion, and the outcome of present work should reduce

the implementation barrier, and encourage a comprehensive study of the two approaches.

In terms of the adjoint implementation there are two approachesȷ continuous and discrete adjoint. He et al. [15] have

applied the field inversion framework to the Spalart-Allmaras model using a continuous adjoint implementation. In this

framework, the adjoint equations for the governing equations are derived in the continuous form, and then discretised

for numerical solutions. They achieved promising results on a number of cases that included a three-dimensional

wall-mounted cube. The continuous adjoint method has the advantages of low computational cost due to lower memory

requirement and simpler to implement in existing CFD codes. However, derivations of the adjoint equations are complex,

and has to be repeated for every new turbulence models, boundary conditions, and objective function formulations

(depending on what quantity is used from data) [16]. To avoid these, we use the discrete-adjoint method in this work.

In the discrete approach the adjoint equations are derived for the discretised governing equation from the outset.

This method has the limitation of large memory requirements. However, the advantages areȷ ability to achieve more

accurate gradient information since these are consistent with the discretised objective function evaluations; and the

ability to use algorithmic differentiation which does not require an updated adjoint equation derivation for every new

model, boundary condition, or objective function formulation. The preliminary implementation is available on Github

atȷ https://github.com/obidar/dafoam.

The remainder of the paper is structured as followsȷ in Section II we formulate field inversion; summarise the

processes involved in implementing the chosen method; and briefly outline the open-source packages we integrate to

enable the application of field inversionȷ OpenFOAM for CFD solver, DAFoam for discrete-adjoint solutions, and

pyOptSparse for optimisation. In Section III, results for three complex flow cases—a wind-turbine airfoil at a high

incidence, flow over a converging-diverging channel with incipient separation, and a highly separated periodic hill flow.

The Spalart-Allmaras (S-A) model is use in the former two cases, while for the periodic hill flow both S-A and 𝑘 − 𝜔

models are employed. Finally, some conclusions are drawn in Section IV.

II. Methods

A. Field inversion formulation

To perform field inversion, a multiplicative scalar field is introduced in the production term of the transport equation

of an existing turbulence model. For the one-equation Spalart-Allmaras model [17], for instance, the general form of the

model transport equation for the surrogate variable, �̃�, is modified as followsȷ

𝐷�̃�

𝐷𝑡
= 𝛽 (𝒙, 𝑡) P (�̃�, 𝒘) + T (�̃�, 𝒘) − D (�̃�, 𝒘) , (1)

where P, T , and D are the production, transport, and dissipation terms of the transport equation respectively, and

are functions of the surrogate viscosity variable �̃� and 𝒘, which represents all the Reynolds-averaged conserved flow

2

variables. 𝛽(𝒙, 𝑡) ∈ R𝑛𝛽 with 𝑛𝛽 representing the number of mesh cells, is the discrepancy field, and 𝛽 = 1 everywhere

in the mesh recovers the baseline model.

In case of turbulence models with multiple transport equations, such as the Wilcox 𝑘 − 𝜔 [18], one or all the

transport equations can be modified using the same approach described above. In this work, we modify the 𝑘 −𝜔 model

by perturbing the dissipation rate (𝜔) transport equations, by rewriting it as 𝛽 · P(𝜔, 𝒘).

The optimum discrepancy field, which reduces the functional error in the baseline turbulence model, can be found

by reducing the error between high-fidelity data, 𝒅 ∈ R𝑁𝑑 where 𝑁𝑑 is the number of data points, and the RANS output,

G (𝛽), by minimising an objective function of the following formȷ

min
𝛽

J = ∥G (𝛽) − 𝒅∥2
2 + 𝜆∥𝛽 − 𝛽prior∥

2
2, (2)

where ∥·∥2 is the 𝐿2 norm, 𝜆 is a relaxation or regularisation parameter, and 𝛽prior is typically assumed to be 1, to bias

the solution closer the baseline model to avoid an ill-posed optimisation problem.

B. Field inversion implementation

A high-level flow chart for the field inversion process is shown in Fig. 1. The process involvesȷ

1) solution of the governing equations, including the baseline turbulence model using OpenFOAM,

2) using these results to compute the objective function (Eqn. 2),

«) computing the derivative of the objective function with respect to the design variable, (𝛽), using DAFoam,

») using an optimiser to update the 𝛽 field such that the least-squares difference between model predictions and data

is minimised, using the optimiser suite pyOptSparse,

5) and repeating steps 1-» until a user-specified optimisation convergence criterion has been met.

Fig. 1 The flow diagram of the iterative field inversion process. At the start 𝛽 = 1, and the goal is to obtain the

optimum 𝛽 that minimises the difference baseline model predictions and data.

Note that before the above iterative optimisation can be carried out, a) the baseline turbulence model must be

modified, as described in the previous section, b) the codes for objective function calculation must be implemented, and

c) the high-fidelity data must be prepared for use during optimisation. The first two steps are one-time implementations

and can be reused for all future flow cases, while the third step is specific to the particular flow of interest and the

available data. The following sections briefly outline the open-source software integrated to perform field inversion.

C. CFD flow solver—OpenFOAM

Open field operation and manipulation (OpenFOAM) is popular, open-source CFD package, based on the finite

volume method and written in C++, with an active developer and user base [19]. In this work, we have employed

two of its main solversȷ simpleFoam, used for the solution of the steady Navier-Stokes equations for incompressible

fluids, and rhoSimpleFoam which is a compressible steady-state solver. Both solvers, use the semi-implicit method for

pressure-linked equations (SIMPLE) algorithm to solve the coupled continuity and momentum equations.

Many of the popular turbulence models are available on OpenFOAM, and the modified Spalart-Allmaras and 𝑘 − 𝜔

turbulence models for field inversion, are based on the original OpenFOAM implementation. The field inversion models

require minimal code modification, and extensions to other turbulence models do not require deep C++ programming

skills.

«

D. Discrete adjoint solver—DAFoam

Discrete adjoint-Foam (DAFoam) is another open-source package, that allows effective adjoint solutions. It has

been specifically tailored for OpenFOAM and has been successfully applied for multi-disciplinary design optimisation

[20]. Before outlining the adjoint solution procedure, we first derive the discrete adjoint equations below.

Given a set of discretised governing equations, R(𝛽, 𝒘) = 0, where 𝛽 ∈ R𝑛𝛽 is the vector of design variables,

𝒘 ∈ R𝑛𝑤 is the vector of state variables, and R ∈ R𝑛𝑤 is the residuals vector, and the cost function J = 𝑓 (𝛽, 𝒘), the

goal in discrete adjoint method is to efficiently compute the derivative dJ/d𝛽. The discrete adjoint equations will be

derived in this section, following Kenway et al. [16].

The derivative dJ/d𝛽 can be expressed as,

dJ

d𝛽
︸︷︷︸

1 × 𝑛𝛽

=

𝜕J

𝜕𝛽
︸︷︷︸

1×𝑛𝛽

+
𝜕J

𝜕𝒘
︸︷︷︸

1 × 𝑛𝑤

d𝒘

d𝛽
︸︷︷︸

𝑛𝑤 × 𝑛𝛽

, («)

where the chain rule has been applied. The partial derivatives 𝜕J/𝜕𝛽 and 𝜕J/𝜕𝒘 are computationally less expensive

to calculate since these require explicit computations only. On the other hand, the total derivative matrix d𝒘/d𝛽 requires

implicit treatment through the residual equations, R(𝛽, 𝒘) = 0, making it computationally expensive.

By applying the chain rule to the residual equations R,

dR

d𝛽
=

𝜕R

𝜕𝛽
+
𝜕R

𝜕𝒘

d𝒘

d𝜷
= 0, (»)

and noting that dR/d𝛽 must equal zero in order for R(𝛽, 𝒘) = 0 to hold, the total derivative d𝒘/d𝛽 can be expressed as

the following linear system

d𝒘

d𝛽
= −

𝜕R

𝜕𝒘

−1 𝜕R

𝜕𝛽
. (5)

Substituting the expression for
d𝒘

d𝛽
above, into Eqn. » leads to

dJ

d𝛽
=

𝜕J

𝜕𝛽
−
𝜕J

𝜕𝒘

𝜕R

𝜕𝒘

−1

︸ ︷︷ ︸

𝝍𝑇

𝜕R

𝜕𝛽
, (6)

where 𝝍 is the adjoint vector. Eqn. 6 can be manipulated further to achieve the adjoint equations,

𝜕R

𝜕𝒘
𝝍 =

𝜕J

𝜕𝒘

𝑇

. (7)

After solving Eqn. 7, the total derivative dJ/d𝛽 is computed by substituting the adjoint vector 𝝍 into Eqn. »,

leading to the following final relationȷ
dJ

d𝛽
=

𝜕J

𝜕𝛽
− 𝝍𝑇 𝜕R

𝜕𝛽
. (8)

The extended design structure matrix (XDSM) diagram in Fig. 2 outlines the processes and data flow for the discrete

adjoint approach in DAFoam. In particular, we implement the discrete adjoint equations using the Jacobian free adjoint

approach, as detailed in Kenway et al. [16]. The partial derivatives (e.g., 𝜕J/𝜕𝛽) and the matrix-vector products (e.g.,

[𝜕R/𝜕𝛽]𝑇𝝍) are computed using the revere-mode automatic-differentiation.

E. Large-scale optimiser—pyOptSparse

Once the total derivative 𝜕J/𝜕𝛽 is computed, we use the pyOptSparse package to find the optimal 𝛽 field that

minimises the objective function. pyOptSparse is a object-oriented Python interface of various optimisers which can be

used for formulating and solving constrained nonlinear optimisation [21]. It allows efficient handling of large-scale

optimisations through the use of sparse matrices in the code. For this work, we have successfully employed two of the

large-scale optimisation packages available in pyOptSparseȷ SNOPT (based on sequential quadratic programming, and

requires paid license), and IPOPT (based on a primal-dual interior point method, with open-source code).

»

0: βref,xref,wref,Rref 3: βref,xref,wref,J = 1 4: ψ0 5: βref,xref,wref 7: βref,xref,wref

0, 2→1:
FD Partials

1: wi

perturb 4:
∂R

∂w

T

PC

2: Ri

perturb 1: R(β,x,w)

3: J (β,x,w,J) 4:
∂J

∂w

T

8:
∂J

∂β

4, 6→5:
GMRES Solver

5: R =

[

∂R

∂w

T
]n

R0 7: ψ

6: Kn 5: R(β,x,w,R) 7: R = ψ

7: R(β,x,w,R) 8:
∂R

∂β

T

ψ

8:
dJ

dβ
=

∂J

∂β
−ψT ∂R

∂β

Fig. 2 Jacobian free adjoint XDSM diagram. The modules are represented by the diagonal nodes, while the

off-diagonal nodes represent data. The process flow is represented by the black lines, while the thick grey lines

are showing data flow. The execution order is illustrated by the number in each node.

F. Python user interface

A high-level Python layer is used to set and run the field inversion simulation process outlined in Fig. 1. We plan to

develop detailed tutorials on how to use and extend the tool in the near future. Specifically, the following parameters are

set in a Python scriptȷ primal flow solver (i.e. simpleFoam); flow solver boundary conditions and residuals convergence

tolerance; the field inversion objective function specialisation and the relevant parameters (so far, the following have

been implementedȷ full fields, velocity profiles, surface pressure and skin friction, and aerodynamic force coefficients)

and the regularisation constant, 𝜆 in Eqn. 2; adjoint solver parameters such as state normalisation constants, and the

equation solution options; and finally the optimiser and its parameters such as 𝛽 field constraints (upper and lower

bounds), convergence tolerance, maximum number of iterations, etc.

III. Results and Discussions
In this section we demonstrate field inversion results on a number of cases, summarised in Table 1. The cases are the

NREL S809 wind turbine airfoil at a high incidence (Fig. «) [22], flow through a converging-diverging channel (Fig. 8)

[2«, 2»], and flow over a periodic hill (Fig. 15) [25]. These were chosen based on data availability, and to demonstrate

likely field inversion scenarios based on types of data used for flow reconstruction. Generally, three types of data sources

can be consideredȷ integral data (e.g. lift or drag coefficients), surface data (e.g. surface pressure, or skin friction), and

volume data (e.g. velocity fields/profiles at certain locations). We consider all three scenarios in the following sections.

Table 1 Summary of case setups, where 𝐶𝑙 , 𝐶𝑝, 𝐶 𝑓 , and 𝑈𝑥 are the lift coefficient, pressure coefficient, skin

friction coefficient, and the streamwise velocity, respectively. Dimension column refers to the size of the data used.

Case Geometry Data Definition Data size Data source Turbulence model 𝑅𝑒

1a S809 Airfoil 𝐶𝑙 𝐿/(𝑝dyn𝐴) 1 Integral Spalart-Allmaras 2 × 106

1b 𝐶𝑝 (𝑝 − 𝑝∞)/𝑝dyn «2 Surface

2a Conv.-Div. Channel 𝐶 𝑓 𝜏𝑤/𝑝dyn 56» Surface Spalart-Allmaras 12,600

2b 𝑈𝑥 - 98,700 Volume

«a Periodic Hill 𝑈𝑥 - »»7 Volume Wilcox 𝑘 − 𝜔 5,600

«b 𝑈𝑥 - »»7 Volume Spalart-Allmaras

5

A. Airfoil flow at high incidence

Existing turbulence models are known to perform poorly in predicting the flow over airfoils at high incidence angles,

where the flow generally separates. We utilise field inversion to improve the prediction of separated flow over the NREL

S809 horizontal-axis wind turbine section, also investigated in [11, 1«]. Experimental studies by Somers [22] found

that at high angles-of-attack (𝛼 ⪆ 10◦) the flow separates near mid-chord. We take the flow at 𝛼 = 14.24◦ as a test

case, where the available experimental data include surface pressure 𝐶𝑝, and lift coefficient 𝐶𝑙 , at the following flow

conditionsȷ Reynolds number based on chord length, 𝑅𝑒𝑐 = 2 × 106, and freestream Mach number, 𝑀∞ = 0.2.

Since the Mach number is relatively low, the flow can be assumed to be incompressible. However, to demonstrate

the capabilities of the developed tool, we employ both an incompressible (simpleFOAM) and a compressible solver

(rhoSimpleFOAM). The latter case solves an energy equation along with the Navier-Stokes equations. The flow is

assumed to be two-dimensional and steady, and the Spalart-Allmaras model is used as the baseline turbulence model.

The simulations use an structured O-grid mesh, Fig. «, with an average non-dimensional wall distance, 𝑦+ < 1 on the

airfoil. The relatively dense mesh is used to reduce mesh-related inaccuracies.

Fig. 3 Close-up of the mesh for the S809 airfoil, with around 8.9 × 105 cells.

As summarised in Table 1, two types of data are considered for field inversionȷ lift coefficient 𝐶𝑙 and surface

pressure coefficient 𝐶𝑝 . The 𝐶𝑝 data is extracted from [22], and only the values on the suction-side are used for field

inversion—this is the region most prone to inaccurate predictions by the baseline model. The regularisation constant 𝜆

in Eqn. 2 is set to 10−4 following [1«].

−4

−3

−2

−1

0

1

0 0.2 0.4 0.6 0.8 1

(a) Incompressible solver −4

−3

−2

−1

0

1

0 0.2 0.4 0.6 0.8 1

(b) Compressible solver

𝐶
𝑝

𝑥/𝑐

𝐶
𝑝

𝑥/𝑐

Fig. 4 Comparison of the pressure distribution for S809 airfoil. Legend: Experiment (), Spalart-Allmaras

(), field inversion, 𝐶𝑙 data (), and field inversion, 𝐶𝑝 data ().

6

Table 2 Comparison of lift-coefficient prediction. Experimental 𝐶𝑙 = 1.083.

Scenario Incompressible Error Compressible Error

Baseline Spalart-Allmaras 1.«10 20.9% 1.«»6 2».«%

Field inversion, 𝐶𝑙 data 1.107 2.2% 1.1»5 5.7%

Field inversion, 𝐶𝑝 data 1.09« 0.9% 1.1«« ».6%

All field inversion scenarios result in significant error reduction in the 𝐶𝑙 and 𝐶𝑝 predictions, as shown in Table 2 and

Fig. », respectively. The use of surface pressure data results in slightly better improvement of the baseline results,

compared to only lift-coefficient value. This is expected due to the significant difference between the size of data used

for field inversion, as outline in Table 1. Both the compressible and incompressible solvers produce similar results in

terms of the surface pressure distribution, lift coefficient, and velocity fields.

(a) Incompressible, baseline (b) Incompressible, FI 𝐶𝑝 data (c) Compressible, baseline (d) Compressible, FI 𝐶𝑙 data

Fig. 5 Comparison of the streamwise velocity field along with streamlines for the different S809 simulations.

The velocity fields for incompressible FI using 𝐶𝑙 data and compressible FI using 𝐶𝑝 data are very similar to two

field inversion velocity predictions shown here, thus removed for brevity.

(a) Incompressible, 𝐶𝑙 data (b) Incompressible, 𝐶𝑝 data (c) Compressible, 𝐶𝑙 data (d) Compressible, 𝐶𝑝 data

Fig. 6 Comparison of the corrective field, 𝛽, for the different S809 cases.

(a) Incompressible, baseline (b) Incompressible, FI 𝐶𝑙 data (c) Incompressible, FI 𝐶𝑝 data

(d) Compressible, baseline (e) Compressible, FI 𝐶𝑙 data (f) Compressible, FI 𝐶𝑝 data

Fig. 7 Comparison of the surrogate turbulence variable �̃� in the S-A model before and after modification by the

corrective scalar field 𝛽, shown in Fig. 6.

The baseline model over-predicts the lift generated, which is also observed in the over-prediction of the pressure on

the suction side. The baseline model also under-predicts the flow separation location and the size of the separation

7

bubble, as shown in the velocity field contours in Fig. 5. The corrective fields, 𝛽, shown in Fig. 6, account for the errors

in the baseline model by reducing the turbulent production (i.e. regions with 𝛽 < 1), and hence predicting an earlier

separation, and a larger separation bubble.

Most significant changes made by the 𝛽 field for the different scenarios are in the boundary layer close to the airfoil.

Additionally, it is interesting to note that the relatively different 𝛽 field distributions shown in Fig. 6 lead to similar

distribution of the surrogate turbulence variable �̃� (the quantity that is directly modified, as described in Section II.A)

and the velocity field, as shown in Fig. 7 and Fig. 5, respectively. A similar observation was made by He et al. [15] who

argue that this might be due to the eddy viscosity hypothesis, which assumes that the Reynolds stress tensor can be

modelled using a scalar in the form of eddy viscosity. It is worth reiterating that the corrective field changes the entire

balance of the turbulence model transport equation, which may explain the multi-optimal nature of the optimisation

results in this, and following cases.

B. Mildly separated flow in a converging-diverging channel

The next case is the flow over a smooth converging-diverging channel, Fig. 8. The flow involves adverse pressure

gradients and a small separation bubble on the curved region of the lower wall which cannot be predicted accurately by

the S-A model. Of the cases investigated in this work, the converging-diverging channel has the richest dataset available

based on direct numerical simulation (DNS) results of Laval et al. [2«]. We consider using two types of data to perform

field inversionȷ the entire streamwise velocity field (interpolated from the original dense mesh to a coarse RANS mesh),

and the skin friction distribution on the lower wall, as summarised in Table 1.

Fig. 8 Mesh for the converging-divering channel, with 9.87 × 105 cells.

We use the two-dimensional, steady, incompressible Navier-Stokes equations and the Spalart-Allmaras model to

simulate the flow. The Reynolds number based on the channel half-height and maximum inlet velocity is 12,600.

The structured mesh used for the simulations are from [2»], with an average 𝑦+ < 0.2. Using the same approach as

McConkey et al. [2»] the inlet boundary conditions are generated by simulating a fully-developed boundary layer using

the same turbulence model, and Reynolds number. The regularisation constant 𝜆 is set to 10−6—a small value to reflect

high-confidence in the available low-noise data.

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 3 6 9 12

-1.5

-1.2

-0.9

-0.6

-0.«

0.0

0 3 6 9 12

𝐶
𝑓

𝑥/𝐻

(a) Surface friction

𝐶
𝑝

𝑥/𝐻

(b) Surface pressure

Fig. 9 Comparison of the lower wall surface pressure and surface friction for the converging-diverging channel.

Legend: DNS (), Spalart-Allmaras (), FI, 𝑈𝑥 field data (), and FI, 𝐶 𝑓 data ().

Fig. 9 shows that field inversion can significantly improve the skin friction and surface pressure distributions on the

lower wall. The skin friction distribution for the scenario where 𝐶 𝑓 data is used is better than the case where the entire

8

0

1

2

6 7 8 9 10 11 12

𝑦
/
𝐻

𝑥/𝐻, 𝑈𝑥/𝑈𝑏 + 𝑥/𝐻
Fig. 10 Comparison of streamwise velocity profiles for the converging-diverging channel. Legend: DNS (/),

Spalart-Allmaras (), field inversion, 𝑈𝑥 field data (), field inversion, 𝐶 𝑓 data (), and channel outline

().

1.8

1.9

2.0

6 7 8 9 10 11 12

𝑦
/
𝐻

𝑥/𝐻, 𝑈𝑥/𝑈𝑏 + 𝑥/𝐻

Fig. 11 Close-up of streamwise velocity profiles for the converging-diverging channel near the top wall. For

legend see Fig.10.

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7 8

𝑥/𝐻 = 5.9 𝑥/𝐻 = 6.5

𝑦
/
𝐻

𝑈𝑥/𝑈𝑏

Fig. 12 Close-up of streamwise velocity profiles for the converging-diverging channel in the separation region,

5.9 ≤ 𝑥/𝐻 ≤ 6.5, plotted every 𝑥/𝐻 = 0.1. For legend see Fig.10. Note: beginning from the profile at 𝑥/𝐻,

subsequent profiles have been shifted by 1, horizontally.

streamwise velocity field data is used. The baseline model massively over-predicts the size of the separation bubble,

and the separation and reattachment locations. This is is also clear in the velocity profiles shown in Fig. 10 where the

baseline model predicts a very large recirculation region downstream of the hill.

Fig. 10 shows that using just the lower wall skin friction distribution results in a huge overall improvement of the

velocity field. However, closer inspection reveals some discrepancies in the boundary layer close to the upper wall,

shown in Fig. 11. Similarly, the velocity profiles in the separation bubble, Fig. 12, shows that field inversion performed

with 𝐶 𝑓 data does not necessarily improve the velocity prediction in this region. As expected, using the velocity field

data for reconstruction leads to accurate velocity predictions in the separation bubble too.

Fig. 1« shows two very different corrective fields for the field inversion scenarios. For the case with velocity field

9

(a) Field inversion, 𝑈𝑥 velocity field data (b) Field inversion, 𝐶 𝑓 skin friction data

Fig. 13 Comparison of the corrective field, 𝛽, for the two converging-diverging channel field inversion scenarios.

as data, the corrective field makes considerable modifications everywhere in the domain by generally increasing �̃�

production away from the hill wall, while a complex combination of �̃� production damping and magnifications near the

hill wall (especially, in and around the separation bubble). For the field inversion case with 𝐶 𝑓 data, the significant

modifications are concentrated near the hill (with regions away from the wall with 𝛽 values close to 1), and as the other

case, includes both damping and magnifying �̃� production.

(a) Baseline Spalart-Allmaras

(b) Field inversion, 𝑈𝑥 field data

(c) Field inversion, 𝐶 𝑓 skin friction data

Fig. 14 Comparison of the surrogate turbulence variable �̃� in the S-A model before and after modification by

the corrective field 𝛽, shown in Fig. 13.

As in the airfoil case, the corrective fields should be interpreted with reference to the turbulence model variable

�̃� shown in Fig. 1». It is clear that both field inversion cases significantly increases �̃� and thus the turbulence eddy

viscosity downstream of the hill, and to some extend at the upper wall (towards the outlet). For the reconstruction case

with 𝑈𝑥 field data, the turbulence levels next to the upper wall (downstream region) is higher than the baseline and field

inversion case with 𝐶 𝑓 data, which allows it to better fit the DNS velocity in that region, as previously shown in Fig. 11.

C. Fully separated flow over periodic hill

The last case, is the periodic hill geometry, which has become a prototypical case for testing turbulence models.

Most linear eddy-viscosity based RANS models are known to perform poorly in predicting the flow with large separation

after the initial hill. In this work we use the DNS dataset supplied by Xiao et al. [25].

Fig. 15 The mesh used for the periodic hills case supplied with the dataset, with ∼ 1.4 × 104 cells.

10

We use the streamwise velocity profiles at (𝑥/𝐻 = 0, 3, 6) for field inversion. The Reynolds number is set to 5,600

following the data, and the two-dimensional, incompressible, Navier-Stokes equations are solved. A source term is

added to the momentum equation to achieved a set bulk velocity. No-slip boundary conditions are applied at the walls,

and cyclic boundary conditions are set at the inlet and outlet. The structured mesh has an average 𝑦+ < 1 on walls.

In order to demonstrate the capability of field inversion and the software to work for different turbulence models, we

report the results for the modified Wilcox 𝑘 − 𝜔, as well as the modified Spalart-Allmaras model used in the previous

two cases.

0

1

2

3

0 1 2 3 4 5 6 7 8 9

(a) Wilcox 𝑘 − 𝜔

0

1

2

3

0 1 2 3 4 5 6 7 8 9

(b) Spalart-Allmaras

𝑦
/
𝐻

𝑥/𝐻, 1.5𝑈𝑥/𝑈𝑏 + 𝑥/𝐻

𝑦
/
𝐻

𝑥/𝐻, 1.5𝑈𝑥/𝑈𝑏 + 𝑥/𝐻

Fig. 16 Periodic hill streamwise velocity profiles. Legend: baseline turbulence model (), field inversion

(), DNS() and periodic hill outline ().

(a) 𝛽, Wilcox 𝑘 − 𝜔 (b) 𝜈𝑡 , baseline Wilcox 𝑘 − 𝜔 (c) 𝜈𝑡 , FI Wilcox 𝑘 − 𝜔

(d) 𝛽, Spalart-Allmaras (e) 𝜈𝑡 , baseline Spalart-Allmaras (f) 𝜈𝑡 , FI Spalart-Allmaras

Fig. 17 Comparison of the corrective field, 𝛽, applied to the transport equations of the two RANS models.

The velocity profiles at nine stations, shown in Fig. 16, illustrate that the baseline 𝑘 − 𝜔 model provides a

more accurate velocity predictions compared to the baseline S-A model. However, both models over-predict the

11

separation region after the first hill, and thus the follow attaches too late. For many RANS models this is attributed

to the under-predicted eddy-viscosity in the shear layer. Field inversion seems to account for this through a complex

combination of eddy viscosity magnification and dampening in the domain, shown in the 𝛽 fields in Fig. 17 (a) and (d).

Clearly, more significant changes are made in the S-A model, including regions with 𝛽 < 0 where eddy viscosity is

decreased. Although, the baseline eddy-viscosity for the two models are entirely different (Fig. 17 b and e)—expected

due to wholly different model structures—the eddy-viscosity predicted after field inversion is qualitatively similar in

both cases (Fig. 17 c and f), although more intense regions are shown in the case of S-A model.

D. Verification of adjoint derivatives

The accuracy for adjoint derivative computation is critical to the field inversion robustness. Inaccurate derivative may

abort the optimisation and result in sub-optimal 𝛽 field. In this subsection, we verify the adjoint accuracy by comparing

the adjoint derivative with the forward-mode automatic differentiation (AD). The forward-mode AD differentiates

the entire CFD code in the forward direction, so it is commonly used as the reference values for adjoint derivative

verification[16].

We use the periodic hill case as the benchmark, and both the Spalart–Allmaras and 𝑘 − 𝜔 turbulence models are

considered. We first run the adjoint solver to compute dJ /d𝛽 for all 𝛽 field. We then select ten cells in the flow fields,

shown in Fig. 18. Then, we set the AD seed for each of these ten cells and run tens CFD simulations to compute the

forward-mode AD derivatives. The adjoint derivatives agree reasonably well with the forward-mode AD derivatives.

The averaged error is less than 0.01%.

Fig. 18 Locations of cells for adjoint verification—starting from the first cell, every 1500th cell is chosen out of a

total ∼ 1.5 × 104 cells. The point markers show cell-centres of all the cells in the mesh.

Table 3 Comparison between the DAFoam adjoint derivatives dJ /d𝛽 (×10−5) with the reference values computed

by forward-mode AD. Spalart–Allmaras turbulence model is used. Cases are run in serial.

Cell Forward AD Adjoint Cell Forward AD Adjoint

A −0.0»659769 −0.0»659868 F −65.578»«895 −65.579868»8

B −».5»22«082 −».5»2««907 G −«8.875»7050 −«8.87622607

C −0.8»757061 −0.8»75987« H −2.»«77192» −2.»«7517»6

D −1.5»776607 −1.5»77962« I −0.»297850» −0.»2979»«6

E −2».18868695 −2».18920827 J 0.0»2»8109 0.0»2»8059

IV. Conclusion
An open-source tool was introduced which allows the application of field inversion to recover mean turbulent flows

based on limited data. The field inversion formulation is based on the discrete-adjoint method, and requires intrusive

code implementation involving the CFD flow solver, the adjoint solver, and the optimiser. In this work, open-source

packages OpenFOAM, DAFoam and pyOptSparse are integrated to achieve this. To enable adjoint-based field inversion,

three pre-processing steps are requiredȷ 1) modification of the baseline turbulence model, 2) adding the code to calculate

a particular objective function, and «) preparing the high-fidelity data. Steps 1-2 require some rudimentary knowledge

12

of the C++ programming language. As most of the popular RANS turbulence models have already been implemented in

OpenFOAM, only minor changes are required to modify the production term of the transport equation. In terms of

the objective function we have already implemented a number of these that can work with integral (e.g. aerodynamic

force coefficient), surface (e.g. skin friction, surface pressure), and limited (e.g. velocity profiles) and full-field data.

These two steps require one-time implementation, and can be subsequently used/generalised for any flow simulations.

The simulation is set-up and performed using a Python script. The script is used to set the flow solver parameters (e.g.

boundary conditions, residual tolerance, etc.); the adjoint solver parameters (e.g. values for state normalisation), the

objective function and the optimiser parameters (e.g. convergence tolerance, etc.). Finally, promising results have been

demonstrated on a range of cases, with two turbulence models.

Acknowledgement
Omid Bidar’s work is funded by an Engineering and Physical Sciences Research Council (UK) scholarship.

References
[1] Duraisamy, K., Iaccarino, G., and Xiao, H., “Turbulence Modeling in the Age of Data,” Annual Review of Fluid Mechanics,

Vol. 51, No. 1, 2019, pp. «57–«77. httpsȷ//doi.org/10.11»6/annurev-fluid-010518-0»05»7.

[2] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds averaged turbulence modelling using deep neural networks with embedded

invariance,” Journal of Fluid Mechanics, Vol. 807, 2016, pp. 155–166. httpsȷ//doi.org/10.1017/jfm.2016.615.

[«] Kaandorp, M. L., and Dwight, R. P., “Data-driven modelling of the Reynolds stress tensor using random forests with invariance,”

Computers & Fluids, Vol. 202, 2020, p. 10»»97. httpsȷ//doi.org/10.1016/j.compfluid.2020.10»»97.

[»] Weatheritt, J., and Sandberg, R., “The development of algebraic stress models using a novel evolutionary algorithm,” International

Journal of Heat and Fluid Flow, Vol. 68, 2017, pp. 298–«18. httpsȷ//doi.org/10.1016/j.ijheatfluidflow.2017.09.017.

[5] Schmelzer, M., Dwight, R. P., and Cinnella, P., “Discovery of Algebraic Reynolds-Stress Models Using Sparse Symbolic

Regression,” Flow, Turbulence and Combustion, Vol. 10», No. 2-«, 2019, pp. 579–60«. httpsȷ//doi.org/10.1007/s10»9»-019-

00089-x.

[6] Beetham, S., and Capecelatro, J., “Formulating turbulence closures using sparse regression with embedded form invariance,”

Physical Review Fluids, Vol. 5, No. 8, 2020. httpsȷ//doi.org/10.110«/physrevfluids.5.08»611.

[7] Xiao, H., and Cinnella, P., “Quantification of model uncertainty in RANS simulationsȷ A review,” Progress in Aerospace

Sciences, Vol. 108, 2019, pp. 1–«1. httpsȷ//doi.org/10.1016/j.paerosci.2018.10.001.

[8] Duraisamy, K., “Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of

turbulence,” Physical Review Fluids, Vol. 6, No. 5, 2021. httpsȷ//doi.org/10.110«/physrevfluids.6.05050».

[9] Xiao, H., Wu, J.-L., Wang, J.-X., Sun, R., and Roy, C., “Quantifying and reducing model-form uncertainties in Reynolds-averaged

Navier–Stokes simulationsȷ A data-driven, physics-informed Bayesian approach,” Journal of Computational Physics, Vol. «2»,

2016, pp. 115–1«6. httpsȷ//doi.org/10.1016/j.jcp.2016.07.0«8.

[10] Duraisamy, K., Singh, A.-P., and Pan, S., “Augmentation of Turbulence Models Using Field Inversion and Machine

Learning,” 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 2017. httpsȷ

//doi.org/10.251»/6.2017-099«.

[11] Belligoli, Z., Dwight, R. P., and Eitelberg, G., “Reconstruction of Turbulent Flows at High Reynolds Numbers Using Data

Assimilation Techniques,” AIAA Journal, Vol. 59, No. «, 2021, pp. 855–867. httpsȷ//doi.org/10.251»/1.j059»7».

[12] Parish, E. J., and Duraisamy, K., “A paradigm for data-driven predictive modeling using field inversion and machine learning,”

Journal of Computational Physics, Vol. «05, 2016, pp. 758–77». httpsȷ//doi.org/10.1016/j.jcp.2015.11.012.

[1«] Singh, A. P., Medida, S., and Duraisamy, K., “Machine-Learning-Augmented Predictive Modeling of Turbulent Separated

Flows over Airfoils,” AIAA Journal, Vol. 55, No. 7, 2017, pp. 2215–2227. httpsȷ//doi.org/10.251»/1.j055595.

[1»] Ströfer, C. A. M., “DAFIȷ An Open-Source Framework for Ensemble-Based Data Assimilation and Field Inversion,” Communi-

cations in Computational Physics, Vol. 29, No. 5, 2021, pp. 158«–1622.

1«

[15] He, C., Liu, Y., and Gan, L., “A data assimilation model for turbulent flows using continuous adjoint formulation,” Physics of

Fluids, Vol. «0, No. 10, 2018, p. 105108. httpsȷ//doi.org/10.106«/1.50»8727.

[16] Kenway, G. K., Mader, C. A., He, P., and Martins, J. R., “Effective adjoint approaches for computational fluid dynamics,”

Progress in Aerospace Sciences, Vol. 110, 2019, p. 1005»2. httpsȷ//doi.org/10.1016/j.paerosci.2019.05.002.

[17] Spalart, P., and Allmaras, S., “A one-equation turbulence model for aerodynamic flows,” 30th Aerospace Sciences Meeting and

Exhibit, American Institute of Aeronautics and Astronautics, 1992. httpsȷ//doi.org/10.251»/6.1992-»«9.

[18] Wilcox, D. C., et al., Turbulence modeling for CFD, Vol. 2, DCW industries La Canada, CA, 1998.

[19] Jasak, H., Jemcov, A., Tukovic, Z., et al., “OpenFOAMȷ A C++ library for complex physics simulations,” International workshop

on coupled methods in numerical dynamics, Vol. 1000, IUC Dubrovnik Croatia, 2007, pp. 1–20.

[20] He, P., Mader, C. A., Martins, J. R. R. A., and Maki, K. J., “DAFoamȷ An Open-Source Adjoint Framework for Multidisciplinary

Design Optimization with OpenFOAM,” AIAA Journal, Vol. 58, No. «, 2020, pp. 1«0»–1«19. httpsȷ//doi.org/10.251»/1.j05885«.

[21] Wu, N., Kenway, G., Mader, C. A., Jasa, J., and Martins, J. R. R. A., “pyOptSparseȷ A Python framework for large-scale

constrained nonlinear optimization of sparse systems,” Journal of Open Source Software, Vol. 5, No. 5», 2020, p. 256».

httpsȷ//doi.org/10.21105/joss.0256».

[22] Somers, D. M., “Design and experimental results for the S809 airfoil,” Tech. rep., Jan 1997. httpsȷ//doi.org/10.2172/»«7668.

[2«] Laval, J.-P., and Marquillie, M., “Direct Numerical Simulations of Converging–Diverging Channel Flow,” ERCOFTAC Series,

Springer Netherlands, 2011, pp. 20«–209. httpsȷ//doi.org/10.1007/978-90-»81-960«-6_21.

[2»] McConkey, R., Yee, E., and Lien, F.-S., “A curated dataset for data-driven turbulence modelling,” Scientific Data, Vol. 8, No. 1,

2021. httpsȷ//doi.org/10.10«8/s»1597-021-010«»-2.

[25] Xiao, H., Wu, J.-L., Laizet, S., and Duan, L., “Flows over periodic hills of parameterized geometriesȷ A dataset for data-driven

turbulence modeling from direct simulations,” Computers & Fluids, Vol. 200, 2020, p. 10»»«1. httpsȷ//doi.org/10.1016/j.

compfluid.2020.10»»«1.

1»

	Introduction
	Methods
	Field inversion formulation
	Field inversion implementation
	CFD flow solver—OpenFOAM
	Discrete adjoint solver—DAFoam
	Large-scale optimiser—pyOptSparse
	Python user interface

	Results and Discussions
	Airfoil flow at high incidence
	Mildly separated flow in a converging-diverging channel
	Fully separated flow over periodic hill
	Verification of adjoint derivatives

	Conclusion

