
This is a repository copy of Propensity score and instrumental variable techniques in 
observational transplantation studies: an overview and worked example relating to pre-
transplant cardiac screening.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188670/

Version: Published Version

Article:

Nimmo, A., Latimer, N., Oniscu, G.C. et al. (3 more authors) (2022) Propensity score and 
instrumental variable techniques in observational transplantation studies: an overview and 
worked example relating to pre-transplant cardiac screening. Transplant International, 35. 
10105. ISSN 1432-2277 

https://doi.org/10.3389/ti.2022.10105

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Propensity Score and Instrumental
Variable Techniques in Observational
Transplantation Studies: An Overview
and Worked Example Relating to
Pre-Transplant Cardiac Screening
Ailish Nimmo 1*, Nicholas Latimer 2, Gabriel C. Oniscu3, Rommel Ravanan 1,

Dominic M. Taylor 1 and James Fotheringham 2

1Renal Department, Southmead Hospital, North Bristol National Health Service Trust, Bristol, United Kingdom, 2School of Health

and Related Research, University of Sheffield, Sheffield, United Kingdom, 3Transplant Unit, Royal Infirmary of Edinburgh,

Edinburgh, United Kingdom

Inferring causality from observational studies is difficult due to inherent differences in

patient characteristics between treated and untreated groups. The randomised controlled

trial is the gold standard study design as the random allocation of individuals to treatment

and control arms should result in an equal distribution of known and unknown prognostic

factors at baseline. However, it is not always ethically or practically possible to perform

such a study in the field of transplantation. Propensity score and instrumental variable

techniques have theoretical advantages over conventional multivariable regression

methods and are increasingly being used within observational studies to reduce the

risk of confounding bias. An understanding of these techniques is required to critically

appraise the literature. We provide an overview of propensity score and instrumental

variable techniques for transplant clinicians, describing their principles, assumptions,

strengths, and weaknesses. We discuss the different patient populations included in

analyses and how to interpret results. We illustrate these points using data from the Access

to Transplant and Transplant Outcome Measures study examining the association

between pre-transplant cardiac screening in kidney transplant recipients and post-

transplant cardiac events.
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INTRODUCTION

Randomised controlled trials (RCTs) are the gold standard study
design for determining causal associations between clinical
interventions and outcomes (1, 2). In transplantation, RCTs
have shaped immunosuppression practice (3, 4), informed the
management of cardiovascular risk (5), and guided infection
prophylaxis (6). By randomly assigning individuals to
treatment or control groups, two populations with similar
characteristics are created, meaning differences in outcome
likely result from differences in treatment.

In some situations RCTs are inappropriate or impractical,
for example if there are ethical concerns or excessive costs (7).
In transplantation, the small numbers of recipients compared
to general populations can make achieving required sample
sizes for small treatment effects challenging. Further, standard
practice (often used as the comparator in RCTs) varies
between centres, the time between waitlisting and
transplantation may necessitate long follow up, and the lack
of control over transplant timing can put pressure on the
informed consent process (8). If individuals recruited to trials
are healthier or sicker than the overall population, results may
also not be generalisable.

When RCTs are impractical, observational data can inform
practice. However, as the exposure is not randomly assigned,
differences in case-mix can occur between exposed and
unexposed groups. This generates confounding bias: a
situation where the treatment and outcome have a common
cause, resulting in a lack of exchangeability between treated and
untreated groups. This can result in the association between
treatment and outcome differing from the true effect measure
(9). Confounders are identified using causal diagrams that
depict potential pathways between treatment and outcome
(10, 11). However, only known confounders can be adjusted
for in multivariable regression models and unmeasured
confounding can persist. Further, multivariable models may
be overfitted if the number of covariates is large relative to the
number of outcome events. To minimise confounding and
improve the validity of causal inference from observational
studies, propensity score and instrumental variable analyses
are increasingly being used (12). These techniques do not
minimise other forms of bias that make emulating an RCT
from observational data challenging (13, 14), so whilst they have
advantages over traditional methods they don’t solve all issues
with observational studies.

In kidney transplantation, there is no contemporary RCT
examining the utility of screening for asymptomatic coronary
artery disease prior to transplant listing. Screening is
frequently performed but there is variation in practice
between centres, likely influenced by local opinion (15). An
RCT to examine if screening before transplant listing reduces
post-transplant cardiac events would be challenging (16).
Individuals would need to be identified at the point of
screening, far in advance of transplantation. The low
cardiac event rate would necessitate a large study
population and high recruitment rates (17) which may be
difficult to achieve if there is anxiety around recruiting

patients, especially higher-risk individuals, meaning a study
may be underpowered or not have generalisable results.

Given these challenges, we use observational data from the
Access to Transplant and Transplant Outcome Measures
(ATTOM) study (18) on pre-transplant coronary artery
disease screening to describe the principles and assumptions of
propensity score matching, inverse probability weighting, and
instrumental variable analyses. We illustrate how these
techniques are performed and interpreted and compare their
results.

THE PROPENSITY SCORE

The propensity score (PS) refers to the predicted probability of an
individual receiving a treatment by collapsing measured confounders
into a single value, ranging from 0: no probability to 1: absolute
probability of them receiving the treatment of interest (19).

The PS is typically estimated using a logistic regression model
specifying the exposure as the dependent variable and measured
confounders as independent variables. Measured confounders are
those known at baseline that are predictive of both treatment and
outcome. Variables that are predictive of treatment but not
outcome should not be included as this may increase the
variance of the estimated exposure effect (20). Confounders
should not be chosen based on a statistically significant
association with the exposure but based on prior knowledge
and clinical judgement as formalised and summarised in a
directed acyclic graph (10, 11, 20).

Once the model has been created, each individual’s PS is
generated based on their measured confounders. The score
reflects their propensity for receiving the treatment, not
whether this actually happened. Two balanced groups with a
similar distribution of PS can then be created using matching or
weighting techniques. Key features of PS analyses are shown in
Table 1, and a detailed description of PS assumptions is in
Supplementary Table S1.

Propensity Score Matching
In propensity score matching, treated and untreated individuals are
“paired” based on their PS (Figure 1). Depending on the prevalence
of the treatment, individuals can bematched on a 1:1 or 1:many basis.
Nearest-neighbour matching identifies pairs with the closest PS. In
“matching without replacement,” an individual can only be matched
once before being removed from thematching pool. Thismeans pairs
generated later in thematching processmay have larger differences in
their PS (21).Matchingwith replacement allows control patients to be
matched to more than one treated patient. An alternative to nearest-
neighbour matching is optimal matching, which minimises the
difference in PS between pairs across the whole population. In
large populations, nearest-neighbour and optimal matching give
similar results (22). Both techniques include a “caliper” to avoid
the inclusion of poorly matched pairs. This specifies the maximum
acceptable difference in PS for a pair to match, generally accepted as
0.2 times the standard deviation of the logit of the PS to provide the
optimal balance of matching quantity and quality (23, 24).
Individuals who are unmatched are excluded from further
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analyses. In practice, as it isn’t always clear what the “ideal” statistical
method is, performing analyses using a number of these techniques
can help assess how sensitive results are to method specification.

The matching technique should create two groups with an equal
distribution of measured covariates (Figure 1). The balance of
covariates between groups can be examined using standardised
differences, calculated by dividing the difference in proportion (for
binary variables) or sample mean (for continuous variables) by the
pooled standard deviation. There is no definite consensus on an
acceptable standardised difference; a value below 0.1–0.2 is generally
accepted (25). Visual diagnostic tools can also be used to examine
covariate balance, as demonstrated in ourworked example (26). Once

the groups are balanced, they can be compared using standard
regression analyses. These analyses can be univariable or
multivariable, with the multivariable technique including the
variables used to generate the PS. A multivariable model
compensates for imperfect covariate balance and, if specified
correctly, minimises the risk of a biased estimator (27). However
multivariable models lose the advantage of having only 1 covariate in
the final model, so could be overfitted if the number of covariates is
large relative to the number of outcome events. Further, in the event
of misspecification of the PS model, this method could increase
bias (28).

Inverse Probability Weighting Using
Propensity Scores
Inverse probability weighting (IPW, also known as propensity
score weighting) creates a pseudo-population informed by all
patients with a balanced distribution of measured covariates
between groups (29). By doing so, IPW avoids excluding
individuals from analyses and may result in better covariate
balance than PS matching (30).

Each individual is assigned a “weight” depending on their
measured covariates and the treatment they receive. For
individuals who receive treatment, their weight is 1/PS, whilst
individuals who do not receive treatment have a weight of 1/(1-
PS). This means individuals receiving an “unexpected” treatment
contribute larger weights to the analysis than individuals
receiving their “expected” treatment (Figure 1). Each crude
weight is greater than or equal to 1. If some patients have
large weights, this can make results unstable. To minimise this
risk, weights are frequently “stabilised” before further analysis.
This is relevant if a multivariable regression model is being used;
stabilisation does not affect univariable models which contain
only the treatment indicator (31). Stabilisation involves
multiplying the weight by the proportion of exposed patients
for the treated group, and by the proportion of unexposed
patients in the untreated group (32). Once stabilised, the mean

TABLE 1 | Comparison of propensity score and instrumental variable techniques.

Propensity score matching Propensity score weighting Instrumental variable

Assumptions Positivity Positivity Relevance assumption

Exchangeability/ignorability Exchangeability/ignorability Exclusion restriction

Consistency Consistency Independence assumption

Monotonicity or homogeneity

Unmeasured

confounding

Not eliminated Not eliminated Eliminated/reduced

Study application Smaller studies or low event rate Smaller studies or low event rate Large multi-centre studies

Analysis and

interpretation

Patient-level Patient-level Instrument level e.g. centre, physician

Causal effect Average treatment effect on the treated Average treatment effect Average treatment effect or local average

treatment effect depending on assumptions

Advantages Simple to analyse and interpret Retains data from all patients Does not require modelling on confounders,

minimises unmeasured confounding

Disadvantages Exclusion of unmatched patients means results may not

be applicable to whole study population

Results can be unstable if extreme

weights are present

Analysis assumptions difficult to test Challenging

to find suitable instrument

FIGURE 1 | Included subjects in propensity score analyses using

matching and weighting techniques.
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weight for the population should be approximately equal to 1. A
regression analysis where each individual is weighted by their
inverse probability of receiving treatment can then be performed.
As with PSmatched analyses, this regression can be univariable or
multivariable. The same caveats of the multivariable model in PS
matched methodology apply to IPW analyses.

Strengths of Propensity Score Analyses
PS techniques have several advantages over conventional
multivariable regression models. First, conventional
multivariable Cox models require around 10 events per
covariate to produce a stable estimate, and combining
covariates into a single PS is useful when the population is
small, event rate is low, or number of covariates is large (33,
34, 35).

Second, in conventional regression models the treated and
untreated groups can systematically differ. This means
estimating the effect of treatment on a patient, who would
never have been considered for treatment in real life, can be
unreliable as the estimation is based on model extrapolations
beyond the support of the data. PS matched analyses refer to
only those patients who could feasibly exist in either the
“treated” or “untreated” group. Whilst PS matched analyses
can therefore provide improved real-world results, identifying
the population to whom the results are applicable to can be
challenging, especially where there is variation in treatment
practice between centres.

Third, PS models highlight the limitations within which
results should be interpreted. If a large proportion of
individuals are unmatched in PS matched analyses, or there
are patients with large PS weights in IPW analyses, this
signifies poor overlap in covariate distributions between
treated and untreated groups and means the likelihood of
individuals being allocated to either treatment group is low.
As traditional multivariable models extrapolate results to
individuals in under-represented covariate strata, this could
lead to bias in effect estimates. PS methods can alert
researchers to these issues and highlight the limits within
which comparisons of treatment options can be made.

Limitations of Propensity Score Analyses
PS assumptions (exchangeability, positivity, and consistency) are
described in Supplementary Table S1, and it may be difficult to
prove these assumptions hold. If the treatment is rare, there may
be insufficient data to generate the PS. Further, the PS only
encompasses measured confounders. Confounders that are
unknown, poorly recorded, or not measurable cannot be
controlled for and may not be balanced between groups,
leading to unmeasured confounding bias.

In PS matching, unmatched individuals are “lost,” reducing
the study size. Individuals with the highest and lowest PS (the
“always treated” and “never treated”) are less likely to be matched
and are under-represented in the regression models. Whilst there
is no “required” proportion of patients that must be matched, the
causal effect is only applicable to matched patients, not the whole
study population.

In IPW, data from all participants is retained. However, if
individuals contribute large weights to analyses, results may be
unstable. There is no consensus on what a “large” weight is, and
weight stabilisation is often used to minimise this risk. Some
advocate truncating weights to a maximum of 10 for more precise
estimates, (36) but this may re-introduce some of the
confounding that the method aims to remove.

For interested readers, more detailed information on propensity
scores can be found at the following references (9, 37, 38, 39).

INSTRUMENTAL VARIABLE ANALYSIS

Instrumental variable (IV) analyses were developed for economic
studies and subsequently adopted in the medical setting. They
aim to minimise confounding by indication by examining
individuals based on an “instrumental variable”: a variable that
influences treatment and has no confounder with the outcome.
This allows the IV to be capitalised on as a type of natural
randomisation (40). Individuals are analysed according to the
instrument rather than by the treatment they receive akin to an
intention to treat analysis, whereby individuals in RCTs are
analysed according to their randomisation group rather than
by received treatment. Their advantage is they do not assume an
absence of unmeasured confounders to the treatment-outcome
relationship, allowing an independent treatment effect to be
estimated as in an RCT. Key features are shown in Table 1.

To perform IV analyses, the IV is recommended to meet key
assumptions (Figure 2A): (41).

(1) It must be strongly associated with the exposure (relevance
assumption).

(2) It must only affect outcome through its association with the
exposure (exclusion restriction).

(3) There must be no unmeasured confounders to the instrumental
variable and the outcome (independence assumption).

(4) A fourth assumption is either that of effect homogeneity or
effect monotonicity. Effect homogeneity states that the
treatment should have a constant effect on the outcome
across all individuals. In effect monotonicity, no patients
should receive the opposite treatment to expected at all levels
of the instrument i.e., at both the instrument to which they
were assigned and instrument(s) to which they were not
assigned (so called “defier” patients; Supplementary Figure

S1) (9, 42). Identifying which “compliance type” a patient
belongs to however is impossible. Further, when instruments
are multi-categorical or preference-based, even defining
compliance types (and thus effect monotonicity) is
complex and can limit the clinical applicability of results.

A potential IV is initially identified using empirical evidence. The
analysis then involves a two-stage regression model. As the
technique originated in economics this was traditionally two
sequential linear regressions using a two-stage least squares
procedure (41). In medical studies the outcome cannot always be
assessed using linear regression so here we simply refer to the
technique as a two-stage instrumental regression method. In the
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first stage, the exposure (treatment) is regarded as the outcome and
predicted from a regression model containing the instrument as an
independent variable alongside other covariables. A linear regression
is frequently used for the first stage even if the exposure is binary,
though if the model contains additional covariates the predicted
treatment value can lie outwith the range 0–1 (43). As such a linear
model is only advised if few additional categorical covariates are
added to the model (44).

In the second stage, a regression model examines the outcome of
interest as the dependent variable, and the “predicted treatment”
generated in the first stage is included as an independent variable
instead of the received treatment (“predictor substitution” method).
This regression can be univariable or multivariable. A multivariable
model enables adjustment for potential confounding of the
instrument-outcome relationship. Whilst instrument-outcome
confounding represents a violation of the independence
assumption, conditioning on pre-exposure covariates in the first
and second stages of the IV model can reduce the impact of this
and also increase the plausibility of the homogeneity assumption. (9)
As such, multivariable models which include confounders of the
instrument-outcome (in addition to treatment-outcome) relationship
may be beneficial. Other methods of estimating the predicted
treatment variable, how to include it in the second stage model,
and type of second stage model exist. Broadly speaking, population
effects can be interpreted using a range of first-stage regression
techniques and a second-stage Cox model with the predictor
substitution approach is a straight forward method for time-to-
event analyses, though Cox models are not universally
recommended in IV analyses unless the outcome is rare due to
their potential to introduce bias (45-51).

As the analysis is performed, potential violations of IV
assumptions should be assessed. Results must be interpreted in
the context of how likely it is for the assumptions to be met.

(1) Relevance assumption: this is examined using the F statistic and
partial R-squared values. An F statistic under 10 typically is used
to identify a weak instrument (52). The greater the partial

R-squared the greater the contribution of the instrument to
treatment allocation, however this value varies with sample size
and there is no consensus on what a satisfactory value is (53).

(2) Exclusion restriction: there is no statistical test to definitively
confirm that the IV does not influence the outcome other
than through treatment allocation. (54). Examining the
association between the IV and the outcome can provide
information on how likely a direct association is but requires
careful conduct and interpretation.

(3) Independence assumption. This cannot be tested and is
usually argued based on empirical evidence.

(4) Effect monotonicity or homogeneity. These assumptions
may be implausible and are complex to define and assess.
In effect monotonicity, identifying which compliance group
(Supplementary Figure S1) a patient belongs to is
impossible, and even defining compliance groups is
challenging in the case of multi-categorical instruments (42).

Limitations
Finding a suitable IV can be challenging and large multicentre
studies are often required. Ensuring assumptions of the IV are
met may not be possible (55). Weak instruments may also
amplify bias through violation of the exclusion restriction or
independence assumption and result in more biased estimates
than other analyses (9). Finally, whilst IV analyses can overcome
unmeasured confounding, they are less precise as individuals
are examined based on estimated not actual exposure (56).

INTERPRETING RESULTS FROM CAUSAL
INFERENCE MODELS

Average Treatment Effects
When analysing causal inference studies, it is necessary to
consider to whom the causal effect is applicable to. Terms
used include the “average treatment effect” (ATE), “average

FIGURE 2 | (A): Instrumental variable assumptions and the associations between the instrumental variable (Z), exposure (X), outcome (Y), measured confounders

(C) and unmeasured confounders (U) and (B): using the example of screening on MACE.

Transplant International | Published by Frontiers June 2022 | Volume 35 | Article 101055

Nimmo et al. Causal Inference Techniques in Transplantation



treatment effect on the treated” (ATT) and “local average
treatment effect” (LATE).

ATE refers to the effect of treatment on the whole population.
This is typically estimated by IPW techniques, which include all
study participants. ATT refers to the effect of treatment on only
those individuals potentially eligible to receive it and is typically
estimated by PS matched analyses. In IV analyses, the causal
effect depends on whether effect homogeneity or monotonicity
hold. If homogeneity is assumed, the estimate refers to the ATE. If
monotonicity is assumed, the estimate refers to the LATE. This
reflects the effect of treatment on the subgroup of “complier”
patients who receive the expected treatment given their
instrument (Supplementary Figure S1). As complier patients
cannot be identified from within the study population, the LATE
has limitations in informing practice/policy decisions.

As the ATE, ATT and LATE refer to different groups of
patients, their effect sizes can differ. Differences can aid the
interpretation of study findings by providing insights into the
effect of treatment on different groups of patients, and do not
necessarily signify failure of a technique.

Conditional and Marginal Treatment Effects
In each of the above analyses, the final regression model that
generates the causal effect can either be “marginal” or
“conditional.” Models which contain only the treatment (or
predicted treatment in the IV analysis) and outcome generate
marginal treatment effects. Although the characteristics of treated
and untreated individuals should be similar through the PS
matching, IPW or IV techniques, generating truly “exchangeable”
groups of treated and untreated patients remains difficult. Models
which condition on (and hence adjust for) confounders in the final
regression may reduce such residual imbalances and generate
conditional treatment effects.

The effect sizes from marginal and conditional regression
models differ and cannot be directly compared (57, 58). If the
model has been correctly specified, marginal models estimate the
average effect of treatment on the population (i.e., the effect of
moving the population from being untreated to treated), whilst
conditional effects are more individualised and apply to groups of
patients within covariate levels (i.e., the effect of moving an
individual person from being untreated to treated). Marginal
treatment effects are frequently used for health policy decisions,
whilst conditional treatment effects are helpful at an individual
patient level. Further, even if conditional models from PS
matching, IPW and IV techniques contain the same variables,
unavoidable differences between analyses mean results are still
not directly comparable. For example, PS matching is conditional
on the covariates and the PS, whereas the other analyses are just
conditional on the covariates.

DOES SCREENING FOR CORONARY
ARTERY DISEASE REDUCE
POST-TRANSPLANT CARDIAC EVENTS?

To demonstrate the above techniques, a worked example is
provided using data from the ATTOM study. ATTOM was

designed to examine factors associated with transplantation in
the UK, recruiting patients between 2011 and 2013 (59). Data on
transplant assessment was collected for patients who were
waitlisted or transplanted at study recruitment. In this
analysis, individuals receiving a kidney transplant between 1st
November 2011 and 31st December 2017 were included. This
patient selection has implications on other forms of bias in the
study, outlined in Table 2.

We wished to examine whether cardiac screening reduced
post-transplant major adverse cardiac events (MACE). MACE
was defined as unstable angina, myocardial infarction, coronary
revascularisation, or cardiac death. Data on non-fatal cardiac
events were obtained through linkage of the ATTOMdataset with
routinely collected hospital data (60). Death data were obtained
from the UK Renal Registry and NHS Blood and Transplant.
Patients were followed up until 31st December 2017, with
censoring for non-cardiac deaths.

Over the study period, 2572 individuals received a transplant.
The mean age was 50 years (SD 13) and 61% were male. Ethnicity
was White in 76%, Black in 14% and Asian in 9%. There was a
history of diabetes in 13% and ischaemic heart disease in 7%.
Overall, 51% underwent screening for asymptomatic coronary
artery disease with a stress test (exercise tolerance test, stress
echocardiogram, myocardial perfusion scan), CT coronary
angiogram or invasive coronary angiogram before transplant
listing. The proportion of individuals screened across the 18
transplant centres in England ranged from 5%–100% (Figure 3).

Median followupwas 5.0 years (IQR 3.8–5.5), overwhich time 211
individuals experienced MACE. Median time to MACE was 2.3 years
(IQR 1.0–3.7; range 1 day–6.6 years). Over follow up, 227 patients
died (8.9%); 40 had a cardiac death that was counted as MACE.

To examine whether screening has a causal effect on MACE at
90 days, 1 year or 5 years post-transplant, Cox regression models
were performed using propensity scorematching, inverse probability
weighting, and instrumental variable analysis techniques.

Competing Risks and “Direct” and “Total”
Treatment Effects
Non-cardiac death is a competing risk for post-transplant MACE,
as patients dying of non-cardiac causes cannot subsequently
develop MACE. The analyses presented in the following
section determine the “direct” effect of screening on MACE as
patients are censored at non-cardiac death, as opposed to the
“total” effect of screening on MACE which would include causal
pathways involving non-cardiac death (61).

Interpreting direct treatment effects is challenging as they
assume an unrealistic situation where competing events do not
occur. Further, direct treatment effects have additional causal
assumptions such as no unaccounted confounding of the
relationship between the competing event (non-cardiac
death) and outcome of interest (MACE). If there is likely to
be a confounding relationship between the censoring event
and the outcome of interest, techniques such as inverse
probability of censoring weighting may be required to
derive valid estimates of the direct treatment effect—such
analyses require sufficient data availability for the
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probability of censoring (i.e., non cardiac death) to be
modelled accurately over time (61).

As the purpose of this paper is to demonstrate the application
of different causal inference techniques, for pragmatic reasons the
following analyses represent the direct effect of screening on
MACE. Information on competing risk analyses, which can
navigate this issue by generating total treatment effects, are
found at the following references (62, 63, 64).

Propensity Score Matching and Inverse
Probability Weighting
To generate the PS, variables deemed to potentially relate to
screening and MACE were determined and included in a logistic
regression model. These comprised: age, sex, ethnicity,
socioeconomic status, smoking status and history of ischaemic

heart disease, diabetes, cerebrovascular disease, and peripheral
vascular disease. Transplant centre was not included as it should
not independently associate with MACE, would prevent us
capitalising on variation in practice to create groups screened
and unscreened patients, and could result in violation of the
positivity assumption (Supplementary Table S1).

As the proportion of screened and non-screened individuals
was roughly equal, PS matching was performed on a 1:1 basis
without replacement using a caliper of 0.2 times the standard
deviation of the logit of the propensity score. Matching was
possible in 1760 individuals. The distribution of the PS before
and after matching is shown in Supplementary Figure S2. The
standardised mean difference after matching showed appropriate
covariate balance between groups (Supplementary Table S2).
The characteristics of screened and unscreened patients in PS
matched and unmatched groups are shown in Figure 4. The 812

TABLE 2 | Design of a potential randomised control trial to investigate the utility of cardiac screening prior to kidney transplant listing, and the design of the worked example,

highlighting areas of residual bias.

Component Ideal randomised control trial Worked example and residual bias

Eligibility Individuals with chronic kidney disease being worked up for kidney

transplantation

Patients who were recruited to the ATTOM study and received a kidney

transplant. Whilst these patients are representative of the UK kidney

transplant population, information was not available on all patients who

commenced transplant workup and it is not known if results are applicable

to this whole population. Selection bias and survivor bias may be present

Treatment

strategies

Receive a cardiac screening test (and any subsequent recommended

cardiac intervention) vs. not receive a cardiac screening test prior to kidney

transplant listing

Receiving a cardiac screening test (and any subsequent recommended

cardiac intervention) as per local standard practice vs. not receiving a

screening test prior to kidney transplant listing

Treatment

assignment

Eligible individuals would be randomly assigned to one of the two

treatment strategies and would be aware of the treatment which they were

assigned to

Patients were selected for screening based on pre-determined local

protocols or clinical judgement of the medical team. As treatment

assignment was not randomised and there were not strict eligibility criteria,

inferences are limited to those patients who might be considered for

screening, rather than patients who would never or always be screened

Follow up Follow up would start at the time of assignment to a treatment strategy (i.e.

when randomised to receive cardiac screening or not) and would continue

for a set period of time over which some patients would be activated on the

waitlist and receive a transplant. This is likely to require long follow up, for

example 3–5 years

Follow up started at the point of kidney transplantation and was for up to 5

years. This start point was chosen as the date transplant workup

commenced was unknown, and data were not available on patients who

commenced workup but were not waitlisted. This risks survival bias as all

patients survived until the point of transplantation. Further, the

misalignment of treatment assignment and follow up start means there

could be fundamental differences between patients who are transplanted

after screening vs. those transplanted without screening. As screeningmay

not have a uniform effect on individuals unobserved in this study, there is a

risk of selection bias

Primary end point Post-transplant MACE. The exact time frame post-transplant that should

be examined could be debated, but given screening aims to reduce short-

term morbidity and mortality a time frame of around 1 year could be

considered

Post-transplant MACE at 90 days, 1 year and 5 years post-transplant.

Patients were censored for non-cardiac death, therefore estimates refer to

the direct effect of screening on MACE and not the total effect of screening

onMACE through all causal pathways, including through any effect on non-

cardiac death

Secondary end

point

Activation on transplant waitlist Not captured

Time to waitlisting

Time to transplantation

Waitlist MACE

Patient reported outcomes

Causal contrast Intention-to-treat effect—effect of being randomised to screening or no

screening, even if off-protocol screening tests were performed

Per protocol effect—effect of adhering to the treatment strategies over

follow up

Per protocol effect - effect of adhering to the treatment strategy over

follow up

Statistical analysis Intention-to-treat; consideration would need to be made as to how to

analyse patients not transplanted over follow up

Per protocol analysis
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unmatched individuals were more likely to be male, of Asian
ethnicity, and have a history of cardiovascular disease
(Supplementary Table S3). In the PS matched population,
screening did not reduce MACE at 90 days (conditional HR
0.80, 95% CI 0.31–2.05), 1 year (conditional HR 1.12, 95% CI
0.51–2.47) or 5 years (conditional HR 1.31, 95% CI 0.86–1.99)
(Table 3). These results reflect the ATT: the causal effect of
screening in screened patients eligible to receive either treatment
(and thus “matched”), representing transplant recipients at low-
medium cardiac risk.

For IPW, inverse probability of treatment weights were
calculated. Weights were stabilised by multiplying them by
the proportion of individuals who underwent screening in
the exposed group, and proportion of individuals who did
not undergo screening in the unexposed group (32). The
mean of the stabilised weights was 1.00 (SD 0.47, range
0.53–8.45). Characteristics of the 57 patients with
stabilised weights greater than or equal to 2 are in
Supplementary Tables S4, S5. These patients were more
frequently unscreened. Higher-weighted unscreened
patients were older and more likely to have
cardiovascular disease.

In total 2502 individuals were examined in the IPW
analysis; 70 individuals were excluded due to missing data
in variables used to generate the PS. Cox regression models
were performed incorporating the IPW (Table 3). There was
no evidence screening reduced MACE at 90 days (conditional
HR 0.95, 95% CI 0.44–2.05) or 1 year (conditional HR 1.28,
95% CI 0.72–2.26). There was weak evidence that patients
undergoing screening were at higher risk of MACE at 5 years
(conditional HR 1.38, 95% CI 1.00–1.90), but this analysis did
not meet the Cox proportionality assumption with a greater
rise in MACE in screened patients over time. These results
reflect the ATE: the causal effect of screening on the
transplanted population. They do not provide information
on the effect of screening on the total population who begin
transplant workup.

It is important to note that these results represent a
complete case analysis, as the 70 individuals with missing
data were excluded. Complete case analyses assume data are
missing completely at random, though other missing data
mechanisms and their potential implications need to be
considered (65).

Instrumental Variable Analysis
Transplant centre is determined by geographical location so is
largely randomly allocated. We determined centre had the
potential to be an IV as it (at least partly) met the following
assumptions (Figure 2B):

(1) Relevance assumption: the likelihood of undergoing
screening is associated with transplant centre (Figure 4),
even after adjustment for patient-level characteristics (18).
On an individual patient level, screening is associated with
older age, male sex, and a history of vascular disease
(Supplementary Table S6) but when examining patients
based on whether they are registered at a centre with a
low, medium, or high screening use, differences in these
variables is reduced (Table 4).

(2) Exclusion restriction: this assumption cannot be guaranteed
as there could be non-screening differences in centre-level
practice that influence outcome, e.g., use of medical therapy,
but this would not be expected given there is national
guidance on cardiovascular risk management (66), and
transplant outcomes are similar between centres (67).

(3) Independence assumption: this assumption cannot be
proven, as acknowledged in IV literature. Whilst it may be
assumed that if measured confounders are balanced across IV
groups, unmeasured confounders will be too, this is purely
speculative.

(4) Homogeneity or monotonicity. Screening may not have a
uniform effect on individuals, for example it could benefit
those with high cardiovascular risk but not low risk patients,
thus violating homogeneity. Monotonicity (no patients
receiving the opposite treatment to what would be
expected at any level of the instrument) may be more
likely to hold as patients receive screening based on
defined protocols at their transplant centre. This
assumption however cannot be proven and defining the
four compliance types (Supplementary Figure S1) is
complex.

In the first stage, a linear regression containing potential
confounders of the treatment-outcome relationship (deemed
to be those used to create the PS) and transplant centre was
used to predict the likelihood of an individual undergoing
screening. Linear regression was selected for this analysis as
opposed to logistic regression as described in IV literature
(43), which also prevented individuals from centres who
screened all recipients (n = 264) being dropped given
instrument was a “perfect” predictor of outcome. Whilst
using centre as an instrument addresses unmeasured
patient-level confounding (i.e., unmeasured confounding
between X and Y via U in Figure 2), centre-level

FIGURE 3 | Funnel plot demonstrating the number of individuals

screened by transplant centre.
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FIGURE 4 | Characteristics of screened and unscreened groups across the whole population and in propensity score matched and unmatched groups, followed

by characteristics by centre screening use: low volume of screening (<25% of transplant patients screened; n = 570), low-medium volume of screening (25%–49%

screened; n = 714), medium-high (50%–74% screened; n = 742) or high volume of screening (>74% screened; n = 546). Note that although there is variation in patient

characteristics by those screened or unscreened, this variation reduces when patients are stratified by centre screening volume, suggesting centre could be a

strong instrument.
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TABLE 3 | Association between screening and post-transplant MACE at 90 days, 1 year and 5 years using propensity score matching, weighting and instrumental variable

techniques.

Association between screening and MACE at 90 days post-transplant 14 events in PS matched group, 23 events in whole population

Method

and treatment effect

HR 95% CI p-value Hazard ratio with

95% confidence interval

PS match marginal 0.75 0.33–1.72 0.50

IPW marginal 0.93 0.45–1.89 0.83

IV marginal 2.91 0.82–10.33 0.10

PS match conditional 0.80 0.31–2.05 0.64

IPW conditional 0.95 0.44–2.05 0.90

IV conditional 1.37 0.29–6.55 0.69

Association between screening and MACE at 1 year post-transplant 32 events in PS matched group, 52 events in whole population

PS match marginal 1.14 0.56–2.31 0.72

IPW marginal 1.30 0.77–2.20 0.33

IV marginal 4.18 1.79–9.76 0.001

PS match conditional 1.12 0.51–2.47 0.77

IPW conditional 1.28 0.72–2.26 0.40

IV conditional 1.85 0.65–5.29 0.25

Association between screening and MACE at 5 years post-transplant 117 events in PS matched group, 199 events in whole population

PS match marginal 1.31 0.85–2.03 0.22

IPW marginal 1.39 0.94–2.06 0.10

IV marginal 3.19 2.09–4.87 <0.001

PS match conditional 1.31 0.86–1.99 0.20

IPW conditional 1.38 1.00–1.90 0.05

IV conditional 1.21 0.72–2.02 0.48

CI, confidence interval; HR hazard ratio; IV, instrumental variable; PS, propensity score; IPW, inverse probability weighting. Multivariable includes variables used to estimate the propensity

score in the outcome regression model.
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confounding remains possible due to other institutional
differences in practice (i.e., confounding between Z and Y
in Figure 2 that may be distinct from U and/or C). (68) We
considered including centre-specific variables which could
influence outcome e.g. proportion of living donor or pre-
emptive transplants, but these were not included in the final
model due to collinearity with centre.

The first stage generated a predicted value, representing the
likelihood of each individual being screened. The F statistic was
70 and the partial R-squared value was 0.33, indicating centre was
a strong IV.

In the second stage, univariable and multivariable Cox
regression models were performed using the predicted value
from the first stage (predictor substitution method). This step
can be considered as including the proportion of patients
screened by centre as a patient characteristic, rather than
whether each individual was screened. The multivariable
model included the same confounders used to create the
PS as these were deemed to potentially confound both the
instrument-outcome and treatment-outcome relationship,
and therefore including these confounders makes the
independence assumption more likely to hold. Screening
did not reduce MACE in the conditional model at 90 days
(conditional HR 1.37, 95% CI 0.29–6.55), 1 year (conditional
HR 1.85, 95% CI 0.65–5.29) or 5 years (conditional HR 1.21,
95% CI 0.72–2.02). These results reflect the LATE: the causal
effect of screening on the ‘complier’ patients in the
population.

Interpretation of Results
Results from PS matched, IPW and IV analyses are shown in
Table 3. In the conditional models, screening did not reduce
MACE in any analysis, which each had overlapping confidence
intervals, but there was variation in estimates between methods.
The hazard ratios using PS methods rose over time, crossing 1
between 90 days and 1 year, whilst in the IV analysis the hazard
ratio was above 1 throughout. These differences can help result
interpretation by considering which patients are included in each
analysis.

In the PS matched analysis, the results are only applicable to
1760 transplant recipients with low-medium baseline risk of
MACE, not the overall population. The 812 individuals
excluded from the analysis were more likely to be male, of
Asian ethnicity, have a history of cardiovascular disease and
be of a lower socioeconomic status and thus have the greatest
baseline cardiovascular risk. Whilst these results suggest no
benefit to screening, this cannot be directly applied to these
highest risk patients.

The IPW analysis includes all patients and represents the
whole transplanted population. Similar findings were observed to
the PS matched analysis at 90 days and 1 year. At 5 years, there
was weak evidence that individuals who had undergone screening
were more likely to experience MACE in the conditional model
but it should be noted that this analysis did not meet the Cox
proportionality assumption.

In the IV analysis, screening did not reduce MACE on
conditional analyses with a hazard ratio above 1 throughout,

BOX 1 | Selected transplant studies using propensity score and instrumental variable techniques.

Propensity score techniques

• Comparison of outcomes in recipients receiving a living versus standard criteria deceased donor kidney transplant (74).

• Comparison of outcomes in donation after brainstem death and donation after cardiac death donors in liver transplantation (75).

• Association between immunosuppression regime (triple or quadruple therapy) in heart transplant recipients and death and rejection episodes (76).

Instrumental variable techniques

• Association between dialysis duration and patient outcome following kidney transplantation, using blood group as an instrumental variable (77).

• Examining whether delayed graft function is associated with long term outcomes after kidney transplantation using cold ischaemic time as an instrumental

variable (78).

• Comparison of deceased and living organ donation rates in countries with an opt-in and opt-out policies using legal system and non-health based philanthropy as

instrumental variables (79).

TABLE 4 | Patient characteristics based on the prevalence of screening pre-transplant by centre. The Kruskall-Wallis test was used to examine continuous variables and the

Chi square test for categorical variables.

Percentage of individuals screened by centre

<25%

4 centres

n = 570

25%–49%

5 centres

n = 714

50–74%

6 centres

n = 742

≥75%

3 centres

n = 546

p value

Median age (years) 50 (40–60) 50 (41–59) 52 (40–60) 52 (42–62) 0.22

Male sex (%) 58.8 61.5 63.6 58.2 0.17

White ethnicity (%) 64.7 78.6 72.9 86.3 <0.001

IMD quintile 1 (%) 27.1 28.0 23.0 13.6 <0.001

Diabetic nephropathy (%) 23.2 22.0 23.9 23.8 0.29

Diabetes (%) 14.2 12.5 14.4 10.2 0.12

Ischaemic heart disease (%) 6.3 6.2 8,8 7.7 0.20

Peripheral vascular disease (%) 2.6 2.0 2.9 2.0 0.56

Cerebrovascular disease (%) 2.6 4.0 5.4 4.8 0.09

Pre-emptive transplant (%) 20.9 20.9 24.1 20.7 0.34
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suggesting “complier” screened individuals had a higher risk of
MACE than complier non-screened individuals, although
confidence intervals were extremely wide. Given these results
represent the LATE, it is not known whether the effect of
screening on non-complier patients differs. Whilst the IV
technique minimises unmeasured confounding, these results
raise the possibility that unmeasured patient level
characteristics associate with centre and outcome
(i.e., clinicians screen their patients as they see their
population as being inherently higher risk), or there are
unmeasured differences in centre level practice, e.g., use of
medical therapy that could bias results. Alternatively, it is
possible that the PS matched and IPW analyses are prone to
bias due to unmeasured confounding, and the IV analysis
provides a result that is closer to the truth. Some studies
suggest IV techniques provide less biased results than PS
analyses, (69) but the challenges in identifying an appropriate
instrument must be considered and results interpreted with
caution until further studies examining both techniques are
available (70).

The marginal hazard ratios presented in Table 3 reflect the
effect of screening on the study population as opposed to an
individual patient. In the PS matched and IPW analyses,
screening did not reduce MACE. The results of the IV
analysis differed, with screened individuals having a greater
risk of MACE at 1 year (HR 4.18, 95% CI 1.79–9.76) and
5 years post-transplant (HR 3.19, 95% CI 2.09–4.87). This may
reflect deviation from the independence assumption of no
confounders to the instrument and outcome, the impact of
which is lessened by adjusting for confounders in the
conditional model.

Limitations
Whilst the causal inference techniques applied to our worked
example reduce confounding by indication, other forms of bias
remain (Table 2). The worked example only examines patients
who received a transplant. Data were not available for those who
were screened and not listed due to an abnormal screening test, or
listed but not transplanted due to MACE that occurred on the
waitlist. Screening results are just one factor in a complex
assessment of patients for transplantation, with the proportion
of patients excluded due to cardiac screening abnormalities
estimated at 1%–4% (71, 72, 73). In a target trial examining
whether cardiac screening improves post-transplant outcomes
these data would ideally be known, and neither PS or IV
techniques specifically address this issue. Results therefore
cannot be applied to the population who begin transplant
workup nor determine the impact of screening on outcomes
outwith post-transplant MACE.

SUMMARY

Propensity score and instrumental variable techniques reduce
confounding in observational studies and are suited to areas
where treatment decisions vary with clinician or facility
preference. Whilst RCTs minimise confounding through the

random allocation of treatment, results may not be
generalisable if the individuals recruited to a trial are not
representative of the population of interest, e.g., if
individuals with less severe disease who are “lower risk” or
with more severe disease who have “most to gain” are
preferentially recruited. Population observational data
allows all patients within clinical practice to be examined,
but treatment effects from causal inference techniques still
may not be applicable to the whole population due to limited
overlap in confounder distributions between patient groups.
Techniques deal with this issue in different ways. For example,
in PS matching patients are excluded from analyses if a
“suitable” match cannot be found. In IPW analyses, the
presence of large weights can highlight instances where
regression adjustment would result in the model being
extrapolated to groups with little or no overlap in
confounder distribution. Whilst large weights can make the
ATE estimate unstable and results in wide confidence
intervals, IPW techniques provide an “honest” reflection of
the uncertainty in the estimate which might be underestimated
in regression adjustment. Causal effects from each technique
therefore permit inferences on different populations, which is
important when interpreting study results.

Our case study demonstrates how causal inference techniques
can estimate comparative effectiveness of interventions using
observational data, but don’t eliminate all forms of bias and
may still not allow firm conclusions to be drawn. Differences in
results may reflect the different populations the estimates are
applicable to, the presence of unmeasured confounding, or
imperfections in the instrument. It is difficult to know which
analysis provides the closest result to the “true” estimate, and
results should be interpreted in the context of the limitations of
each method.

Despite these challenges, the unique issues in performing
RCTs in transplantation, combined with the increase in size
and granularity of routine healthcare datasets are likely to
result in wider use of propensity score and instrumental
variable techniques. Examples of transplantation studies
using these techniques are shown in Box 1. There is
potential to explore areas such as the optimal timing of pre-
emptive transplantation, identifying which patients may
benefit from transplantation, and how outcomes differ
based on donor type. By identifying areas where there is
variation in practice and clinical equipoise, these analyses
can provide preliminary data to guide clinical trials. We
welcome the possibility of this in the field of cardiac
screening prior to kidney transplant listing.
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GLOSSARY

Propensity score a value ranging between 0 and 1 that summaries the
likelihood of an individual receiving a treatment based on their measured
covariates

Propensity score matching process through which individuals in
treated and untreated groups are matched to each other based on their
propensity score. This can be done on a 1:1 (1 patient in the untreated group
matched to 1 treated individual) or many-to-one (many patients in the
untreated group matched to 1 treated individual) basis

Matching without replacement once an individual from the
untreated group has been matched, they cannot be used as a comparator for
any further treated individuals

Matching with replacement an individual in the untreated group can
be used as a match for more than 1 treated individual. Useful if the number of
untreated individuals is small.

Nearest neighbour matching matching process which pairs treated
and untreated individuals based on them having the closest propensity scores,
irrespective of whether the untreated individual is a better match for another
treated individual.

Optimal matching matching process which aims to minimise the
difference in propensity scores between pairs across the whole population.
May be preferred over nearest neighbour matching if the proportion of
untreated individuals in the population is small.

Inverse probability weighting technique which weights individuals
based on their propensity score to create a pseudo-population with balanced
measured covariates in treated and untreated groups

Instrumental variable a variable that is causally associated with the
exposure, only affects outcome through its association with that
exposure, and has no confounders with the outcome. Allows individuals
to be examined based on the instrument to minimise the risk of
unmeasured confounding.
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