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The spin of a charged semiconductor quantum dot (QD) coupled to an optical cavity is a promising
candidate for high fidelity spin-photon interfaces; the cavity selectively modifies the decay rates of
optical transitions such that spin initialisation, manipulation, and readout are all possible in a single
magnetic field geometry. By performing cavity QED calculations, we show that a cavity with a sin-
gle, linearly-polarised mode can simultaneously support both high-fidelity optical spin initialisation
and readout in a single, in-plane (Voigt geometry) magnetic field. Furthermore, we demonstrate
that single mode cavities always outperform bi-modal cavities in experimentally favourable driving
regimes. Our analysis, when combined with established methods of control in a Voigt geometry field,
provides optimal parameter regimes for high-fidelity initialisation and readout, and coherent control
in both cavity configurations, providing insights for the design and development of QD spin-photon
interfaces.

I. INTRODUCTION

Experiments have demonstrated that the spin states
of single electrons confined to quantum dots (QDs) are
long-lived [1, 2], with coherence times exceeding µs [3, 4],
making them promising candidates for an efficient light-
matter interface [5]. Furthermore, quantum logic gates
may be implemented on ps timescales using ultra-fast
optical manipulation of spin-states [3]. Combined, these
disparate timescales allow many gate operations to be
performed within a single lifetime of the charge state.
However, for spin-photon interfaces to be used in opti-
cal quantum technologies, such as generating entangled
photonic states [6–9] and spin-photon logic [10, 11] re-
quired for many long-range secure quantum network pro-
tocols [12, 13], it is necessary to prepare, control, and
readout the single spin states with a high fidelity.

Ordinarily, combining optical spin control and read-
out requires the use of orthogonal magnetic field geome-
tries: spin control relies on the in-plane Voigt geome-
try (Fig. 1a) to provide an effective coupling between
the spin ground states [14], while read-out uses cycling
transitions [15] in an out-of-plane Faraday field to pro-
duce a detectable signal [16]. However, in certain cir-
cumstances, spin read-out can be achieved in the Voigt
geometry by coupling to a nanophotonic structure [17–
19], which introduces a quasi-cycling transition through
a polarisation-dependent Purcell enhancement of the op-
tical transitions.

In this work we investigate the impact single- and bi-
modal cavities have on the spin initialisation and read-
out fidelity for a negatively charged QD in a Voigt ge-
ometry magnetic field. We show that, depending on the
linewidths and detunings of the cavity modes, a bi-modal
cavity may enhance all optical transitions present in a
Voigt geometry field, reducing the effectiveness of the

quasi-cycling transition. While careful selection of the
bi-modal cavity parameters may mitigate these effects,
the additional enhancement of the QD transitions result
in different cavity parameter requirements for initialisa-
tion and readout. Thus, when coupled to a bi-modal
cavity we show there is no single set of cavity parameters
that simultaneously results in both a good optical initial-
isation and readout fidelity. Furthermore, we show that
single-mode optical cavities outperform bi-modal cavities
for both optical initialisation and optical readout across
all parameter regimes studied, and can be used to achieve
an optimal fidelity in both stages using a single set of cav-
ity parameters.

The paper is organised as follows: in Section II we
introduce the background theory for a charged QD in-
teracting with a single- or bi-modal cavity. Sections III
and IV investigate how the two cavity configurations im-
pact spin initialisation and readout respectively in isola-
tion. We then discuss the best cavity configurations for
initialisation and readout in tandem in Section V.

II. BACKGROUND THEORY

In the absence of any applied magnetic fields, a sin-
gle electron confined to a QD possesses a spin degree of
freedom with two degenerate ground states {|↑〉z , |↓〉z}
defined along the QD growth (z) axis, which are chosen
to have zero energy. Optically exciting the QD intro-
duces an exciton, forming two negatively charged trion
states {|↓↑,⇓〉z , |↑↓,⇑〉z} with energy ~ω0. Applying a
Voigt geometry magnetic field to the QD lifts the energy
degeneracy of both the ground and excited spin states,
splitting them by the Zeeman energies ∆e

B = geµBB and
∆h

B = ghµBB respectively (Fig. 1a). Here µB is the
Bohr magneton, ge and gh are the electron and hole ef-
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FIG. 1. (a) An energy level diagram of a negatively charged quantum dot (QD) in an applied Voigt geometry magnetic field.
The degeneracy of the ground and excited eigenstates, written in the basis along the magnetic field axis parallel to the x
axis, is lifted by the Zeeman interaction. All four transitions are equally allowed leading to the formation of two Λ-systems
(1 → 4 → 2 and 2 → 3 → 1). The vertical transitions possess the orthogonal linear polarisation to the diagonal transitions.
(b) A Y -polarised single-mode cavity coupled to the Y−polarised diagonal transitions of a charged-QD in a Voigt geometry
magnetic field. (c) A bi-modal cavity with two orthogonal, linearly polarised cavity modes coupled to a charged-QD in a Voigt
geometry magnetic field. The line style (solid or compound) and colour indicates the transitions to which the cavity mode
couples.

fective in-plane g-factors, B is the applied magnetic field
strength, and we have ignored any diamagnetic shift. For
convenience we redefine the QD spin states in the ba-
sis along the magnetic field axis as {|1〉 = |↑〉x , |2〉 =
|↓〉x , |3〉 = |↓↑,⇓〉x , |4〉 = |↑↓,⇑〉x}. Unless otherwise
stated, we assume an applied field of B = 5 T, which
yields ∆e

B/2π = 35 GHz and ∆h
B/2π = 20 GHz, with

ge = 0.5 and gh = 0.3 [20].
In the Voigt geometry, all four transitions become op-

tically allowed with equal magnitude forming two Λ-
systems coupling each excited state to both ground
states via two orthogonal, linearly polarised transitions
(Fig. 1a). While quasi-cycling transitions are most eas-
ily introduced in the Voigt geometry via coupling to
a cavity with a single, linearly-polarised mode [21–23]
(Fig. 1b), there are many photonic structures, such as
micropillar cavities [24], point-defect PhC cavities [25],
crossed nanobeam cavities [26], and open-access mi-
crocavities [27], that naturally possess two orthogonal,
linearly-polarised modes (Fig. 1c). While such bi-modal
cavities have been used to suppress resonant laser back-
ground in QD single-photon sources [27, 28], there re-
main open questions as to the impact on the orthogonally
polarised transitions necessary for spin initialisation and
readout. Thus in our set-up each of the Λ-systems tran-
sitions can occur through coupling to the free electro-
magnetic vacuum, or via an optical cavity. The latter
is included in the system Hamiltonian HS = H0 + HI ,
where in the laboratory frame (~ = 1):

H0 =
∆e

B

2
(σ22 − σ11) +

(

ω0 −
∆h

B

2

)

σ33

+

(

ω0 +
∆h

B

2

)

σ44 +
∑

λ=X,Y

νλa
†
λaλ. (1)

Here we have defined the spin operators as σij = |i〉〈j|,

and introduced the cavity mode creation (annihilation)

operators a†λ (aλ) with frequency νλ, where λ = X, Y,
denotes the polarisation of the cavity mode. In physical
systems the degeneracy of the bi-modal cavity is often
lifted either by intentional design [26, 29–31] or by fab-
rication imperfections [32, 33], and we therefore assume
the cavity modes are detuned.

Applying the rotating wave approximation to our
Hamiltonian, the light-matter interaction takes a Jaynes-
Cummings form:

HI =
∑

λ=X,Y

gλa
†
λσλ + g∗λaλσ

†
λ, (2)

where gλ is the light-matter interaction strength for the
relevant cavity mode, and we have introduced the col-
lective transition operators σX = σ14 + σ23 and σY =
σ24 + σ13 (Fig 1c). With the above definitions, we can
recover the single Y−polarised mode cavity set-up de-
picted in Fig. 1b by setting gX = νX = 0.

Spin initialisation and readout necessitate coherent
driving of the spin and cavity degrees of freedom re-
spectively. This is included semi-classically in the model
via time-dependent driving terms with frequency ωl.
This leads to a total Hamiltonian of the form HT (t) =

H0 +HI +HQD
D (t) +HC

D(t), where in the dipole and ro-
tating wave approximations the QD driving term may be
written as:

HQD
D (t) = −1

2

∑

λ=X,Y

Ωλ(t)e
iωlt

σλ + h.c.. (3)

Here Ωλ(t) is the time-dependent Rabi frequency for the
relevant polarisation mode. The cavity driving takes a
similar form:

HC
D(t) = −

∑

λ=X,Y

ǫλ(t)e
iωltaλ + h.c., (4)
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where ǫλ(t) is the time-dependent cavity driving
strength. For convenience, we work in a rotating frame
with respect to the laser frequency ωl.

In addition to the unitary dynamics generated by the
Hamiltonian HT(t), there are also loss processes acting
on the cavity-QD system, namely the emission of photons
via the cavity or the electromagnetic vacuum. These are
accounted for through a standard Lindblad master equa-
tion of the form [34]:

∂ρ(t)

∂t
=− i[HT (t), ρ(t)]

+
∑

λ=X,Y

κλ

2
Laλ

[ρ(t)] +
γλ
2
Lσλ

[ρ(t)], (5)

where ρ(t) is the reduced density matrix of the cavity-
QD system, and LO[ρ] = 2OρO† − {O†O, ρ} is the
Lindblad superoperator. Equation 5 captures the emis-
sion of photons in a given polarisation state λ via two
different channels: the first is leakage from the cavity
mode, occurring with a rate κλ; the second is sponta-
neous emission directly from the 4-level system (4LS)
with rate γλ. Throughout this paper we shall assume
that both polarisation transitions have the same life-
time, such that γ−1

λ=X,Y = γ−1 = 1 ns, and in the bi-
modal case we assume the cavity modes have identical
linewidths (κλ=X,Y = κ) such that |gX,Y | = |g| (gX = g,
gY = ig). The effects of pure dephasing are considered
in Appendix A, and are shown to be negligible in most
cases. All calculations presented in this paper were per-
formed using the Python package QuTiP [35].

III. SPIN INITIALISATION

Assuming an initial state with ρjj = 0.5 for j ∈ {1, 2}
and ρij = 0 otherwise, we wish to prepare the system in
the spin state |2〉 using the protocol presented in [36, 37]
and illustrated in Fig. 2a. Initialisation is achieved by
resonantly driving the |1〉 → |4〉 transition using an
X−polarised laser (i.e. ΩX > 0, ΩY = 0), such that
ωl = ω0 + (∆e

B + ∆h
B)/2. The state |2〉 is then popu-

lated by the diagonal |4〉 → |2〉 transition. We choose
to initialise the spin state by driving the vertical rather
than the diagonal transitions as the larger detuning be-
tween the vertical transitions relative to the laser band-
width minimises the off-resonant processes that induce
unwanted spin flips away from the |2〉 target state.

To quantify the initialisation fidelity we use the trace

distance, T (ρ, ̺) = 1
2 Tr

{

√

(ρ− ̺)2
}

, between the pre-

pared (ρ) and target (̺) states [38]. The trace distance
provides a measure of the distinguishability of two given
states using the entirety of the density matrix including
all state populations and coherences. For the pure target
state used in this case (̺ = σ22) this definition is equiva-
lent to the fidelity used in other studies [19, 20, 39]. How-
ever, it may not always be the case that a pure state is
the desired outcome of the initialisation process. Hence

we have opted to use the more general trace distance
as this is often simpler to calculate and provides a true
metric on density matrix space, naturally distinguishing
between coherent superposition and mixed spin states
which would be overlooked if relative spin populations
were used as a measure of preparation fidelity [36, 40–
42]. Using this metric, T (ρ = σ22, σ22) = 0 indicates the
prepared state is indistinguishable from the target state
(unity initialisation fidelity). Conversely, T (ρ, σ22) = 1
indicates the prepared state is orthogonal to the target
state, and is therefore completely distinguishable.

For both the single and bi-modal cavity configurations
we choose the Y -polarised mode to be resonant with the
|2〉 → |4〉 transition (i.e. νY = ω0 + (∆h

B − ∆e
B)/2).

However, when coupled to a bi-modal cavity we leave
the X−polarised cavity mode detuned from the vertical
transitions such that νX = ω0 as this has been shown to
maximise the initialisation fidelity with this cavity con-
figuration [36].

To allow a direct comparison between the two cavity
configurations, we assume spin initialisation is achieved
by directly driving the QD transitions. This differs to
previous work studying spin initialisation with bi-modal
cavities, which use cavity driving rather than direct QD
driving to initialise the spin state [36]. However, both
schemes lead to qualitatively the same behaviour, and
importantly considering only one driving configuration
allows a fair and consistent comparison between the in-
dividual cavity set-ups [43].

A. Steady-State Limit

Using the model in Sec. II, we begin by studying initial-
isation in the steady-state limit with a continuous wave
(CW) driving term (i.e. ΩX(t) = ΩX ∀ t). While this
limit does not accurately reflect experimental procedures
for initialising spin states, the steady-state still provides
an insight into the behaviour of the system and limits the
available parameter space. Figures 2b and 2c show the
calculated trace distance between the prepared steady-
state and target state with a fixed driving strength as a
function of g/κ for a range of cavity linewidths.

The results presented in Fig. 2 show that in the steady-
state limit the inclusion of cavity effects reduces the ini-
tialisation fidelity. For small g this is a result of the
cavity modifying lifetime of the trion states, and thus
the ratio Ω/γ. As the cavity coupling strength is in-
creased the fixed driving strength is no longer optimised
to achieve the smallest trace distance. We therefore find
that for each set of cavity parameters the Rabi frequency
needs to be optimised to minimise the trace distance.
As the cavity-coupled system enters the strong coupling
regime (g ≫ κ, γ) the QD states hybridise with the cavity
modes, fundamentally changing the system eigenstruc-
ture, which leads to a maximally mixed ground state,
where T (ρ, σ11) = T (ρ, σ22) = 0.5. For a bi-modal
cavity set-up we find the steady-state evolves to return
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FIG. 2. (a) A schematic of the initialisation process. The |1〉 → |4〉 transition is coherently driven on resonance (ωl =
ω0 + (∆e

B +∆h

B)/2) transferring the spin population to |2〉 via the |4〉 → |2〉 transition. Off-resonant driving of the |2〉 → |3〉
transition returns the spin population to |1〉. (b), (c) The trace distance between the system steady-state after the initialisation
process and the |2〉 ground state as a function of g/κ when coupled to a Y−polarised single-mode cavity and a bi-modal cavity
respectively. Parameters: B = 5 T, ge(h) = 0.5(0.3), γ−1 = 1 ns, ΩX/2π = 10−3 GHz, νX = ω0 and νY = ω0 + (∆h

B −∆e

B)/2.

0.1 ≤ T (ρ, σ22) ≤ 0.5 depending on the cavity linewidth.
In the limit of the narrowest cavity linewidths, we ex-

pect both cavity configurations to display similar be-
haviour. At these linewidths only the |4〉 → |2〉 tran-
sition experiences a significant Purcell enhancement in
either cavity configuration, with all other optical tran-
sitions sufficiently detuned from the cavity mode to ex-
perience little to no enhancement. This expectation is
borne out in Fig. 2 with κ/2π = 1 GHz. At this cavity
linewidth both cavity configurations return similar trace
distances, with small differences resulting from some non-
zero enhancement of the X−polarised transitions when
coupled to a bi-modal cavity.

With large coupling strengths, we find the bi-modal
cavity outperforms the single-mode cavity, returning
smaller trace distances for 1 GHz < κ/2π < 100 GHz.
At intermediate cavity linewidths, the Purcell enhance-
ment of the |3〉 → |2〉 transition is greater than that of
the |3〉 → |1〉 transition. Thus any population in the
|3〉 state excited through off-resonant driving will pref-
erentially decay back to the desired |2〉 state, providing
additional protection to the prepared state. While the
Purcell enhancement of the |4〉 → |1〉 transition does hin-
der the initialisation process, this effect is less significant
in the limit of infinite driving time. Increasing the cav-
ity linewidth begins to equalise the enhancement of the
transitions away from the |3〉 state, hence the system
tends towards the maximally mixed ground state with
T (ρ, σ22) = 0.5 as in the single-mode case.

B. Finite Pulse Duration

While the limit of infinite driving time provides some
insight into the system behaviours, it does not accurately
reflect the experimental realisation of optical spin initiali-
sation. Any experimentally relevant protocol requires the
initialisation process to occur in a finite time, and is thus

achieved with finite optical pulses rather than CW drive.
Maximising the spin initialisation fidelity in this limit of
finite driving time requires maximising the efficiency and
speed with which the spin population is transferred from
the |1〉 state to the |2〉 state. Thus we now consider the
impact of cavity coupling on the initialisation of the spin
system when driven by a finite optical pulse with either
a square or Gaussian envelope.

As pulsed optical driving is a more accurate representa-
tion of the experimental realisation of optical spin initiali-
sation, we now opt to calculate T (̺, σ22) as a function of
more experimentally accessible parameters, namely the
Purcell factor and cavity linewidth. The combination of
the light-matter coupling strength and cavity linewidth
leads to an enhanced emission rate from the relevant op-
tical transition quantified through the Purcell enhance-
ment FP (λ) = 4|gλ|2/κλγλ when on resonance [25]. We
shall restrict the cavity linewidth and Purcell factor to
1 ≤ κ/2π ≤ 110 GHz and 1 ≤ FP ≤ 40 respectively. This
maintains the Purcell enhancement in a regime that has
been experimentally demonstrated [25], and limits the
cavity quality factors to experimentally achievable val-
ues (on the order of 103−105 for wavelengths in the NIR
and telecommunications bands).

1. Square Pulse

We first examine initialisation with a finite square
pulse with ΩX(t) = Ω(H(t − t0 + ∆τX/2) −H(t − t0 −
∆τX/2)), where H(x) is the Heaviside function, t0 is the
centre of the pulse, ∆τX is the pulse duration, and Ω is
the Rabi frequency of the pulse. For a given set of cavity
parameter combinations, we vary the Rabi frequency of
the pulse in the range 0 ≤ ΩX ≤ 10γ to find the mini-
mum trace distance for each pulse duration ∆τX , leaving
adequate time after the pulse for the trion populations
to fully decay. Figures 3a and 3b show the resulting min-
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FIG. 3. The trace distances after the ini-
tialisation process as a function of: (left:
a,b) the duration of the square driving
pulse minimised with respect to the Rabi
frequency and (right: c,d): the FWHM
of the Gaussian driving pulse minimised
with respect the pulse area when cou-
pled to (top: a,c) a single mode cav-
ity, and (bottom: b,d) a bi-modal cav-
ity. The trace distances were calculated
for a number of cavity parameter com-
binations given in the legends above the
relevant plots. Note the left and right
plots use different scales for the trace dis-
tance. The Rabi frequency was swept
between 0 ≤ ΩX ≤ 10γ, and similarly
for the Gaussian pulse the pulse area
was swept between 0.01π ≤ ΘX ≤ 5π.
The shaded regions indicate trace dis-
tances larger than those achievable in
the absence of any cavity effects when
driving the QD with the respective pulse
types. Parameters: B = 5 T, ge(h) =

0.5(0.3), γ−1 = 1 ns, νX = ω0, and
νY = ω0 + (∆h

B −∆e

B)/2.

imised trace distance as a function of pulse duration for
the single- and bi-modal cavities respectively. The effects
of pure dephasing are discussed in Appendix A, and are
shown to have similarly negligible effects for either cavity
configuration when driving with a square pulse.

Irrespective of cavity configuration, we find a general
trend of decreasing trace distance with increasing pulse
duration. Longer pulse durations both increase the frac-
tion of the |1〉 state population transferred to the excited
state, and, when the pulse duration is longer than the ex-
cited state lifetime, enable the re-excitation of any non-
zero |1〉 population resulting from the decay of the trion
states via the |4〉 → |1〉 and |3〉 → |1〉 transitions. Fur-
thermore, increasing the duration of the driving pulse de-
creases its bandwidth which in turn reduces the strength
of the off-resonant driving of the |2〉 → |3〉 transition that
moves the system away from the target state.

When coupled to a single-mode cavity and driving with
a square pulse (Fig. 3a), we find the Purcell enhancement
of the resonant diagonal transition is the most important
factor in achieving a high initialisation fidelity. For the
majority of the cavity parameter combinations studied,
the effect of the cavity linewidth only becomes signifi-
cant at longer pulse durations, depending on the Purcell
factor. Figure 3a shows that neither the largest Purcell
factor nor the narrowest cavity linewidth studied neces-
sarily produces the best fidelity in the limit of finite pulse
duration. Instead, of the cavity parameter combinations

studied, an intermediate linewidth of κ/2π = 20 GHz and
Purcell factor of FP = 10 produced the smallest trace
distance over the largest range of pulse durations. Max-
imising the initialisation fidelity requires balancing the
rates at which the system is driven to and from the tar-
get state. An intermediate cavity linewidth is required
to avoid the cyclical re-excitation of the |4〉 state that
would occur in the strong coupling regime, and act to
increase T (̺, σ22). However, to limit the rate at which
the system is driven away from the target |2〉 state owing
to the increased spectral bandwidth of the finite pulse,
the Purcell factor must also be limited to minimise the
decay rate of the unwanted |3〉 → |1〉 transition.

Similar results are found when the QD is coupled to
a bi-modal cavity (Fig. 3b). Again the Purcell enhance-
ment of the resonant diagonal transition appears to be
the dominant factor in determining the trace distance as
a function of pulse duration. However, relative to initial-
isation with a single-mode cavity, the calculated trace
distances are larger and require a longer pulse duration
to achieve. In this configuration, we find a Purcell fac-
tor of FP = 40 produces the largest trace distances for
the majority of cavity linewidths studied. For the cav-
ity parameters considered, we find that FP = 10 and
κ/2π = 1 GHz produces the best initialisation fidelity
with pulse durations less than ≈ 0.5 ns while FP = 10
and κ/2π = 20 GHz produces the best initialisation fi-
delity for pulse durations greater than ≈ 0.5 ns.
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Plateaus in the trace distance can also be seen in
Figs. 3a and 3b. These plateaus are artifacts of limiting
range over which the Rabi frequency is swept for each
data point. Driving the system with increasing Rabi fre-
quency naturally results in Rabi oscillations in the system
populations. The edge of each plateau occurs when the
pulse duration is long enough to encompass the next os-
cillation with a lower local minimum than the previous.
These plateaus are not seen at longer pulse durations as
the global minimum in the trace distance as a function
of Rabi frequency usually occurs after two or three oscil-
lations.

2. Gaussian Pulse

We now move on to study initialisation with a Gaus-
sian optical pulse. We define the Gaussian pulse with
polarisation λ = X,Y centered around t0 as:

Ωλ(t) =
Θλ

√

2πw2
λ

exp

{

− (t− t0)
2

2w2
λ

}

, (6)

where Θλ =
∫∞

−∞
dtΩλ(t) is the pulse area defined such

that a pulse with Θλ = π would invert the population of
a two-level system, and wλ is the Gaussian width of the
pulse related to the intensity Full-Width Half-Maximum
(∆τλ) by:

wλ =
∆τλ

2
√
ln 2

. (7)

Following the procedure for the finite square pulse, we
plot the trace distance, minimised with respect to the
pulse area in the range 0.01π ≤ ΘX ≤ 5π, as a function
of ∆τX . Figures 3c and 3d show the results for the single-
and bi-modal set-ups respectively.

Just as with the square optical pulse, we find the trace
distance decreases with increasing pulse duration. From
Figs. 3c and 3d it is clear that spin initialisation with
Gaussian pulses occurs on much shorter timescales than
when using square pulses, with the trace distance be-
ing optimised in tens of picoseconds rather than a few
nanoseconds. Additionally, the trace distances achieved
with a Gaussian pulse are smaller than those achieved
with the shortest square pulses studied (< 1 ns) which are
unlikely to be experimentally accessible. However, the
smallest achieved trace distances driving with a Gaussian
pulse are orders of magnitude larger than those found
when driving with a longer square pulse (> 1 ns). Below
∆τX / 15 ps this is a consequence of the bandwidth of
the driving pulse resulting in a significant spectral overlap
between the driving field and the off-resonant |2〉 → |3〉
vertical transition, which in turn increases the driving of
the system away from the desired state. However, be-
yond ∆τX ≈ 15 ps this overlap is minimised, and thus
the trace distance is governed by re-excitation of popula-
tion that initially decayed into the unwanted ground state

(|1〉). This in turn is limited by the ratio of the decay rate
of the trion states into the |1〉 state and the pulse dura-
tion. Furthermore, attaining these trace distances when
driving with a Gaussian pulse requires the largest Purcell
enhancement for all but the narrowest cavity linewidths
due to the pulse duration being much shorter than the
trion lifetimes, which can prove challenging to realise ex-
perimentally.

We again find coupling the QD to a bi-modal cav-
ity significantly increases the calculated trace distances
after the initialisation procedure. In fact, for some of
the cavity parameters studied for the bi-modal case, the
produced trace distances are comparable to initialisation
with a Gaussian pulse in the absence of any cavity effects.
However, Appendix A shows that when driving with a
Gaussian pulse, spin initialisation with a bi-modal cavity
configuration is the most robust against pure dephasing.

IV. SPIN READOUT

In addition to high fidelity spin initialisation, it is cru-
cial that the cavity structures are also conducive to high
fidelity readout. We therefore study optical spin read-
out for both single mode and bi-modal cavities using the
method first proposed in [17], and demonstrated exper-
imentally in [18]. This readout method uses the spin-
dependent transmissivity or reflectivity of a cavity mode
resonantly coupled to a transition of the QD to deter-
mine its spin state. In contrast to Ref. [17], we choose the
cavity configuration to mirror the set-up used for high-
fidelity spin initialisation, where the cavity mode is cou-
pled to the diagonal transitions. The diagonal |2〉 → |4〉
transition is then weakly probed by a resonant drive via
the Y−polarised cavity mode present in either cavity con-
figuration. If the emitter occupies the |1〉 state the pho-
tons are transmitted, while if the QD resides in the |2〉
state the photons are reflected (see Fig. 4a). By compar-
ing the ratio of photons transmitted versus incident with
a threshold value [17], the state (|1〉 or |2〉) occupied by
the QD can be determined.

The readout protocol is initialised by weakly prob-
ing the Y -polarised cavity mode over some time-interval
[0, τ ], where τ is much longer than the lifetime of the
system. Over this time interval, we set a threshold pho-
ton number k, where if the number of collected trans-
mitted photons is less than k then the qubit state is
|2〉, otherwise it is |1〉. The maximum probability of
a successful readout occurring is then given by R =
maxk(q1p1(k) + q2p2(k)), where qi is the probability of
finding the qubit in state i, and pi is the probability of
getting a correct result using threshold photon number
k. As shown by Ref. [17], for detectors with a dead time
shorter than the interval between detection events, and
in the weak driving limit, the probabilities pi(k) can be
described by Poissonian statistics. This allows the read-
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FIG. 4. (a) A diagram of the spin-readout process. The Y -polarised cavity mode is probed with a square laser pulse and the
QD-state dependent reflectivity/transmissivity is measured. By comparing the collected photon number with a threshold value
the spin state of the system may be determined. (b) and (c) The calculated readout fidelities (R) for a single mode cavity, and
a bi-modal cavity respectively, when driving the Y−polarised cavity mode with a 35 ns square pulse. Parameters: B = 5 T,
ge(h) = 0.5(0.3), γ−1 = 1 ns, ǫY =

√

(0.01× 2g2
Y
), η = 1, νX = ω0 and νY = ω0 + (∆h

B −∆e

B)/2.

out fidelity (R) to be written as [17]:

R(τ) =
1

2
− 1

2

M
∑

k=0

1

k!

(

[N1(τ)]
k
e−N1(τ)

− [N2(τ)]
k
e−N2(τ)

)

, (8)

where M is the optimal threshold value [17]:

M =

⌊

N2(τ)−N1(τ)

ln [N2(τ)]− ln [N1(τ)]

⌋

, (9)

with ⌊x⌋ indicating the largest integer smaller than x,
and Ni is the number of photons emitted from the cavity
mode when the QD starts in the ground state |i = 1, 2〉.
The number of photons emitted can be found by inte-
grating the output flux of the cavity over the duration of
the optical readout pulse [17]:

Ni,λ(τ) = η

∫ τ

0

|Tr [√κλaλρi(t)]|2 dt. (10)

Here τ is the duration of the readout pulse, η is the pho-
ton collection efficiency, and ρi(t) are the density matri-
ces of the system at time t when the QD is initialised
in the ground state |i = 1, 2〉. We also continue to as-
sume both modes of the bi-modal cavity have identical
linewidths such that κλ=X,Y = κ. This readout method
has been demonstrated to work experimentally, produc-
ing R = 0.61 with a cavity linewidth κ/2π = 67 GHz,
an enhancement factor FP = 62, a collection efficiency
η = 4.1× 10−3, and 75 ns pulse duration [18].

Considering a square pulse with a duration of 35 ns
[44], and time-dependent cavity driving strength ǫY (t) =
√

(0.01× 2g2Y ) for t ∈ [0, 35 ns] to remain in the weak-
excitation regime [17], and assuming η = 1, we calculate
the spin readout fidelity for a range of cavity parame-
ters. Fig. 4b and Fig. 4c show these results for a single-
mode and bi-modal cavity respectively. In the case of the

single-mode cavity, we find the readout fidelity is primar-
ily dependent on the Purcell enhancement of the diagonal
transitions, and varies little with respect to κY . This is
because the Purcell enhancement increases the strength
of the quasi-cycling transition required to produce a de-
tectable readout signal, while the cavity linewidth has
little impact on the Purcell enhancement of the resonant
transition being probed. Figure 4b shows FP = 7 gives
R > 90% and FP = 19 gives R > 99%.

In contrast, the bi-modal readout fidelity is sensitive
to both the cavity linewidth and Purcell enhancement
of the optical transitions. The highest readout fidelities
with this cavity configuration are produced with narrow
cavity linewidths and large Purcell factors. The narrow
cavity linewidths ensure the vertical transitions, detuned
from the cavity resonance, are not Purcell enhanced.
This increases the cyclicity of the Λ-systems, which nat-
urally increases the strength of the quasi-cycling transi-
tion probed during the readout procedure. To achieve
R > 99% with a bi-modal cavity requires κ/2π ≤ 9.4
GHz and FP ≥ 19. Note that under these driving condi-
tions, when the cavity parameters are optimised for either
cavity configuration, we find that a collection efficiency of
η ≥ 48% gives R ≥ 99%. Such collection efficiencies have
already been demonstrated in an open-access microcav-
ity system [27]; for planar PhC or nanobeam structures
very high efficiencies could be achieved by direct fibre
coupling [45, 46]. The effects of pure dephasing on the
readout fidelity are shown in Appendix A. We find that,
while increasing the pure dephasing rate increases the re-
quired Purcell factors for both cavity configurations, the
single-mode cavity is more robust against these processes
in the readout stage.
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V. CONCLUSION

By performing full cavity QED calculations, we have
investigated optical spin initialisation and readout for a
QD interacting with either single- or bi-modal optical
cavities. Interestingly, we find that for both initialisa-
tion and readout, a single mode optical cavity outper-
forms the bi-modal cavity over the full parameter regime
studied regardless of the pulse envelope used. This is a
consequence of the bi-modal cavity Purcell enhancing un-
desirable transitions, therefore suppressing desired spin-
flip processes. While these unwanted transitions can be
suppressed for spin preparation, we find that they restrict
the parameter regimes for which high fidelity optical spin
readout can be achieved with bi-modal cavities. Further-
more, this range of optimal readout cavity parameters
(large FP ) does not overlap with the small range of cav-
ity parameters required for optimised spin initialisation
in a bi-modal cavity (small FP ).

In contrast, we have shown a near unity readout fidelity
is possible with a single-mode cavity across the vast ma-
jority of the cavity parameters studied. In the single
mode configuration with experimentally achievable [47–
49] cavity parameters (κ/2π = 20 GHz, FP = 10), we
find an initialisation trace distance T (ρ, σ22) = 1.3×10−4

is achievable with a 3 ns square optical pulse, whilst a
readout success probability of R = 0.95 is possible with
a 35 ns optical pulse. Increasing the Purcell factor to
FP = 19 increases the readout success rate to R = 0.99
while maintaining an initialisation trace distance on the
order of 10−4. For a bi-modal system using the same
parameters, a comparable initialisation trace distance of
T (ρ, σ22) = 2.2 × 10−4 is achievable. However, the cor-
responding readout success rate is reduced to R = 0.88.
In the parameter regimes studied here, no single set of
bi-modal cavity parameters simultaneously allow for high
fidelity spin initialisation and readout with finite optical
pulses.

These results suggest that to realise a high fidelity
spin-photon interface, a single linearly-polarized cavity
mode providing a modest (∼ 20) Purcell enhancement
is the optimal configuration. In addition, further calcu-
lations presented in Appendix A demonstrate that this
parameter regime is also robust against significant levels
of pure dephasing, illustrating the potential to achieve
high performance spin-photon interfaces in real physical
systems. For inherently bi-modal cavities such as mi-
cropillars or point-defects in PhCs, our analysis suggests
that there would be significant benefit in modifying de-
signs to induce a mode splitting much larger than the
cavity linewidth (e.g. elliptical micropillars [28]). We
believe that these insights and methods will contribute
to the development of high fidelity spin-photon interfaces
that meet the stringent requirements of future optical
quantum technologies.

FIG. 5. The calculated trace distance between the state pre-
pared by the initialisation process and the target state min-
imising with respect to the driving strength when driving with
a (left: a,c) Square pulse or (right: b,d) Gaussian pulse, and
coupled to a (top: a,b) single-mode or (bottom: c,d) bi-modal
cavity for different pure dephasing rates indicated in the leg-
end in (a) using the cavity parameters that minimise the trace
distance in the absence of pure dephasing processes. Param-
eters used: γ−1 = 1 ns, (a,c) κ/2π = 20 GHz, FP = 10, (b)
κ/2π = 40 GHz, FP = 40, (d) κ/2π = 20 GHz, FP = 40.
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Appendix A: Pure Dephasing

Thus far we have assumed that the trion states are life-
time limited. However, in physical systems elastic pro-
cesses will occur that preserve the spin populations, but
reduce their coherence. We therefore also study the effect
of pure dephasing of the trion states on the spin initial-
isation and readout processes when driving with a finite
duration pulse. We account for pure dephasing through
the addition of further Lindblad terms,

∑

j=3,4

Γ

2
Lσjj

[ρ(t)], (A1)

in the master equation. Here Γ is the pure dephasing
rate, and LO[ρ] = 2OρO† − {O†O, ρ} is the Lindblad
super-operator.
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FIG. 6. The calculated spin readout success probabilities
when coupled to a (left: a,c) single-mode or (right: b,d) bi-
modal cavity when the 4LS experiences pure dephasing with
rates (top: a,b) Γ = γ and (bottom: c,d) Γ = 10γ. Param-
eters used: B = 5 T, ge(h) = 0.5(0.3), γ−1 = 1 ns, ǫY =
√

(0.01× 2g2
Y
), η = 1, νX = ω0 and νY = ω0+(∆h

B −∆e

B)/2.

1. Spin Initialisation

To study the influence of pure dephasing in the op-
tical initialisation process we follow the same procedure
presented in Sec. III, sweeping the duration of the given
optical pulse and minimising the trace distance with re-
spect to the Rabi frequency or pulse area. However, we
now only consider the combination of cavity parameters
that produced the smallest trace distance in the absence
of pure dephasing for a given pulse envelope, and instead

plot the calculated trace distances for a number of pure
dephasing rates.

Figure 5 shows that when Γ ≤ γ pure dephasing has
a minimal impact on the calculated trace distances after
the initialisation process for any combination of driving
pulse envelope and cavity configuration. For Γ ≫ γ,
Fig. 5 shows pure dephasing significantly increases the
calculated trace distances. For all combinations studied
the divergence between the traces distances calculated
neglecting and including pure dephasing increases with
increasing pulse duration. However, while producing the
largest minimised trace distance, optical spin initialisa-
tion with the combination of a bi-modal cavity and Gaus-
sian pulse drive appears the least susceptible to the influ-
ence of pure dephasing. The Purcell enhancement of all
four optical transitions, combined with the fast optical
driving, work to reduce the relative impact of pure de-
phasing mechanisms by minimising the time the system
spends in the excited states. Nevertheless, we note that
for all configurations, small trace distances are achievable
even in the presence of significant pure dephasing.

2. Spin Readout

To study the impact of pure dephasing on the spin
readout process we calculate the readout success proba-
bility for two pure dephasing rates, Γ = γ and Γ = 10γ.
Figure 6 shows the results when coupled to a single-mode
or bi-modal cavity. When coupled to a single-mode cav-
ity, Figs. 6(a) and (c) show the readout process is ro-
bust against pure dephasing mechanisms. Even at the
largest pure dephasing rate studied, R > 99% remains
achievable for a large range of cavity linewidths albeit at
a larger threshold Purcell factors compared with Γ = 0
(Fig. 4). However, while a similar result is found for
Γ = γ when the 4LS is coupled to a bi-modal cavity, at
Γ = 10γ we find no bi-modal cavity parameter combina-
tions that can produce R > 99%.
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