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Abstract 

Three techniques for extracting equivalent circuit parameters from piezoelectric transformers based on the Mason equivalent 
circuit model are explored, starting from a frequency domain analysis of the input and output impedance. Two optimisation 
techniques to improve the accuracy of the parameterisation are detailed and tested, each allowing multiple resonant modes to 
be modelled, with the aim of minimising the percentage error of the fit. 

1 Introduction 

1.1 Piezoelectric transformers 

Piezoelectric transformers (PTs) have uses as alternatives to 
traditional electromagnetic transformers where low power 
voltage conversion is required. Electrical energy is converted 
to mechanical flexing of a piezoelectric material at resonance 
in the primary section of the device.  Since the primary section 
is mechanically connected to the secondary section, the 
piezoelectric effect (pressure-to-charge conversion) creates 
the output voltage.  

Due to the resonant operation, high efficiency can be obtained. 
The lack of reliance on magnetic properties also allows 
operation of PTs at high temperatures. Commercially, PTs 
have found uses providing high frequency AC to cold-cathode 
fluorescent lamps and have found other applications in the 
space and energy sectors [1]. 

In the simplest implementation, one piece of piezoelectric 
material is made with three electrical contacts, one as the input, 
one common terminal and one output. Depending on the 
location of the electrical contacts and the geometry of the 
device, the desired voltage gain can be obtained. 

1.2 Equivalent circuit model 

To ease design from an electrical perspective, an equivalent 
circuit model can be used. The simplified Mason equivalent 
circuit can be seen in Figure 1. Additional parallel branches 
can be added or removed to account for the desired number of 
resonant modes. 

 

Figure 1 Mason equivalent circuit model 

The component values can be obtained by calculation from 
mechanical properties [2] or by performing electrical 
measurements of the transformer. The latter is usually more 
accurate as tolerances associated with the materials 
specifications and manufacturing processes can be accounted 
for and, often, it is necessary to confirm calculated results after 
the PT has been manufactured.  

Here, three parameterisation methods are explored: i) a 
different parameterisation of the cost function employed in [4] 
provide greater efficacy of the optimiser; ii) the incorporation 
of an additional step to further refine the parameters and iii) 
particle swarm optimisation (PSO) where the initial estimates 
for the equivalent circuit parameters are taken directly from 
the impedance spectrum. 

2 Prior Work 

The work presented here builds on that of Horsley, et al., [3] 
and method 1 from Forrester, et al., [4], where the input and 
output impedance spectra are fitted to the Mason equivalent 
circuit model shown in Figure 1. 

The resonant frequency, 𝜔0 = 1√𝐿𝐶,  of L & C is determined by 

locating the frequency of minimum impedance measured 
when the output is connected to the common node (i.e. short-
circuited).  Specifically, 𝜔0  is found by evaluating min|𝑍𝑖𝑛(𝑠−𝑐)(𝜔)| where Zin(s-c) is the impedance looking into 

the input port of the PT with the output short-circuited (s-c). 
The resonant frequency provides the product of L and C. The 
resistance was found as the absolute value of impedance at the 
resonant frequency, 𝑅 ≈ 𝑍𝑖𝑛(𝑠−𝑐)(𝜔0).  

Since the output is short-circuited, the effects of Cs and N can 
be neglected, leaving only Cp and one independent variable 
from the RLC branch to be determined. Since Cp and the RLC 
branch are connected in parallel it is difficult to separate them.  
In [4], a new parameter, β, was introduced to represent the 
impedance of the RLC branch.  Since 𝜔0 and 𝑅 have already 
been determined from the impedance spectrum, only two 
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variables, Cp and β, need to be obtained from a curve-fit, 
thereby reducing the search space.  The cost function (1) was 
defined as the mean squared error between the measured 
impedance (Zreference) and the Mason equivalent circuit 
calculated impedance (Zcalculated). The summation in (1) is 
taken over the range of the reference impedance dataset and 
the Zcalculated is determined over the same range. 

J1(𝐶𝑝, 𝛽) = ∑ (|Zreference|-|Zcalculated(𝐶𝑝, 𝛽)||Zreference| )2

 

min𝐶𝑝,𝛽 𝐽1(𝐶𝑝, 𝛽)   (1) 

where Zreference = Zin(s-c). Equation (1) is minimised using the 
Nelder-Mead method to determine the optimal values for 𝐶𝑝 & 𝛽 .  A similar approach can be applied to the output 

impedance by short-circuiting the input port and measuring the 
impedance at the output port to provide 𝑍𝑜𝑢𝑡(𝑠−𝑐) . Using 

Zreference = Zout(s-c), the optimisation process in (1) can be 
adapted to extract Cs (in an equivalent manner to Cp) and a 
referred value for the RLC branch impedance, 𝛽′, as seen from 
the output-side which is used to calculate the turn-ratio using 𝑁 = √𝛽′𝛽 .  

To evaluate the performance of the parameterisation, two 
metrics are used. The metric described (2) is the average 
absolute error ratio (E%), and (3) describes the average 
absolute error (Eabs). 

E% = 
∑ ||Zreference|-|Zcalculated||Zreference| |

no. of datapoints
(2)

 

Eabs = 
∑ ||Zreference|-|Zcalculated||

no. of datapoints
(3) 

To demonstrate this technique, frequency domain impedance 
data was taken from a STEMiNC SMMTF55P6S50 Rosen PT. 

Figure 2 shows a bode plot of the estimated input impedance 
|Zin(s-c)| of the PT using the curve fitting technique from [4], 
along with the measured impedance for comparison.  

3 Proposed optimisation techniques 

3.1 Technique 1 (T1) - Streamlining for improved 
convergence 

Three independent variables are required to characterise the 

RLC branch.  Method 1 in [4] assumes 𝜔0𝐿 = 1𝜔0𝐶 = 𝛽 to link 𝜔0   to 𝐿 & 𝐶, with R being determined from the impedance 
spectrum.  Since L & C are not known a priori then a large 
range of β values must be searched to ensure a global minimum 
can be found. Here, it is proposed that the characteristic 
impedance β may be substituted by bandwidth or Q-factor (see  
Figure 3) to give, 

Q= f0
fB

= ω0
ωB

= 1𝑅 √𝐿𝐶   (4) 

where ωB is the bandwidth and 𝑅 ≈ 𝑍0 = 𝑍𝑖𝑛(𝑠−𝑐)(𝜔0). Using 

(4) allows the equivalent circuit components to be written as,  

L=
R

ωB
,  C=

ωB

Rω0
2   (5) 

 

Figure 3 Bandwidth estimation from a bode plot of input 
impedance 

Figure 2 An example curve fit for |Zin(s-c)| 
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The parameter β in (1) is replaced with ωB and the optimiser is 
seeded with an initial value for ωB  extracted from the 
impedance spectrum, see  Figure 3.  Taken together, these two 
steps reduce the search space by a significant factor and act to 
decouple the interaction between the interdependent variables. 

To further improve convergence time an initial estimate for Cp 
can be found by assuming the low frequency input impedance 
of the PT is dominated by Cp, as shown by the orange curve in  
Figure 3.  This estimated value is also used to seed the 
optimiser.  When combined, the substitution for ωB  and 
seeding of the Nelder-Mead minimisation method used in 
Section 2, reduced total CPU time needed for the fit in Figure 
2 from 47 s to 0.9 s. 

3.2 Technique 2 (T2) – T1 with pattern search 

The success of Technique 1 relies on accurate values for ω0 

and R extracted from the impedance spectrum.  It was assumed 
Cp does not contribute to ω0 and also that R dominates the 
impedance at ω0. Furthermore, T1 only optimises two 
parameters and therefore cannot correct for any disparity in ω0 

and R.  In T2, to improve the fit of the previous technique, a 
second round of optimisation was done, seeded by the results 
from T1.  All parameters from each impedance spectrum were 
allowed to be adjusted to provide a global minimum using (2) 
as the cost function.  For this, a pattern search (PS) optimiser 
was used which is effective for larger search spaces [5]. 

3.3 Technique 3 (T3) – Particle swarm optimisation (PSO) 

In particle swarm optimisation, the term particle refers to a 
possible solution that exists in both time (iteration) and space 
(parameter). Multiple particles are initially randomly 
distributed about the search space.  For each iteration, the 
performance of each particle is evaluated using a cost function, 
the velocity is updated depending on the lowest cost (error) 
that that particle obtained in its history, as well as the lowest 
cost obtained by any other particle.  Over time (iterations) the 
particles converge on the optimal solution traversing the 
search space [6]. The measured (reference) impedance spectra 
is fitted to the calculated impedance spectra evaluated using 
Zin(s-c)(Cp, R, ω0, ωB) and Zout(s-c)(Cs, N2R, ω0, ωB).  The search 
space is centred about the initial seed values used by T1 and 
T2.   

3.4 Experimental evaluation of optimisation techniques 

All three techniques were tested to determine their 
performance using same dataset that was used for Figure 2. 
The T2 (pattern search) used 150 iterations, taking 10 s of CPU 
time (equivalent time for one core) and 2.5 s of real time. PSO 
used 300 iterations of 500 particles, taking a CPU time of 1080 
s and 45 s of real time (spread over 32 cores). The stopping 
conditions were chosen by experiment as the point where 
negligible further improvement was seen, allowing the 
optimisation techniques the best conditions to perform. The 
results can be seen in Figure 4. 

T3 (PSO) demonstrated the highest performance with this 
dataset, with a slightly lower percentage error than T1, and a 
much-reduced absolute error. The superior performance of T3 
comes at the cost of requiring more CPU time; approximately 

100 times that of T2, and more than 1000 times that of T1 alone. 
Here, T2 provides a good balance between a reduction in 
absolute error and processing time. 

 

Figure 4 Comparison of curve fitting, curve fitting with pattern 
search and particle swarm optimisation 

4 Multiple Resonant Modes 

PT are typically designed to exhibit a strong vibration mode to 
maximise power transfer and efficiency.  However, due to 
material properties and their geometry PTs exhibit a range of 
vibration modes and it is useful to quantify these for design 
and control purposes.  

 

4.1 Modelling multiple resonant modes 

The Mason equivalent circuit model in Figure 1 can be 
extended to account for additional resonant modes by 
incorporating additional RLC branches. Figure 5 shows an 
equivalent circuit for modelling k=3 vibration modes. 

With reference to Figure 5, when the output port is short-
circuited, the input impedance is characterised by the input 
capacitance connected in parallel with each RLC branch, 
representing the vibration modes of the mechanical motion. 
The input impedance can be calculated using (6), where k is 
the total number of resonant branches to be modelled. 

Zin(s-c) = 
1

jωCp+ ∑ (Rm+ 1
jωCm

+jωLm)-1k
m=1

(6)
 

Similarly, the output impedance is defined by, 

Zout(s-c) = 
1

jωCs+ ∑ (Nm
2 (Rm+ 1

jωCm
+jωLm))-1k

m=1

(7)
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Figure 5 Mason equivalent circuit model with three parallel 
branches 

These equations allow the measured input impedance to be 
fitted with a model containing 3k + 1 unknowns. The output 
impedance was fitted using the concepts applied in T1-3 and 
the square root of the ratio of the parallel branch impedances 
seen from either side of the device is the transformer ratio Nm. 

4.2 Curve-fitting with multiple branches 

The techniques described in section 3 were adapted to 
parameterise PTs with two active resonant modes. For T1, two 
curve-fit optimisation runs were performed, with run 1 having 
the resonant frequency (ω0), bandwidth (ωB) and branch 
resistance (R) at the first vibration mode.  Run 2 used values 
extracted for the second vibration mode.  Fixing of ω0 and R 
about a vibration mode forces the minimisation algorithm to 
optimise the impedance error of the resonant branch at that 
frequency. The RLC values from each run are used to model 
each branch, with Cp taken as the average of the two.  

As described in 3.2, the pattern search T2 operates on all seven 
parameters (Cp/s, R1, L1, C1, R2, L2 and C2 or their referred 
values) simultaneously. T2 was set to halt when the change in 
cost function was less than 10 ppm per iteration. 

To apply T3 described in 3.3 the parameter space needs to be 
extended to all seven parameters and can be applied using 300 
iterations with 500 particles.  

4.3 Experimental Results 

Seen in Table 1, both T2 and T3 reduce percentage error of the 
fit compared to T1. The average absolute error follows a 
similar trend to the percentage error. Table 1 also shows that 
the CPU time increases dramatically for T2 and T3 when 
multi-dimensional optimisation is used, with particle swarm 
optimisation taking several minutes to run on a high-
performance system. 

The PT has a high series resistance for both resonant branches 
(R1 and R2 in Table 1), which decreases the prominence of the 
peaks on the impedance plot (Figure 6). 

 

Table 1 Characteristics for the SMMTF85P1S50 PT 

Parameter Technique 1 Technique 2 Technique 3 

Cp 30.0 nF 29.1 nF 28.8 nF 
Cs 80.6 pF 78.7 pF 75.5 pF 
R1 36.4 Ω 55.5 Ω 97.0 Ω 
L1 
C1 
N1 
R2 
L2 
C2 
N2 

4.56 mH 
1.02 nF 
23.7∠0° 
16.9 Ω 
1.08 mH 
1.20 nF 
26.1∠0° 

4.73 mH 
0.968 nF 
24.3∠0° 
20.9 Ω 
1.20 mH 
1.07 nF 
30.2∠0° 

4.32 mH 
1.06 nF 
19.4∠0° 
26.0 Ω 
1.05 mH 
1.24 nF 
25.2∠0° 

E%(in) 
EΩ(in) 

CPU time 

4.40 % 
6.43 Ω 
6.9 s 

1.81 % 
1.06 Ω 
207 s 

2.50 % 
1.23 Ω 
1770 s 

 
Input and output impedance spectra obtained by measurement 
and curve-fit are shown in Figure 6 and Figure 7, respectively.  
All three fitting methods match the resonant frequency with 
good accuracy, but the T1 alone does not attain a good fit at 
the first anti-resonant point. T2 improves the agreement at the 
anti-resonant point. It should be noted that the measured Zout(s-c) 
exhibits noise which may have affected the performance of the 
optimiser. 

 
Figure 6 SMMTF85P1S50 PT input impedance 

In both figures T3 struggles to capture behaviour about the 
resonant and anti-resonant frequencies.  This behaviour is 
usually a characteristic of the optimiser becoming trapped in a 
local minimum and one solution would be to increase the 
number of particles. It should be noted that increasing the 
number of particles or iterations is at the cost of a greater 
processing time of an already computationally intensive 
method. An efficient remedy could be to seed the positions of 
the particles directly with values estimated from the 
impedance spectra.  
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Figure 7 SMMTF85P1S50 PT output impedance 

4 Conclusion 

An improved version of the curve fitting method has been 
demonstrated, reducing time taken to parameterise a 
piezoelectric transformer and extending the parameterisation 
to multiple resonant modes. Improvements in percentage error 
have been demonstrated by implementing a pattern search 
optimisation step after an initial reduced parameter 
characterisation.  Particle swarm optimisation was 
demonstrated as an alternative, reducing percentage error by 
approximately a factor of two compared to previously 
published techniques. In this work the pattern search 

optimisation technique provided greater performance than 
PSO while requiring an order of magnitude less CPU time.  
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