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A B S T R A C T
A R T I C L E I N F O
Keywords:
 Improvements to patient care through the development of automated image analysis in pathology are restricted by the
small image patch size that can be processed by convolutional neural networks (CNNs), when compared to the whole-
slide image (WSI). Tile-by-tile processing across the entire WSI is slow and inefficient. While this may improve with
future computing power, the technique remains vulnerable to noise from uninformative image areas.
We propose a novel attention-inspired algorithm that selects image patches from informative parts of the WSI, first
using a sparse randomised grid pattern, then iteratively re-sampling at higher density in regionswhere a CNN classifies
patches as tumour. Subsequent uniform sampling across the enclosing region of interest (ROI) is used to mitigate sam-
pling bias. Benchmarking tests informed the adoption of VGG19 as themain CNN architecture, with 79% classification
accuracy. A further CNNwas trained to separate false-positive normal epithelium from tumour epithelium, in a novel
adaptation of a two-stage model used in brain imaging.
These subsystems were combined in a processing pipeline to generate spatial distributions of classified patches from
unseen WSIs. The ROI was predicted with a mean F1 (Dice) score of 86.6% over 100 evaluation WSIs. Several algo-
rithms for evaluating tumour–stroma ratio (TSR) within the ROI were compared, giving a lowest root mean square
(RMS) error of 11.3% relative to pathologists’ annotations, against 13.5% for an equivalent tile-by-tile pipeline. Our
pipeline processed WSIs between 3.3x and 6.3x faster than tile-by-tile processing.
We propose our attention-based sampling pipeline as a useful tool for pathology researchers, with the further potential
for incorporating additional diagnostic calculations.
Artificial intelligence
Attention
Colorectal cancer
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Introduction

The gigapixel resolution of whole-slide images (WSIs) is a source of
valuable diagnostic information to pathologists. However, there is a world-
wide shortage of pathologists,1 exposing a need for tools to ease diagnostic
bottlenecks when examining WSIs. Artificial Intelligence (AI) algorithms
such as convolutional neural networks (CNNs) can classify tissue types,
but these operate on much smaller images.2

A key problem in applying AI to digital pathology lies in reconciling this
capability with the comparatively vast scale of a WSI. Results obtained in
this work for tile-by-tile classification across the entire WSI area showed
this approach to be prohibitively slow, and noise from less informative re-
gions led to false-positive ‘tumour’ classifications outside the ROI. This
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suggests that a viable AI solution must reduce the volume of information
from the WSI that is irrelevant to making a contextual diagnosis, but none-
theless reliably detect diagnostically important features such as regions of
tumour.

We propose a solution based on attention, a cognitive process in which
features of interest are selected from a complex, high-resolution input. In
human vision, the small central fovea of the eye gathers information from
a small, high-resolution sample of the scene. The brain directs multiple fix-
ations and assembles these into an internal representation of the scene, re-
quiring less bandwidth than processing the whole scene at full resolution.3

Attention-like processes have been used to reduce the rate of false pos-
itives (FP) in diagnostic imaging, in a manner akin to searching for objects
in one’s peripheral vision, before directing high-resolution glimpses to
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examine the targets more closely. One trial,4 studying white matter
hyperintensities in migraine patients, used two cascaded convolutional
neural networks (CNNs) to detect anomalies in brain magnetic resonance
imaging (MRI) scans. The first CNN identified likely disease locations,
and was tuned for high sensitivity at the expense of selectivity. These re-
gions were then analysed with higher selectivity by the second CNN
stage, reducing the rate of false positives.

In digital pathology, attention-like processes have been used to guide
patch-scale AI algorithms towards informative areas of the WSI.5–7 Cruz-
Roa et al8 presented a Quasi Monte Carlo method for estimating the region
of interest (ROI) containing suspected tumour. Their iterative algorithm ini-
tially sampled a uniform pattern of randomly offset patches, using a CNN to
classify these by cell type. Where adjacent samples yielded different cell
classes, additional intermediate samples were then taken. As this process
was repeated, the patch sampling was concentrated near transitions be-
tween cell regions. This gave an efficient estimation of the ROI boundary,
but with less dense sampling across the ROI.

Given an algorithm that can predict the ROI, further diagnostic metrics
can be derived from the image patches within this region. In colorectal and
other cancers, the proportion of cancer cells in relation to background sup-
portive tissue (stroma)—the so-called tumour–stroma ratio (TSR)—is a sig-
nificant predictor of survival9 or recurrence.10 High tumour stroma (>50%)
correlates with increased rates of disease recurrence.11

The patch size used in WSI analysis influences classification accuracy.
There is a trade-off between isolating only the ground-truth sampling
point, and incorporating enough surrounding tissue to provide structural
context.12 Scanning and staining quality are also key to reliable analysis,
and an optimal workflow must include a quality control (QC) step to mon-
itor image quality.13

Our WSI-processing pipeline represents a novel extension of Cruz-Roa’s
algorithm, predicting the ROIwhilst enclosing a uniform sampling distribu-
tion required for accurate TSR calculation.

Material and methods

Data preparation

OurWSI processing pipeline was trained and evaluated using data from
the QUASAR study,14 which investigated the benefits of adjuvant chemo-
therapy in colorectal cancer resection surgery, and explored the use of
TSR as a predictor of survival.11 For this, 2211 slides of haematoxylin and
eosin (H&E) stained tissue were scanned with an Aperio XT system (Leica
Biosystems, Vista, California, USA) at 0.49 μm/pixel, with JPEG 2000 com-
pression at 49.09 compression ratio and a quality factor of 30.11

Pathologists in the QUASAR study annotated each of the resulting 2211
WSIs with the tumour outline (ROI), and tissue classifications for approxi-
mately 50 locations in each WSI. The 50 classification locations were allo-
cated within a 3 mm square box, 1 per WSI, placed for maximum density
of tumour cells and factors such as proximity to the luminal aspect (interior
bowel wall).Within the 3mmbox, the sampling locations were determined
using RandomSpot software byWright,15 which uses a hexagonal grid with
a random starting point to minimise sampling bias.

A subset of 689 WSIs, with mean size 175.3 MB, satisfied QC criteria13

for slide mounting and scanning quality and were used in our work. Anno-
tation data for ROI and tissue class were supplied in eXtended Markup Lan-
guage (XML) files, 1 per WSI for each annotation type. A typical QUASAR
WSI with expert annotations overlaid is shown in Fig. 1.

Fig. 2 shows the 9 image classes used in the ground-truth annotation:
non-informative, tumour, stroma or fibrosis, necrosis, vessels, inflammation,
lumen, mucin, and muscle. The non-informative class represents tissue that
was unclassifiable as other types, whether this is due to blank background
and a lack of surrounding context that would identify the gap as lumen or
vessel, or due to a mix of cell types from which a dominant tissue type
could not be inferred at that location.

Image patches were extracted from the QC-passed WSIs at locations
corresponding to the original RandomSpot sampling points, then saved to
2

sub-directories corresponding to the pathologist’s classification. A
patch size of 224×224 pixels was chosen for compatibilitywith established
convolutional neural network (CNN) architectures. This corresponds to a
square of side 0.11 mm at the 0.49 μm/pixel QUASAR image resolution.
This was found to enclose sufficient structural context around the sample
point to enhance classification accuracy, for example when distinguishing
lumen fromblood vessels or background in imageswhere the central region
of the patch is empty.

Convolutional neural network training and benchmarking

CNNs were trained to classify the QUASAR-derived patches into our 9
tissue classes. Architectures were shortlisted for their performance on gen-
eral challenge image sets such as ImageNet,16 as well as for their popularity
in recent pathology AI experiments.17,18 PyTorch19 CNN implementations
of VGG16, VGG19, AlexNet, DenseNet, GoogLeNet, Inception, MobileNet,
and ResNet, were trained and tested for overall classification accuracy
using the patches. Where available, models pre-trained on ImageNet were
also used. Confusionmatrices were then examined for systematic misclassi-
fication, especially between tumour and stroma.

The randomly initialised CNNs were trained for 100 epochs to ensure
full convergence. ImageNet-pre-trained versions were trained for 25
epochs. The CNNs were implemented in Python v3.7 with PyTorch v1.2.0
and CUDA v10.0.130. We used Stochastic Gradient Descent (SGD) with a
learning rate of 0.001 and momentum of 0.9. Training, test, and evaluation
patch sets were created by randomly grouping the 689 parent WSIs in the
ratio 489:100:100. The training process was executed on NVIDIA V100
Graphics Processing Units (GPUs) on the Advanced Research Computing
4 (ARC4) system at the University of Leeds.

The best-performing CNN architectures from these experiments were
then selected for use in the image processing pipeline. Here, the resulting
percentage of tumour-classified points within the original ground-truth
ROI was logged as a further indicator of CNN performance.

CNN for false-positive detection

In the QUASAR annotated data, all patches were sampled from within
the annotated ROI. We believe this may increase the risk of bias in a classi-
fier trained on this data alone, particularly when classifying patches from
other regions of the WSI. QUASAR patches annotated as ‘tumour’ actually
represent tumour epithelial cells. Initial experiments showed that patches
of normal epithelium, from outside the ROI, were being classified as tu-
mour. Sporadic patches of false-positive tumour had previously led to inac-
curate predictions of the tumour ROI outline, with the attendant risk of
misdiagnosis.

A two-way VGG16 CNN classifier was trained to distinguish between
normal and tumour epithelium. The training data consisted of two balanced
directories, each with 28,589 patch images labelled as tumour and normal
epithelium respectively. These were identified by applying the original
CNN classifier to patches sampled from throughout the WSI. Patches classi-
fied as ‘tumour’ were assumed to contain epithelial tissue. The expert-
annotated ROIs allowed us to sort these patches into ‘tumour epithelium’
(inside ROI) and ‘normal epithelium’ (outside ROI), for use in training the
two-way classifier.

WSI analysis pipeline

The complete pipeline is shown in Fig. 3. The first processing cycle used
a sparse, quasi-random sampling pattern. The WSI area was divided into a
coarse square grid, using spacings of 640, 768 and 1024px, corresponding
to 313 μm, 376 μm and 502 μm at 0.49 μm/pixel resolution. A 224px
(110 μm) square region was allocated randomly in each grid box. The
WSI was sampled at these locations and each resulting patch was classified
using the 9-class CNN.

Patches predicted to be of class ‘tumour’were then passed to the second
CNN, to further categorise these patches as ‘true positive’ tumour



Fig. 1. Annotated QUASAR data, showing WSI overlaid with pathologist-generated ROI (blue outline) and cell patch classifications (in 3 mm box, red).14
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epithelium, or ‘false positive’ normal epithelial cells. This process was
inspired by Hong’s two-stage FP-correction4 in MRI processing.

A second iteration of sampling patch generation was then performed.
Wherever a tumour patch was reported, a further 4 sampling patches
would be placed randomly within the tumour patch’s parent grid box.
Where the new patch overlapped the existing patch, a new random loca-
tion would be tried until a clear space was found. Additional image
patch data would be extracted from the WSI at the new locations.
These new patches were also classified and added to the output
class map.

The FP-corrected map of tumour patches and their locations was
then used to predict the tumour ROI. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN)20 was applied to the tumour
points, to generate an outline around the regions of tumour points.
This algorithm rejected sporadic ‘noise’ points without multiple neigh-
bours in a 2000 pixel radius, so that these would not contribute to the
final estimate of the ROI.

A final stage of patch generation and classification was then performed,
to obtain a uniformly higher sampling density across the entire ROI. The
convex hull of the ROI polygon was evaluated, then new patches were
added within this region, up to a limit of 5 patches per grid box within
the ROI. New patches would be sampled from the WSI and classified as be-
fore, to provide an output of patch locations and classes at a uniform higher
density within tumour regions. Non-tumour regions, outside the predicted
ROI, would retain the lower original density of one patch per grid box.

To avoid overfitting, the pipeline was assessed using the previously un-
seen 100 WSIs in the evaluation set, from the data split that provided the
test and training patches for CNN training.
3

Tile-by-tile reference pipeline

To assess the comparative performance of our sampling pipeline, we de-
veloped an additional pipeline to perform patch classification and generate
TSR and ROI estimates for WSIs divided into contiguous, tiled image
patches. The pipeline was similar to that in Fig. 3 but used a dense tiled
sampling pattern in a single processing iteration, to process all areas of
the WSI systematically.

TSR estimation

Now possessing a collection of output patches with tissue class and po-
sition data, we explored several algorithms for calculating tumour–stroma
ratio. For each WSI in the evaluation set, we estimated the TSR from the
proportions of patches classified as tumour (T) and stroma or fibrosis (S),
using the formula:

TSRest ¼ T
T þ S

The following sampling algorithms were used in the pipeline, to com-
pare the effects on TSR of different patch sampling regimes:

1) 100 patches uniformly distributed within predicted ROI.
2) 120 patches within 3mm square box (6122x6122px at 0.49 μm/px),

using RandomSpot-based triangular grid centred on point of highest tu-
mour patch density, to simulate sampling approach used in QUASAR
study.



Fig. 2. Typical cell patches extracted from QUASAR slides. Tissue types (left-right, top-bottom): A) non-informative, b) tumour, c) stroma or fibrosis, d) necrosis, e) vessels,
f) inflammation, g) lumen, h)mucin, and i)muscle. Patch sizes shown: 100x100px, 224x224px, 448x448px. The pathologists’ ground-truth classification refers to the central
pixel of each patch, although surrounding tissue was examined to provide structural context.

Fig. 3.WSI sampling and patch-classification pipeline.
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3) Mean of TSRs based on all sampled patches, within sliding 3 mm box,
across predicted ROI.

4) Ground-truth (GT) sampling locations based on original QUASAR data
points.

5) 4-layer, 9-channel CNN trained to estimate TSR from patch class totals
per parent grid box.

The GT sampling locations were included to assess the maximum theo-
retical accuracy of our TSR prediction, that could be achieved if it were pos-
sible to predict the exact sampling location that a pathologist would choose
for TSR calculations. It is acknowledged that this approach would not be
available for unseen WSIs.
4

The ground-truth TSRGT was derived from the totals of RandomSpot
samples that the original pathologist had classified as tumour (T) and stroma
or fibrosis (S) for each WSI. The accuracy of the TSR predicted by our pipe-
line was calculated for each algorithm under test, using root mean square
error (RMSE), calculated across the NWSIs in the evaluation set according
to:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N
i¼1 TSRGTi−TSRest ið Þ2

r
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The mean error (ME) across all evaluation WSIs was also recorded for
eachmethod of calculation. TheME is themean difference between ground
truth and estimated values:

ME ¼ 1
N
∑N
i¼1 TSRGTi � TSRestið Þ

The pipeline was executed for grid boxes of 640, 768, and 1024px on
each side, and with both one and two iterations of re-sampling before the
final whole-ROI sampling step. ROI estimates were compared with the
ground-truth ROI using F1 (Dice) score. TSR mean and RMS errors were
logged for each of the sampling methods under test.

Results

CNN benchmarking

Table 1 shows the classification accuracies (percentage of correct classifi-
cations),model size and inference time for the CNNarchitectureswe assessed.

The VGG19 gave the joint-best accuracy, and the highest percentage of
predicted tumour points inside the ground-truthROI. Thismodelwas there-
fore selected as the main classifier (CNN1 in Fig. 3) for subsequent pipeline
experiments.

False-positive correction

The pre-trained VGG16 model, trained to distinguish false-positive nor-
mal epithelium from true-positive tumour epithelium, recorded an overall
accuracy of 92.7% against the test set. Measuring before the FP-correction
stage, 91.6% of predicted tumour was within the annotated ROI. This
value increased to 97.1% when measured after false positive correction.

Classification plots

Fig. 4 shows the output classification plots for QUASAR WSI 42020.svs
after each processing step, with the ground-truth ROI outline for reference.
The first iteration shows the initial uniform sampling pattern (with back-
ground areas excluded). After resampling around predicted tumour loca-
tions, the denser sampling pattern begins to emerge in this region. The
final iteration reveals a uniform, random distribution of sample patches
across the estimated region of interest.

ROI estimation

The output polygons for the estimated ROI were compared with the pa-
thologist’s original ROI annotations in the QUASAR dataset, by calculating
the mean Dice Similarity Coefficient (DSC, or F1 score) for all WSIs in the
evaluation set.
Table 1
Comparative performance of CNN architectures in 9-way classification of
224x224px QUASAR patches.

CNN type Model
size
(MB)

Inference
time
(ms/patch)

Accuracy
(random
initial
weights)

Accuracy
(pre-trained
on ImageNet)

Best % tumour in
ROI from pipeline
(pre- FP correction)

VGG19 548 63.9 72% 79% 94.8%
GoogLeNet 25.4 63.8 79% 75% 92.0%
DenseNet 111 35.6 74% 78% 93.7%
VGG16 528 35.3 74% 78% 91.6%
MobileNet 13.6 18.2 73% 77% 91.0%
AlexNet 233 18.9 75% 76%
Inception 3 91.2 57.8 72% 70%
ResNet 50 97.8 35.0 71% Model

unavailable
ResNet 18 44.7 37.1 68% 68%

The highest percentage score in each column is shown in bold text.

5

Table 2 shows the F1 score obtained using 1 and 2 sampling steps, be-
tween the initial sparse iteration and the final whole-ROI dense sampling
stage, for the 3 different parent grid box sizes. Pipeline performance is
also given in terms of per-image processing time and mean total patches
processed per WSI.

Table 3 shows the lowest RMS error in the TSR calculation, for each
combination of grid size and resampling iterations. In both Table 2 and
Table 3, the 224px grid spacing equates to systematic tile-by-tile processing
at our 224x224px patch size.

Tumour–stroma ratio

A breakdown of the comparative performance of all TSR algorithms is
shown in Table 4. These are given for the pipeline configuration that deliv-
ered the lowest RMS TSR error, i.e., one resampling iteration at 640px
grid size.

Discussion

CNN benchmarking

Of the CNN models tested, the ImageNet-pretrained VGG19 gave the
joint-best classification accuracy (79%) alongside the non-pretrained
GoogLeNet. Examination of the confusion matrices revealed that the
VGG19 gave the highest rate of correct classifications of tumour patches,
explaining this model’s higher proportion of predicted tumour inside the
ground-truth ROI. However, the estimated inference time was relatively
slow (65.9 ms/patch), and a faster model such as DenseNet (35.6 ms/
patch) is therefore recommended for pipeline configurations involving
larger patch counts.

False-positive detection

Use of the CNN trained to distinguish tumour epithelium from normal
epithelium resulted in a 2.8-fold reduction in predicted tumour patches out-
side the ground-truth ROI, enabling a more accurate estimation of this re-
gion.

ROI estimation

The F1-scores in Table 2 show a strong agreement between the pre-
dicted and actual ROI over the evaluation set. This increases with decreas-
ing grid box size, corresponding to increasing sampling density. An
additional iteration of resampling around tumour patches also gives an im-
proved F1 score, likely to be due to the higher sampling density around the
edges of the tumour regions.

The DBSCAN clustering for ROI estimation excludes single tumour
points outside the tumour region, by design. These points are rejected as
noise caused by occasional classification errors. Tumour patches on an ir-
regular ROI border would nonetheless be included in the ROI outline by
DBSCAN, due to the proximity of similar neighbouring patches in the
tumour body.

Generally, increasing the number of sampled patches resulted in more
accurate ROI prediction, at the expense of a longer processing time. The
highest F1 score was seen in tile-by-tile sampling, while the attention-
based pipeline in its various configurations was between 3.3 and 6.3
times faster per WSI.

TSR estimation

As expected, the lowest RMS error (6.4%) in estimated TSR was ob-
served when sampling at the same ground-truth points as the original pa-
thologist. This error is assumed to be due to CNN classification errors, but
is lower than the mean classification error for a single image patch. We sug-
gest that averaging across multiple patches reduces the effect of individual
misclassifications in the CNN.



Fig. 4. Sampling iterations applied during WSI processing, showing increasing density around detected tumour patches.

Table 2
Pipeline performance and ROI accuracy for various sampling grid sizes andnumbers
of sampling iterations. The 224px grid size represents tile-by-tile processing, for
comparison.

Grid h, w
(pixels)

Grid h, w
(μm)

Resampling
iterations
(before final step)

Processing
time, mins
per WSI

Patches
per WSI

ROI
agreement
(F1 Score)

1024 502 1 23:19 4041 79.3%
1024 502 2 23:05 7007 83.0%
768 376 1 25:12 6542 83.2%
768 376 2 36:27 12,016 86.5%
640 313 1 29:05 7826 83.6%
640 313 2 44:18 14,257 86.6%
224 110 – 145:21 33,065 89.3%

Table 4
Comparative performance of TSR algorithms for 640px grid size, 1 resampling
iteration

Sampling region
(using post-FPC tumour points unless stated)

TSR mean error
(offset)

TSR RMS
error

1) Predicted ROI (average over ≈100 points) 0.09 14.9%
2) 3 mm box at max tumour density point with
RandomSpot layout (120 points)

-0.04 11.3%

3) Predicted ROI (mean Sliding Window output) 0.05 12.7%
4) Ground-truth locations 0.00 6.4%
5) 4-layer CNN trained for TSR prediction 0.12 20.7%
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For unseen WSIs, the lowest RMS error (11.3%) in estimated TSR was
measured when using the smallest grid size, giving a higher sampling den-
sity. However, the benefit of increasing density was not as dramatic as that
seen with the ROI F1 score, with the RMSE rising again to 13.5% in the ex-
treme case of tile-by-tile processing.

Sampling algorithms that attended to region of densest tumour yielded
slightly more accurate TSR values than algorithms that averaged across the
whole predicted ROI. In the original QUASAR dataset, the ground-truth
classifications were usually evaluated around the maximum perceived tu-
mour density. Emulating this approach gave an optimal TSR prediction as
we anticipated.

The TSR-predicting CNN was developed to avoid hard-coding the as-
sumed behaviour of a pathologist, when choosing patch-sampling loca-
tions. It was intended that the CNN would learn the optimum spatial
weightings to apply to the input patch distribution, when predicting an
overall ratio for eachWSI. Althoughwe have not yet reached ‘CNN suprem-
acy’ over other methods for calculating TSR, there is much scope for explor-
ing more sophisticated CNN architectures in pursuit of this goal.
Table 3
Accuracy of tumour–stroma ratio estimation for various sampling grid sizes and numbe
comparison.

Grid h, w (pixels) Resampling iterations (before final step)

1024 1
1024 2
768 1
768 2
640 1
640 2
224 -

6

Limitations

Our pipeline has been optimised for mapping H&E stained WSIs. It has
not been tested on immunohistochemistry (IHC) staining, which would re-
quire re-training on annotated IHC images to process the different staining
colours. It is possible that for more general segmentation/characterisation,
we would observe higher accuracy with IHC than H&E, because of the
greater colour contrast between blue and brown image features, but further
work is needed to explore this.

The QUASAR dataset was chosen for its detailed level of annotation for
ROI and tissue classifications, representing many hours of pathologists’ ef-
fort. The low rate of WSIs passing QC reflects a non-routine research
workflow, where some older slides with inconsistent or faded staining
were retrospectively scanned for the trial. In a clinical workflow, with
more consistent staining and faster transfer from staining to scanning, we
anticipate a higher rate of QC-passed WSIs.

The WSIs were captured using Aperio XT scanners as the clinical trial
was performed some time ago. While scanning was not replicated on
newer instruments, the general principleswould be the same andwe expect
that the improvements in image quality of newer WSIs could further im-
prove the performance of our pipeline.
rs of sampling iterations. The 224px grid size represents tile-by-tile processing, for

Min TSR RMSE Sampling strategy giving min RMS error

12.7% 100 patches, estimated ROI
12.9% 3 mm box, max tumour density point
12.7% 100 patches, estimated ROI
11.8% 3 mm box, max tumour density point
11.3% 3 mm box, max tumour density point
12.4% Mean TSR over estimated ROI.
13.5% 3 mm box, max tumour density point
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The original ground-truth class annotations referred to single-pixel
points in the WSIs. We extracted 224×224px patches around each point,
to allow the CNN to analyse the structural context of, for example, blank
background within hollow structures such as vessels. We acknowledge
that the enclosing patch area may contain cell classes other than the
ground-truth label. We hypothesise that our CNN embeds a spatial bias to-
wards the centre of the image patch, mitigating the misleading effects of
surrounding tissue types. Ongoing work is exploring this effect, together
with the use of feedback attention to improve classification accuracy for
mixed-class patches.

We present our pipeline as a proof of concept, acknowledging that clin-
ical adoption would depend on further development and validation, to
meet FDA (US) or CE-mark (Europe) standards. This would include training
with new data from a range of state-of-the-art scanners, and testing CNNs
and pipeline against further unseen images. Subject to approval, our pipe-
line might have application in rapid triage of cancer patients according to
their TSR and inferred risk of more aggressive disease.

Conclusions

Overall, we believe that ourWSI-processing pipeline represents a useful
analytic tool, with the potential to automate labour-intensive assessments
of histopathological images. We have showed that this can be achieved
using an attention-based pipeline to deliver processing times 3.3 to 6.3x
faster than tile-by-tile analysis, with minimal cost in ROI accuracy and im-
provements in TSR estimation.
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