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Abstract
Humans and other animals often follow the decisions made by others because these are indicative of the quality of possible
choices, resulting in ‘social response rules’, that is, observed relationships between the probability that an agent will make a
specific choice and the decisions other individuals have made. The form of social responses can be understood by considering
the behaviour of rational agents that seek tomaximise their expected utility using both social and private information. Previous
derivations of social responses assume that agents observe all others within a group, but real interaction networks are often
characterised by sparse connectivity. Here, I analyse the observable behaviour of rational agents that attend to the decisions
made by a subset of others in the group. This reveals an adaptive strategy in sparsely connected networks based on highly
simplified social information, that is, the difference in the observed number of agents choosing each option. Where agents
employ this strategy, collective outcomes and decision-making efficacy are controlled by the social connectivity at the time of
the decision, rather than that to which the agents are accustomed, providing an important caveat for sociality observed in the
laboratory and suggesting a basis for the social dynamics of highly connected online communities.
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Significance statement

Many animal populations are undergoing rapid declines in density and diversity resulting from climate change and habitat
destruction. At the same time, human societies have entered a new era of global connectivity through ubiquitous tele-
communications and social media. As a result, the social environment for both human and animal communities is changing
dramatically. Predicting the likely consequences of these social changes is vital for understanding the resilience of these
communities in the future, and such predictions rely on understanding what individual animals and humans are seeking to
achieve through their social interactions. In this paper, I show how the behaviour of agents adapted to succeed in a particular
social world is likely to change when the number of available social connections increases or decreases. The results of this
study suggest that the welfare of all social communities depends on careful stewardship of social connections. Animal
populations must be maintained at densities high enough to effectively utilise social information, while human societies need
to adapt intelligently to rapid increases in social connectivity.
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Introduction

Living in groups provides many advantages to social ani-
mals (Krause and Ruxton, 2002), including the opportunity
to make use of ‘social information’ to improve the quality of
decision-making (Ward et al., 2011; Wolf et al., 2013).
Choices made by others are often a useful indicator of which
option is best for oneself; if one trusts that others are acting
rationally (Mann, 2018), and that they have similar pref-
erences to oneself (Mann, 2020), then their decisions
provide valuable clues about the quality of different options.
However, when others are also attending to each other this
can cause information cascades (Anderson and Holt, 1997;
Bikhchandani et al., 1992), rendering all but a few decisions
meaningless as sources of information. A crucial factor
likely to determine how individuals learn from observing
each other is therefore the social connectivity of the group,
who each individual can observe and respond to. Previous
research has investigated how rational agents make use of
social information (Arganda et al., 2012; Mann, 2018, 2020;
Karamched et al., 2020; Pérez-Escudero and De Polavieja,
2011) but these studies have focused on groups in which
decisions constitute ‘common knowledge’ (Aumann,
1976), whereas in real groups and societies agents typi-
cally observe only a subset of other individuals. For ex-
ample, visual occlusion by other individuals can restrict fish
to observing a small subset of other group members (Poel
et al., 2021; Rosenthal et al., 2015; Strandburg-Peshkin
et al., 2013); social relationships in bird populations may
form a sparse but connected network across broad geo-
graphical regions (Psorakis et al., 2015); and historically
most human societies were characterised by sparse social
connections relative to the total population (Apicella et al.,
2012; Dunbar, 1998). As such, evolved social behaviour is
likely to be explicable as an adaptive response to a social
environment characterised by sparse connectivity.

Understanding how the structure of the social environ-
ment shapes the way that individuals interact is of critical
importance due to rapid changes to this structure in both
human and animal populations (Bak-Coleman et al., 2021;
Fisher et al., 2021). One effect of large scale loss of animal
abundance (Gerardo et al., 2020; Wagner et al., 2021) is to
reduce the number and diversity interactions between con-
and hetero-specifics. How animals individually and col-
lectively respond to this social change will be a key de-
terminant of their robustness to climate change and habitat
destruction. Human societies have also been subjected to
waves of dramatic change in the social landscape, the most
recent of which is the rise of social media and ubiquitous,
instant global connectivity. Each step change in commu-
nications technology has had profound social consequences
(Eisenstein, 1980; McQuail, 1977) to understand the pos-
sible implications of the latest communications revolution

one must identify the factors that determine how people
exchange social information and extrapolate these to de-
termine the collective consequences of changing social
connectivity (Fisher et al., 2021).

Learning on social networks is a well-studied phe-
nomenon, with many theoretical treatments. The De Groot
Model DeGroot (1974) and the Voter Model Holley and
Liggett (1975) present the canonical examples, and the
majority of subsequent treatments have followed these by
assuming that agents update their opinions based on those of
their social connections according to heuristic rules that are
specified in advance, such as adopting the majority or
average opinion of those in the social neighbourhood.While
this permits precise analysis of the resulting opinion dy-
namics, the conclusions of such models hinges on the
validity of the specified update rules, which must be jus-
tified either intuitively or empirically, rather than with re-
spect to a theory of what the agents are seeking to achieve
through their decisions.

An alternative to heuristic models is to imbue agents with
goals, through utility functions, and the ability to make
rational decisions through statistical inference. Sequential
decision-making based on Bayesian rational decision theory
is a paradigm for understanding the mechanisms of col-
lective decision-making through such inference in both
human and animal groups. Within social science (particu-
larly economics), research has primarily focused on the
efficacy of individual and collective decisions by rational
agents under a variety of different scenarios (Bikhchandani
et al., 2021). This research usually takes agents to be ra-
tional under the strong assumption that individuals are
aware of the full details of the context in which they make
the decision. Under this assumption, researchers often seek
to determine properties of collective decision-making in
large groups (n → ∞), permitting formal mathematical
answers to questions such as the conditions under which
information cascades will occur (Anderson and Holt, 1997;
Bikhchandani et al., 1992) and whether the majority of
agents will decide correctly (Acemoglu et al., 2011;
Bikhchandani et al., 1992; Mossel et al., 2015). Closely
related to the current study, Acemoglu et al. (2011) in-
vestigated sequential decision making by individuals in
social networks that determine which other agents they can
observe and identified conditions under which agents either
are or are not guaranteed to converge to the correct decision.
In particular, they show that convergence to the correct
decision is guaranteed when agents’ private beliefs are
unbounded (an agent may receive arbitrarily strong private
signals), but otherwise convergence depends on the network
topology – a result that is further extended by Mossel et al.
(2015). However, these theorems strictly pertain only to the
limiting behaviour of very large social networks, and
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depend on the assumption that agents hold correct beliefs
regarding the structure of the social world and how other
agents will respond to information, an assumption that may
not hold under conditions of rapid social change or dis-
placement to a new environment.

In animal biology, a greater focus has been placed on
identifying the ‘interaction rules’ that specify the proba-
bility that a focal individual will make a specific decision
conditioned on the choices made by other animals (typi-
cally con-specifics) within the group (Arganda et al., 2012;
Mann, 2018, 2020, 2021; Pérez-Escudero and De Pola-
vieja, 2011). Of particular interest is the goal of deriving
theoretically motivated interaction rules that closely match
empirical observations from collective decision-making in
animal groups, whether in the laboratory Arganda et al.
(2012); Kadak and Miller (2020); Miller et al. (2013);
Pérez-Escudero and De Polavieja (2011) or the field Farine
et al. (2014). As such, this research typically prioritises
identifying what can be observed in social decision-
making over establishing theoretical bounds on
decision-making performance. In pursuit of this goal, past
modelling has generally considered group sizes consistent
with experimental research, often below 10 individuals
and rarely above 100, rather than deriving results for the
limiting case of very large group sizes. In this context,
most models have made the assumption, often implicitly,
that each individual within the group can observe all other
group members and their decisions, including the order in
which those decisions were made. Recent work, however,
has shown how agents can respond optimally to highly
specific forms of restricted social information, such as the
aggregate number of previous agents selecting each option
(Mann, 2021).

Of special interest from a biological perspective is the
question of how variation in the observable behaviour of
individuals and groups can be explained through variation
in context such as the quality of environmental information
(Mann, 2018), degree of alignment between individual
preferences (Mann, 2020) or changes to the overall risk
level of the choices available (Pérez-Escudero and De
Polavieja, 2017). A distinguishing feature of the biological
approach has been the consideration when investigating the
effect of changing these model parameters that agents may
remain adapted to a previously established context (Mann,
2018, 2020; Pérez-Escudero and De Polavieja, 2017), with
particular consideration as to how animals are likely to
behave in the laboratory as opposed to in a the natural
environment (Mann, 2018).

In this paper, I take a primarily biological approach to the
sequential decision-making problem, characterising the
observable features of the interactions between agents who
act rationally based on expectations originating from their
adaptation to habitual conditions. I extend previous bio-
logically motivated models (Mann, 2018, 2020, 2021) by

considering agents that live on a random network, such that
each individual can only observe the decisions made by a
limited number of other group members: that subset of the
group to which it is connected. I identify the optimal
decision-making rules for agents inhabiting such networks,
and in particular, I focus on the form of those rules in the
case where the social network is sparse, corresponding to
the biologically relevant examples given above. In this
context, I explore how the form of the resulting interaction
rules depend on the habitual environmental and social
parameters controlling the reliability of private information
and the typical alignment of preferences to which indi-
viduals are adapted. I then investigate the collective con-
sequences of those individual interactions in groups of
varying sizes and show how the characteristics and efficacy
of collective decisions change when the connectivity of the
group is varied over timescales that do not allow for full
adaptation, with a discussion of the implications of these
results for both animal and human communities.

Model

I consider a group of n agents sequentially choosing be-
tween two options, A and B. The true utilities of A and B are
unknown by the agents and may differ between agents; for
agent i these are denoted as UA,i and UB,i, and I define the
difference between these utilities as xi ≡ UA,i � UB,i (Mann,
2018, 2020). Agents are assumed to be rational decision-
makers who seek to maximise the expected utility of their
decision Von Neumann and Morgenstern (2007) based on
the total information I that they have.

Pði→AÞ ¼
�
1 if Eðxi j IÞ> 0
0 otherwise

(1)

Agents estimate the value of xi based on both private
information received from the environment and social in-
formation in the form of observed decisions by other agents.
Following previous work (Mann, 2018, 2020, 2021), agents
start with normally distributed prior beliefs over xi, with
zero mean (no prior information in favour of A or B) and
unit variance (setting the arbitrary scale of utility)

pðxiÞ ¼ fðxiÞ, (2)

where f(�) is the standard normal probability density
function. Alignment between agents’ preferences are rep-
resented by the covariance of utility differences, defined as
cov(xk, xl) = ρ for any two different agents k and l.

Each agent receives private information, Δi, from the
environment that represents a noisy signal of the true value
of xi

pðΔi j xiÞ}fððxi � ΔiÞ=ϵÞ, (3)
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where ϵ controls the reliability of this private information.
Given social information, s, agent i forms a posterior belief
about the value of xi by combining its prior, its private
information and the social information

pðxi j Δi, sÞ } pðxiÞpðΔi j xiÞPðs j xiÞ, (4)

where the private information and social information are
independent conditional on the value of xi. In the context of
this model, social information s constitutes an ordered
sequence of previous decisions observed by the focal agent
prior to making its own decision. The effect of social in-
formation s on the decision of agent i is therefore deter-
mined by the detailed structure of P(sjxi) – the probability
that this social information would be observed conditioned
on the value of xi. If the observed social information is more
probable conditioned on high values of xi, agent i will
accordingly adjust its belief in favour of option A and vice
versa, weighing this against its private information Δi.

In judging the social information it observes, a rational
agent must recognise that this information is potentially
incomplete, since not all other individuals may be observable.
That is, the social information the focal agent observes, s, is a
subset of the full sequence of past decisions, c. Those that the
focal agent can observe may in turn have been influenced by
each other, or by further, non-observed individuals. In this
paper, I assume that each agent observes any other with a
fixed probability q, and this set of observation relations thus
forms a random directed network that may range from fully
connected (q = 1), where all agents observe each other, to
sparse (q � 1), where each agent only observes a small
subset of the overall group. I assume that in any given group,
agents are habituated to a specific social connectivity qhabitual,
whether by experience or evolutionary adaptation, under
which their behaviour is optimised. That is, they act so as to
maximise their expected utility, with that expectation being
conditioned social connectivity remaining at this habitual
value. This may differ from the true connectivity at the time
behaviour is observed, qactual, as a result of social or envi-
ronmental changes that alter the connectivity more quickly
than adaptation can occur, leading to potential changes in
behaviour that may not be optimal for the new context.

The assumption above that agents interact with a fixed
probability implies that the network of interactions forms an
Erd}os-Renyi random graph. This is a strong assumption, but
necessary for the mathematical treatment here. It excludes
explicit treatment of, for example, spatially organised
groups or clustered social networks. In the discussion
section, I elaborate on how these might be combined with
results from fully connected networks to consider the likely
behaviour in real groups.

An optimal decision-making rule within this model is
one that provides a unique decision (A or B) for any
combination of private information (Δi) and social

information (s), such that the individual maximises the
expected utility of their choice, given the conditional ex-
pectation of xi

Εðxi j Δi, sÞ}
Z ∞

�∞
xipðxiÞpðΔi j xiÞPðs j xiÞdxi: (5)

Therefore, the appropriate decision rule is as follows:

Pði→AÞ ¼
8<
: 1 if

Z ∞

�∞
xipðxiÞpðΔi j xiÞPðs j xiÞdxi > 0

0 otherwise

(6)

Equation (6) implies that there is a critical threshold Δ∗
s ,

associated with any given social information (as observed
by the agent), such that agent i will choose A if and only if
Δi >Δ

∗
s . From the perspective of a rational agent, decisions

are fully determined by the value of their private infor-
mation relative to the appropriate threshold specified by the
social information they observe. However, when consid-
ering the response of an agent to social information as seen
by an external observer, both the private and social in-
formation they observe is unknown. This results in un-
certainty in the decision the agent will make conditioned
on a given set of social information as seen by the external
observer, c, such that the response to this social infor-
mation can be characterised by an apparently stochastic
decision rule

Pði→Aj cÞ ¼
X
s2S

P
�
Δi >Δ

*
s

�
Pðs j cÞ, (7)

where the summation is over the set, representing all
possible full sequences of past decisions. When considering
the response of an agent to specific social observations, we
may choose to assume that we know which social infor-
mation it has observed. In this case, we can collapse the
summation to consider only one observed sequence, s:

Pði→Aj sÞ ¼ P
�
Δi >Δ

∗
s

�
: (8)

More details on the mathematical structure and deriva-
tion of optimal decision-making rules is given in the
Methods section, and a full list of model parameters and
definitions is given in Table 1.

Results

Effect of sparse connectivity on optimal
social response

I first derived in full the optimal decision-making rule for
agents in a group of 10 identical individuals (ρ = 1), se-
quentially choosing between two options A and B, with
varying degrees of habitual connectivity, qhabitual.
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Specifically, I consider cases where agents observe 90% of
other decisions (qhabitual = 0.9), 50% (qhabitual = 0.5) and 10%
(qhabitual = 0.1) on average. To characterise the optimal be-
haviour, I mapped the probability that a focal agent will select
option A conditioned on the number of previous individuals
that it observes to have chosen A or B (nA and nB, respec-
tively), assuming that (unknown to the decision-maker) the
two options are in fact identical (x = 0). This probability is
shown for the three cases in Figure 1 panels A (qhabitual = 0.9),
B (qhabitual = 0.5) and C (qhabitual = 0.1). Panel A (high
connectivity) shows a pattern of social response very similar
to the previously derived case of full connectivity (Mann,
2018). In panel B (intermediate connectivity), the social
response is stronger (greater probability to follow the ma-
jority) and in panel C (low connectivity) stronger still – agents
adapt their strategy to attend more strongly to social infor-
mation when it is limited. As the connectivity is decreased,
the contour lines of equal probability also transform from a
radial pattern (panel A), which maps to a proportional dif-
ference between nA and nB, to a parallel pattern (panel C) that
more closely maps to an absolute difference.

More insight into the form of the social response is
gained by conditioning on those cases in which the most
recent observable decision-maker selected option A, shown
in panels D–F. Previous work has shown that the most
recent decision can be more important than all other social
cues when agents can observe all previous decisions (Mann,
2018, 2020). In the case of high connectivity (panel D), this
conditioning indeed makes a large difference to the prob-
ability for the focal agent to choose A. As connectivity is
decreased, the effect of this most recent decision diminishes,

and in the case of sparse connectivity is negligible (panel F),
showing that the agents in this case respond only to ag-
gregate quantities (nA and nB) and effectively ignore the
ordering of previous decisions.

Panels G–I show the social response projected onto a
single dimension: the absolute difference nA � nB. Grey
points indicate the probability conditioned on each potential
sequence of past decisions, while red points indicate the
average of these (weighted by the probability of the se-
quence arising) for each possible value of the difference.
This shows that the initially sequence-dependent response
in panel G transforms to depend only on the quantity nA �
nB when the connectivity is lowered (panels H–I).

The collective consequences of these decision rules can
be quantified by the total number of agents that ultimately
select option A, NA (upper-case N will in general denote
actual numbers of agents making a decision, while lower
case n denotes the number observed by an agent). Here, one
can distinguish between two possible scenarios. The first is
a collective decision made under the conditions of social
connectivity the agents are optimised for (qactual = qhabitual).
This is shown in panels J-L, with a tendency towards
consensus (NA = 10 or NA = 0) in the case of high con-
nectivity (panel J), which decreases in line with decreasing
connectivity. Although agents optimised for low social
connectivity have a stronger response to the other agents
they can observe (see above), this does not compensate for
the overall reduction in social information, so agents op-
erating with low connectivity are much less likely to all
select the same option (panels K–L). This pattern reverses,
however, if the decision is made under a different regime,

Table 1. Definitions of model parameters.

Parameter Definition

UA,i, UB,i True utility of options A and B for agent i
xi Difference in utilities between the options A and B for agent i: xi = UA,i � UB,i

z Average utility difference across all agents
ρ Correlation in utility differences for any pair of agents
Δi Private signal received by agent i
ϵ Scale of noise in private signals
Ck The decision made by the kth agent in a sequence (1 for A, �1 for B)
c A full sequence of past decisions by other agents
s A partial sequence of past decisions as seen by a focal agent
Δ∗
s The threshold applied to private signals by an agent that observes a sequence of past decisions s, such that the agent chooses

A if Δi >Δ∗
s

qhabitual Habitual connectivity: The probability a focal agent can observe any other individual in the habitual environment
qactual Actual connectivity: The probability a focal agent can observe any other individual in the current environment
NA, NB Actual number of agents that have chosen A and B
nA, nB Number of agents that have chosen A and B as observed by a focal agent
Δ∗
w The threshold applied to private signals by an agent that observes a difference w = nA� nB in the number of previous choices

for A and B, such that the agent chooses A if Δi >Δ∗
w
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where all agents can observe each other (qactual = 1), but
continue to apply the behavioural rules that are optimised
for their habitual conditions. As shown in panels M–O,
under this treatment, agents optimised for conditions of low
connectivity are more social, resulting in a greater degree of
group consensus. Such a change in social connectivity
might result from, for example, translating animals into a
laboratory environment that lacks the usual sources of
sensory occlusion that the wild habitat contains, or by
placing human subjects in a computer-mediated environ-
ment that reveals the decisions of all group members in a
way that would not occur in more naturalistic settings.

Behaviour of large, sparsely connected groups

To analyse the behaviour of larger group sizes that char-
acterise many animal and human societies, one can utilise
the emergent property of sparsely connected groups re-
vealed above: the dependence of the social response solely

on the absolute difference nA� nB. This property means that
an optimal decision rule for agents in a group of size n can
be characterised by responses to 2n + 1 distinct possible
values of nA � nB, and this can be further reduced by
applying the symmetry in response to absolute differences
of equal magnitude but differing sign. Using a Monte Carlo
method (see Methods), I derived the optimal decision-
making rule for agents in a group of 101 individuals,
with a habitual connectivity of either qhabitual = 0.01, qha-
bitual = 0.05 or qhabitual = 0.1 (equivalent to a mean degree of
1, 5 or 10). This optimal strategy is illustrated in Figure 2(a),
which shows that the probability for a focal agent to select
option A, conditioned on the value of nA� nB it observes, is
almost identical across the differing levels of habitual
connectivity. I then calculated the probability that an agent
will select option A, conditioned on the difference NA� NB,
where NA and NB refer to the actual number of previous
decision-makers selecting either A or B, not only those that
the focal agent can observe. That is, this probability

Figure 1. Characterising the optimal social information strategy for differing values of social connectivity in a group of 10 agents (other
group sizes give similar results). Each row shows differing perspectives on the social response by agents habituated to a specific level of
social connectivity: qhabitual = 0.9 (top row), qhabitual = 0.5 (middle row) or qhabitual = 0.1 (bottom row). Panels A–C show the probability a
focal agent will choose option A, conditioned on the number of previous decisions for A and B observed by that agent. Panels D–F show
the same, but further conditioned on the most recently observed decision being for A (thus also ruling out instances where nA = 0).
Panels G–I show the social response projected onto one dimension: the difference nA� nB; grey points indicate probabilities arising from
specific sequences, while red points show the mean probability for each value of nA � nB. Panels J-L show the consequence of these
decision rules in terms of the distribution of collective outcomes (total number of decisions for A) under habitual conditions (qactual =
qhabitual, where social connectivity remains at the level the agents are adapted to), while panels M–O show the distribution of collective
outcomes under conditions of full connectivity (qactual = 1) if agents continue to apply the behavioural rules optimised for their habitual
conditions.
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represents that which would be inferred by making a
simple empirical analysis of the proportion of agents
choosing option A based on the number of previous de-
cisions for A and B seen by an external observer who can
observe all decisions but who does not have access to the
network defining which agents can observe each other.
This probability, shown in Figure 2(b), varies strongly with
habitual connectivity. Taken together, the results in panels
A and B indicate that agents in more densely connected
(but still sparse) networks exhibit more sociality by virtue
of increased social connections, rather than as a result of
any difference in how they use that social information. To
see how this is reflected in collective outcomes, I calcu-
lated the probability that a given proportion of agents will
ultimately select option A under each level of habitual
connectivity, under habitual conditions (qactual = qhabitual).
The results in Figure 2(c) show that agents in the more

connected network (qhabitual = 0.1, red line) exhibit a
tendency to consensus, with the peaks of the distribution
near 0 and 100, while those in the less connected net-
works show a distribution that is peaked at 50, indicating
a tendency for the group to split evenly between the
options; when qhabitual = 0.01 (green line) this is barely
distinguishable from a binomial distribution in which
each agent chooses independently. However, the same
three sets of agents, transferred to a new condition with
increased connectivity of qactual = 0.2 (mean degree = 20),
all exhibit identical collective behaviour, with a strong
bias towards choosing the same option (dashed black
line). Finally, I repeated this analysis for actual con-
nectivity levels from qactual = 0.01 (mean degree = 1) to
qactual = 1 (mean degree = 100) and measured the resulting
consensus, defined as |NA � NB|/(NA + NB), once all
decisions have been made. As shown in Figure 2(d),

Figure 2. Characterising the optimal social information strategy in a large (n = 100), sparsely connected network, for agents habituated
to differing connectivity (qhabitual = {0.01, 0.05, 0.1}). (a) Agents adopt a decision rule that depends on the observed difference in the
number of prior decisions between options (nA � nB). This rule is essentially independent of the connectivity to which they are
habituated. (b) When this rule is applied under the habitual conditions, the observable response to the true difference (NA � NB) is
weaker in conditions of lower connectivity. (c) More sparsely connected groups are less cohesive under natural conditions (solid lines),
as measured by the total number of agents choosing one option. Increasing network connectivity to qactual = 0.2 and applying the same
decision rule results in a substantially more cohesive collective outcome that is independent of the habitual connectivity (dashed line). (d)
The degree of consensus (|NA � NB|/(NA + NB)) varies monotonically with the true connectivity of the network and is independent of
habitual connectivity. The solid line indicates the expected consensus for varying actual connectivity; the grey region indicates the 95%
probability region. The dashed lines indicate the expected consensus when agents choose independently.
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group consensus varies strongly and monotonically with
qactual.

Effect of differing preferences

In Figure 3, I show the probability that a focal agent will
choose option A in a symmetric setup when considering
agents, as a function of the value of nA� nB observed by the
agent, while varying group size (n), agents’ preference
correlation (ρ) and environmental noise (ϵ). These results
show that an agent’s predicted response to the observed
social information is essentially invariant to group size
(panel A), but depends strongly on the degree of preference
correlation (panel B) and the environmental noise (panel C).
For any given value of nA � nB, the focal agent is more
likely to follow the majority of previous decisions if ρ or ϵ is
increased. This follows similar results obtained in the case
of a fully connected social network (Mann, 2020).

The binary decision problem studied here was also
considered in Pérez-Escudero and De Polavieja (2011).
There the authors present a derivation for a decision rule
based on an approximation under which other agents are
assumed to have made their choices independently. In the
case of a symmetric choice, they arrive at a decision rule of
the form

Pði→A j nA, nBÞ ¼ 1

1þ S�ðnA�nBÞ, (9)

where S is a sociality parameter that represents the
relative likelihood that another individual will make a
‘correct’ or ‘incorrect’ choice. Since the effect of social
information in this rule also depends on the value of
nA � nB it is natural to compare how that study relates to
this one. In the case of a symmetric choice (xi = 0 "i),
rearranging equation (9) suggests an effective value of
the sociality parameter

S ¼ ð1=Pði→A j nA � nB ¼ 1Þ � 1Þ�1 (10)

where P(i → AjnA � nB = 1) is the probability that agent i
will choose option A, having observed social information
nA � nB = 1 (see Methods).

Figure 3 shows that equation (9) provides a highly ac-
curate approximation to the predicted social response when
agents share identical preferences (ρ = 1). However, sub-
stantial departures from equation (9) are observed when
agent preferences are non-identical (ρ < 1). In these cases,
the probability that an agent will follow the current majority
is always lower than that suggested by equation (9) (with a
value of S given by equation (10)), and this difference is
larger for larger values of |nA � nB|. Deviations from
equation (9) are particularly acute when ρ < 1 and ϵ is small,
representing situations where an agent has highly trust-
worthy private information and cannot assume that others
share the same preferences as itself. Thus, although the
model considered in this paper supports a social response
that depends on nA � nB, as in Pérez-Escudero and De
Polavieja (2011), this must be treated with caution. First,
this approximation is only valid in the case where inter-
actions between agents are sparse. Second, within the set of
functions of nA � nB, the particular form of equation (9) is
only a valid approximation when ρx 1; that is, when agents
can effectively be considered to be identical. Thirdly, this
model highlights that the nA and nB that the focal agent
responds to are the number of decisions for A and B that the
agent itself perceives, which may be different to those
recorded by, say, an experimental observer (cf. Figures 2(a)
and (b)). Thus, statistical efforts to fit equation (9) to ex-
perimental or observational data (see e.g. Eguı́luz et al.
(2015); Farine et al. (2014) as well as examples in Pérez-
Escudero and De Polavieja (2011)) are valid when the
agents under observation habitually inhabit a sparse inter-
action network, when those agents have closely aligned
preferences, and insofar as the recorded social information

Figure 3. Variation of optimal social responses with differing group size n, preference alignment ρ and private information variance ϵ. (a)
Variable nwith fixed ρ = 1 and ϵ = 1, showing that the social response does not depend on group size; (b) variable ρ, with fixed ϵ = 1, n =
100, showing an increasing social response as preference correlation increases an (c) variable ϵwith fixed ρ = 0.5 and n = 100, showing an
increasing social response with increasing environmental noise.The probability given by equation (9) is also plotted in each case (dashed
lines) (dashed lines), with sociality parameter S given by equation (10), which provides a close fit between the two when agents share
identical preferences (ρ = 1), but otherwise consistently over-estimates the probability the follow the majority of previous decisions,
especially for high values of ϵ.
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accurately represents the individuals the focal agent actually
attended to.

Impact of changing connectivity on
individual rewards

The results above show that agents adapted to sparse social
connections will exhibit stronger social responses when
connectivity is increased. What impact will this have on the
rewards the agents are able to extract from the environment?
Naively one might expect that any deviation from the
condition they agents are adapted to will be detrimental, but
that expectation may be deceptive in this case; social
connectivity increases the total social information available
to each agent, and the benefit of this additional information
may outweigh the costs of being adapted to a different social
environment.

I calculated the expected payoff per decision for identical
agents (ρ = 1) adapted to sparse connectivity (habitual mean
degree = 5) in groups of varying size between n = 50 and n =
200 under a range of experimental social connectivities
between qactual = 0.01 and qactual = 1. This expected payoff is
plotted in Figure 4 as a function of mean degree (n� 1)qactual
(panel A) and connectivity qactual (panel B). These results
show that for any group size there is an optimal connectivity,
at which the expected payoff is maximised. This optimal
connectivity varies consistently with group size, such that the
optimal mean degree varies proportionally to the square root
of the group size (panel C), and equivalently the optimal
value of qactual varies in inverse proportion to

ffiffiffi
n

p
(panel D).

That is, in larger groups, the optimal absolute number of
social connections per agent increases, but less than linearly,
such that the optimal proportion of possible social connec-
tions that are actually realised decreases with group size.
Above this optimal value, further increases in connectivity
reduce expected payoffs.

Discussion

In this paper, I derived the optimal use of social information
arising from incomplete observations of the decisions of
other agents. I showed that when such information is suf-
ficiently sparse, rational agents develop a strategy that at-
tends only to the absolute difference between the number of
other individuals that have selected each option, ignoring
both the total number of previous decisions and the order in
which they were made. Exploiting this property to analyse
large groups revealed that the optimal social response is
essentially independent of the degree of social connectivity
the agents are habituated to and behaviour is instead con-
trolled by the connectivity at the time the decision is made.
In particular, greater connectivity leads to increasing con-
sensus among group members. Finally, I showed that

increases in social connectivity are beneficial to sparsely
connected groups up to a critical value of q, increasing the
average payoff of the options individuals choose. However,
sufficiently large increases in connectivity result in ex-
tremely high social consensus that is associated with lower
average rewards.

This model predicts that the number of social con-
nections individuals experience at the time they make a
decision determines the degree of group consensus. This
has practical consequences for the scientific study of
collective behaviour. For example, an animal that lives in
conditions of high sensory occlusion such as muddy water
may respond weakly to local con-specifics simply because
it does not perceive many of them; if translated to an
environment with less occlusion such animals may exhibit
increased apparent social responses without fundamentally
changing how they respond to the other individuals that
they can perceive. While in experiments one might expect
animal or human subjects to adjust somewhat to the new
context (and indeed animal subjects are often given time in
the new environment to acclimatise), this finding provides
an important context for laboratory-based research, es-
pecially since the effect operates in the same direction as
earlier findings that decreased noise in environmental
signals could also increase observed sociality in laboratory
conditions (Mann, 2018).

Where rational individuals experience sparse social
connectivity they are able to treat the decisions of others as
being effectively independent. As long as this assumption
remains valid, more social information, in the form of
additional social connections, is beneficial to a decision-
maker, resulting in a greater average payoff from their
decisions. However, if social connectivity exceeds a critical
value this independence assumption begins to breakdown,
and if agents do not recognise and adjust for this they will
make worse decisions. In this model, this critical value of
social connectivity was found to depend on the square root
of the total group size, such that qoptimal}1=

ffiffiffi
n

p
, giving a

critical mean degree proportional to
ffiffiffi
n

p
. This scaling re-

sembles that found in previous studies of optimal network
structure for collective decision-making Kao and Couzin
(2019), suggesting a common basis in agents applying
decision rules that assume independence between those
others who they observe.

The relationship between connectivity and decision-
making efficacy has profound implications for the wel-
fare and sustainability of animal and human communities.
Under pressure from climate change and habitat destruction,
many animal populations have experienced precipitous
declines. Many of the affected populations are social ani-
mals, and these may depend on social information, for
instance to locate food sources or navigate to seasonal
habitats. Reduction in group size while holding constant the
probability of social interaction between any pair of
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individuals is likely to lead to individuals making poorer
decisions on average (see Figure 4(c)), potentially creating
additional difficulties for populations already under pres-
sure. There is evidence that in some cases animals may seek
to compensate for lost social bonds by creating new con-
nections (Firth et al., 2017), but this may depend on whether
populations are adapted to significant changes in population
size over time. These results suggest therefore that, where
populations are in decline, maintaining the physical cohe-
sion and density of animal groups, so that social connec-
tivity remains at appropriate levels, should be an important
conservation goal alongside wider efforts to promote
landscape connectivity (Doherty and Driscoll, 2018;
Rudnick et al., 2012).

In human societies, a more salient concern is the efficacy
of decision making by individuals exposed to recent in-
creases in social connectivity (Bak-Coleman et al., 2021),
most obviously through social media (Kietzmann et al.,
2011), but also through the ubiquity on online recom-
mendation and reputation systems (Dellarocas, 2003).
These factors serve to increase the number of choices,
decisions and opinions individuals can observe others
making or expressing. The rapidity with which this social
environment has changed for many people, and the time
required to adapt to novel social contexts (Burton-Chellew
and West, 2021), makes it highly plausible that they will
continue to operate with heuristics that are still adapted to
lower levels of connectivity. While some increase in

Figure 4. Average payoff obtained by agents in sparse networks of varying sizes as a function of actual connectivity and mean degree.
Agents in each network are habituated to a connectivity qhabitual = 5/(n � 1) implying a mean degree of 5, though the results are not
sensitive to this factor as long as habitual connectivity is sparse. (a) Mean payoffs increase as mean degree increases in all networks up to
an optimal value, and then fall, with a differing optimal mean degree for different group sizes. The dashed grey lines indicate the average
reward for a single agent without any social information (lower line) and the average reward for an agent that always chooses the
option with greater utility (upper line); (b) Mean payoffs increase with connectivity up to an optimal value and then fall, with a differing
optimal connectivity for different group sizes; (c) The optimal mean degree generating maximum payoffs varies proportionally to the
square root of network size and (d) The optimal connectivity varies inversely with the square root of network size.

10 Collective Intelligence



connectivity may be beneficial, large increases have the
potential to reduce the quality of decision making by all
participants by introducing a high degree of social feedback
that swamps the true quality signals from the environment
rather than amplifying them, such that collective decisions
become highly contingent on variable early decision-
makers (Muchnik et al., 2013; Salganik et al., 2006). A
number of experimental studies have revealed reductions in
collective wisdom when individuals are exposed to the
complete or aggregated opinions of other group members
(Frey and Arnout 2020; Lorenz et al., 2011), but others have
shown improvements under treatments where connectivity
is limited (Becker et al., 2017; Jayles et al., 2021; Navajas
et al., 2018; Kao and Couzin, 2014; Kao and Couzin, 2019).
These apparently contrary findings may be reconciled by
recognising that some additional communication between
agents is beneficial, but that too much can be harmful when
the opinions or decisions of agents become highly corre-
lated in a manner not recognised or accounted for by another
agent observing them.

The potential endogenous reduction in decision-making
efficacy identified above has political implications in an age
of ubiquitous online connectivity, but should also be a
source of concern in an increasingly-connected scientific
community (Mann andWoolley-Meza, 2017). Societies that
have recently experienced large increases in connectivity
may also be more vulnerable to exogenous misinformation
(e.g. Spaiser et al., 2017), as false information can be more
easily amplified throughout the population. In social net-
works that are naturally highly connected, such as small
friendship groups individuals may intuit the correlations
arising from those connections and apply appropriate de-
cision rules (Mann, 2018, 2020, 2021). However, such
correlations may now be induced in wider networks where
they were previously absent as a result of increased con-
nectivity, with the information nonetheless appearing to
come from independent sources to an agent that has not
adjusted to the new social context. It is these cases where
habituation and expectations deviate from reality that are
most ripe for the spread of ‘viral’ opinions. This should
motivate efforts not only to identify and remove obvious
misinformation online, but also to educate citizens in how to
respond to social information in a highly connected world
(Badrinathan, 2021; Bak-Coleman et al., 2022).

Most real-world networks are neither fully connected nor
accurately described by an Erd}os-Renyi network (one in
which all possible social connections occur fixed proba-
bility). Animal groups on the move are generally considered
to be characterised by short-range interactions between
spatial neighbours (Couzin et al., 2002), while social net-
works in both humans and animals typically exhibit sub-
stantial structure such as clusters (a high probability that
people share friends) and hierarchy (such as in a pecking
order). As such, the behaviour of real social groups may

interpolate between that of the sparsely connected random
network considered here, and the behaviour predicted in
fully connected networks (Mann, 2018, 2020). For example,
individuals may treat their local network (such as close
friends or spatial neighbours) with social behaviour ap-
propriate to a fully connected network, while treating more
dispersed social connections, such as passing conversations
with strangers, or online comments, in a manner appropriate
to an Erd}os-Renyi network. As indicated above, it is this
second case where the effect of increasing social connec-
tivity is likely to be observed. It is also plausible that specific
network structures, such as small world networks, may give
rise to behaviour that is not predicted by either of these
scenarios. Future work should therefore consider how to
extend the analysis in this paper to a wider class of social
interaction networks.

Methods

Correlation between agent preferences

The decisions of other individuals are useful information
insofar as they are assumed to share preferences with the
focal agent. Following Mann (2020), I encode the degree to
which individuals’ preferences align via a joint multivariate
normal distribution Nð�, � , �Þ

pðx1, x2, …xnÞ ¼ Nðx, 0, ΣÞ: (11)

where X ¼ ½x1,…, xn�u, 0 is vector of n zeroes, and

Σ ¼

2
664
1 ρ … ρ
ρ 1 «
« ρ
ρ … ρ 1

3
775,

is the covariance matrix, with ρ being the correlation be-
tween the utilities of any pair of agents. Combined with
equation (3), this further specifies a joint multivariate
normal distribution over the true values of x1, …xn and the
observed private information of each individual Δ1, …Δn,
where

covðxk , xlÞ ¼ covðΔk , xlÞ ¼ ρþ δk, lð1� ρÞ
covðΔk ,ΔlÞ ¼ ρþ δk, l

�
1þ ϵ2 � ρ

�
,

(12)

where δk,l is the Kronecker delta function. Throughout this
paper, I assume that agents know or are habituated to the
true value of ρ, and that it is this value that they base their
inferences on.

At this point it is useful to introduce a new variable z,
which represents the mean value of x for all agents. The
reason for doing so is that the various values of xi for all
agents can be described as being distributed independently,
conditioned on the value of z, which thus contains all the
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correlations between agent preferences. One can then re-
write equation (11) as

pðxi j zÞ } f

�
xi � zffiffiffiffiffiffiffiffiffiffiffi
1� ρ

p
	

(13)

pðzÞ } f

�
zffiffiffi
ρ

p
	
: (14)

Bayes’ rule then provides an expression for the distri-
bution of z, conditioned on xi

pðz j xiÞ } f

 
z� ρxiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� ρ2

p
!

(15)

Using this formulation, one can then write down the joint
probability for a set of agents j ≠ i to make private ob-
servations {Δj}, conditioned on the value of xi

p
�


Δj

� j xi
�
}

Z∞
�∞

∏
j ≠ i
f

 
z� Δjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 � ρ

p
!
pðz j xiÞdz

}

Z∞
�∞

∏
j ≠ i
f

 
z� Δjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 � ρ

p
!
f

 
z� ρxiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� ρ2

p
!
dz,

(16)

where the product form inside the integral relies on the
independence of the agents’ private information, condi-
tioned on z. Note that for the special case of ρ = 1, xi = z "i
and the above expression simplifies to

p
�


Δj

� j xi
�
} ∏

j ≠ i
f

�
xi � Δj

ϵ

	
: (17)

Form of social information strategy

Based on the methodological developments in previous
studies (Mann, 2018, 2020, 2021), a social information
strategy associates a real number, Δ∗

s with each distinct
observable state of social information s. This number
represents a threshold, such that if an agent receives private
information Δ>Δ∗

s the agent will choose option A, other-
wise it will choose option B.s

In an optimal strategy, the thresholds Δ∗
s are identified as

those that cause the agent to make rational decisions, that is,
to choose the option that maximises its expected utility,
conditioned on both the private and social information it has
available. This implies that when an agent observes private
information exactly equal to the threshold value, this makes
the expected utility difference between the two options (xi)
equal to zero

0 ¼ E
�
xi j s, Δi ¼ Δ∗

s

�
}

Z∞
�∞

xipðxiÞp
�
Δi ¼ Δ∗

s j xi
�
pðs j xiÞdxi

(18)

In this paper, the distinct observable states of social
information are observed sequences of decisions, s = K1,
…Kk, which are themselves random subsets of the true full
sequence of decisions c = C1, C2, …, Cm, such that k ≤ m.
Given an observed decision sequence s, equation (18) can
be expanded as

0 ¼ E
�
xi j s,Δi ¼ Δ∗

s

�
}

Z∞
�∞

xipðxiÞp
�
Δi ¼ Δ∗

s j xi
�X
c2S

Pðs j cÞPðc j xiÞdxi

(19)

where the summation is over the set S of all possible se-
quences of n� 1 decisions that could have occurred prior to
the focal agents decision.

Observation probability of a decision sequence

Given a true full sequence of decisions, c = C1, C2, …, Cm

and a connectivity parameter q (the probability to observe
any given prior decision), the probability that the focal agent
will observe the sequence s = K1, …Kk is given by

Pðsj cÞ ¼ qkð1� qÞm�kCðs, cÞ (20)

where Cðs, cÞ is the number of distinct decimations of c that
can result in s. To give an example, if the original sequence
of decisions is c = 1, 1, � 1, 1, � 1, the observed sequence
s = 1, 1 can be generated from this in three distinct ways: by
selecting elements 1 and 2, elements 1 and 4 or elements
2 and 4. In contrast the observed sequence s0 = �1, � 1 can
only be generated in one way, by selecting elements 3 and 5.
Hence, in this example, Cðs, cÞ ¼ 3 and Cðs0, cÞ ¼ 1. By
extension then, P(sjc) = 3q2(1� q)3 and P(s0jc) = q2(1� q)3.

Generating probability of a decision sequence

The summation in equation (19) requires calculating the
probability P(cjxi) to generate any possible sequence of
decisions, conditioned on a specific true value of xi. This
quantity can be evaluated by considering the various
contiguous sub-sequences of c: ck = C1, …Ck. Since the
form of the social information strategy specified in equation
(19) specifies a threshold for each of these sub-sequences,
the probability of the full sequence is recursively defined by
product of the probability for each decision within that
sequence, conditioned on those thresholds and the pre-
ceding sequence of decisions
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Pðc j xiÞ ¼ ∏
jcj

k¼1

X
s2S

PðCk j xi, s, ck�1ÞPðs j ck�1Þ, (21)

where the summation is over all the sequences s2 S that the
agent may have observed as a result of the true sequence c,
and |c| is the length (number of decisions) of the sequence c.
The above expression can be further expanded by ex-
pressing the dependence on xi through the average utility
difference z, as in equation (16)

Pðc j xiÞ ¼
Z∞
�∞

∏
jcj

k¼1

X
s2S

PðCk j z, s, ck�1ÞPðs j ck�1Þ

×pðz j xiÞdz,
(22)

where pðz j xiÞ}fðz� ρxi=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� ρ2

p
Þ. This expansion is

useful because the values of the private information ob-
served by each agent are independent conditioned on z. As
such, P(Ckjz, s, ck�1) = P(Ckjz, s) and, with reference to
equation (16), equation (22) can be rewritten as

Pðc j xiÞ ¼
Z∞
�∞

∏
jcj

k¼1

X
s2S

Φ

 
Ck

�
z� Δ∗

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 � ρ

p
!
Pðs j ck�1Þ

×pðz j xiÞdz,
(23)

where Φ(�) is the cumulative normal distribution function.
In this form the product now involves terms that depend
only on the sequence s observed by the agent and not on the
full previous sequence ck�1.

Iterative calculation of thresholds

The formulation above poses a problem, since determining
the value of the threshold Δ∗

s in equation (19) requires
knowing the thresholds associated with all sequences in S,
including Δ∗

s itself. This suggests an iterative approach.
First, all thresholds are set to an initial value of zero: Δ∗

s ¼ 0
for all possible social information s. I then used these initial
values to calculate the sequence-generation probabilities
P(cjxi) (for any given agent identity i), by applying equation
(23). Each threshold is then updated by solving equation
(19) for each Δ∗

s , based on these sequence probabilities.
These steps are then repeated, iterating until the thresholds
reach a stable value that provides a self-consistent solution
to equation (19) for all sequences.

Monte Carlo methods for large groups

On the basis of the results from small groups, I assume
that in sparsely connected groups agents employ a social
information strategy that depends on the difference be-
tween the number of agents they observe to have chosen

A and B. Thus, this strategy associates a threshold Δ∗
w

with every value w = nA � nB that the agent may observe
as the difference between the observed number of de-
cisions for A (nA) and the observed number of decisions
for B (nB)

Given a true sequence of decisions s that contains NA

agents choosing option A and NB choosing B, the proba-
bility that the focal agent observes nA and nB decisions for
each option is given by two independent binomial
distributions

PðnA j NAÞ ¼
 
NA

nA

!
qnAð1� qÞðNA�nAÞ

PðnB j NBÞ ¼
 
NB

nB

!
qnBð1� qÞðNB�nBÞ:

(24)

The resulting distribution for the difference w = nA � nB
observed by the focal agent has no closed form, but can be
evaluated numerically by summation over the values of nA
and nB

Pðw j NA,NBÞ ¼
XNA

nA¼1

XNB

nB¼1

PðnA j NAÞPðnB j NBÞδðnA�nBÞ,w

(25)

where δðnA�nBÞ,w is the Kronecker delta function.
In large groups, exhaustively calculating the proba-

bility to generate every possible sequence of decisions is
infeasible. Instead, I employ a Monte Carlo methodology.
As in the case of small groups, I initialise all thresholds to
zero and based on these thresholds I simulate a number Λ
of candidate decision sequences, with random lengths
drawn uniformly between 0 and n � 1 (since the focal
agent, observing only the difference w, does not attend to
how many previous decisions have been made). The av-
erage utility difference for all agents, z, is drawn from the
distribution given in equation (14), and the actual utility
differences for both the focal agent (xi) and all other agents
in the sequence are then drawn from the distribution
specified in equation (13). Extracting the values of NA and
NB from the generated sequences, and retaining the
samples of xi used to generate them, these sequences
permit the following Monte Carlo approximation to the
expected value of xi, conditioned on the observable social
information w

Eðxi j Δi,wÞ}
Z∞
�∞

xipðxiÞpðΔi j xiÞPðw j xiÞdxi

xð1=ΛÞ
XΛ
λ¼1

xλfððxλ � ΔiÞ=ϵÞPðw j NA, λ,NB, λÞ,
(26)
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where λ indexes the ΛMonte Carlo samples, and P(wjNA,λ,
NB,λ) is given by equation (25). Using this approximation,
one can calculate a value for the threshold Δproposal

w such that

XΛ
λ¼1

xλf
��
xλ � Δproposal

w

��
ϵ
�
Pðw j NA, λ,NB, λÞ ¼ 0: (27)

This value of the threshold, which represents the rational
strategy conditioned on all other agents continuing to apply
the previously initialised threshold values, acts as a pro-
posed value for the update step. To improve convergence I
introduce a learning rate α, such that the updated threshold
ðΔ∗

w, iþ1Þ is a weighted average of the previous value ðΔ∗
w, iÞ

and the proposal defined above

Δ∗
w, iþ1 ¼ αΔproposal

w þ ð1� αÞΔ∗
w, i: (28)

In my analyses, I useΛ = 1000Monte Carlo samples, and
α = 0.1 with 100 iterations to reliably ensure convergence to
a stable set of threshold values.

Expected payoff

I calculated the expected payoff for an individual as follows:
for a given value of utility difference (x – equal for all agents
when ρ = 1) I evaluated the probability that a given number
of agents would choose the option with greater utility, based
on equation (23) for the probability of a given sequence of
decisions and averaging over possible sequences. Agents
choosing the higher reward option are assigned a payoff of
x, such that the expected reward for a randomly-chosen
agent is x multiplied by the expected proportion of agents
selecting the better option. I then integrated over possible
values of x according to the assumed distribution of rewards
in the environment, which corresponds to the agents’ prior
belief about x given in equation (2).
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