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Population density techniques can be used to simulate the behavior of a

population of neurons which adhere to a common underlying neuron model.

They have previously been used for analyzingmodels of orientation tuning and

decision making tasks. They produce a fully deterministic solution to neural

simulations which often involve a non-deterministic or noise component. Until

now, numerical population density techniques have been limited to only one-

and two-dimensional models. For the first time, we demonstrate a method to

take an N-dimensional underlying neuron model and simulate the behavior

of a population. The technique enables so-called graceful degradation of

the dynamics allowing a balance between accuracy and simulation speed

while maintaining important behavioral features such as rate curves and

bifurcations. It is an extension of the numerical population density technique

implemented in the MIIND software framework that simulates networks of

populations of neurons. Here, we describe the extension to N dimensions and

simulate populations of leaky integrate-and-fire neurons with excitatory and

inhibitory synaptic conductances then demonstrate the e�ect of degrading

the accuracy on the solution. We also simulate two separate populations

in an E-I configuration to demonstrate the technique’s ability to capture

complex behaviors of interacting populations. Finally, we simulate a population

of four-dimensional Hodgkin-Huxley neurons under the influence of noise.

Though the MIIND software has been used only for neural modeling up to

this point, the technique can be used to simulate the behavior of a population

of agents adhering to any system of ordinary di�erential equations under the

influence of shot noise. MIIND has been modified to render a visualization of

any three of an N-dimensional state space of a population which encourages

fast model prototyping and debugging and could prove a useful educational

tool for understanding dynamical systems.

KEYWORDS

simulator, neural population, population density, software, Python, dynamical

systems, network, visualization

1. Introduction

A common and intuitive method for simulating the behavior of a population of

neurons is to directly simulate each individual neuron and aggregate the results (Gewaltig

and Diesmann, 2007; Yavuz et al., 2016; Knight et al., 2021). At this level of granularity,

the population can be heterogeneous in terms of the neuron model used, parameter
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values, and connections. The state of each neuron, which may

consist of one or many more time or spatially dependent

variables, is then integrated forward in time. The benefit of this

method of simulation is that it provides a great deal of control

over the simulated neurons with the fewest approximations. If

required, the state history of each neuron can be inspected.

However, this degree of detail can produce results that are

overly verbose making it difficult to explain observations. While

this can be mitigated by carefully limiting the degrees of

freedom (for example, keeping all neurons in the population

homogeneous, using point neuron models, or having a well-

defined connection heuristic), other simulation methods exist

that have such assumptions built in and provide additional

benefits like increased computation speed, lower memory

requirements, or improved ways to present and interpret the

data. For example, so-called neural mass models (Wilson and

Cowan, 1972; Jansen and Rit, 1995) eschew the behavior of the

individual neurons in a population in favor of a direct definition

of the average behavior. These methods are computationally

cheap and can be based on empirical measurements but they

lack a direct link to the microscopic behavior of the constituent

neurons which limits a generalization to populations of different

neuron types.

Population density techniques (PDTs) approximate

population-level behaviors based on a model definition of

the constituent neurons. Most PDTs assume all neurons are

homogeneous and unconnected within a discrete population.

All neurons are considered point-neurons and adhere to a single

neuron model which is made up of one or more variables that

describe the state of the neuron at a given time. The state space

of the model, as shown in Figure 1, contains all possible states

that a neuron in the population could take. For a population of

neurons, PDTs frequently define a probability density function

or the related probability mass function across the state space

which gives the probability of finding a neuron from the

population with a given state. PDTs are not concerned with

the individual neurons but instead calculate the change to the

probability mass function which is governed by two processes:

the deterministic dynamics defined by the underlying neuron

model, and a non-deterministic noise process representing

random incoming spike events.

Methods for solving the deterministic dynamics of a system

of ordinary differential equations under the influence of a non-

deterministic noise process have been used right back to early

studies of Brownian motion. Then in theoretical neuroscience,

Johannesma (1969) and Knight (1972) among others used

similar techniques to give a formal definition of the effect of

stochastic spiking events on a neuron by defining a probability

density function of possible somatic membrane potentials. Most

often, these involved the assumption of infinitesimal changes in

state due to the incoming events, also known as the diffusion

approximation. Omurtag et al. (2000) applied the method

to a population of unconnected homogeneous neurons. They

separated the deterministic dynamics of a common underlying

neuron model from the incoming spike train generated by a

Poisson process. Originally, the motivation for their work was

to more efficiently approximate the behavior of collections of

neurons in the visual cortex. Work by Sirovich et al. (1996)

showed that there is a lot of redundancy in optical processing

in the macaque visual cortex such that on the order of O(104)

functional visual characteristics or modalities are encoded by

O(108) neurons. It was, therefore, a reasonable approximation to

treat a population of 104 neurons as a homogeneous group and

investigate the interaction between populations. The technique

was employed by Nykamp and Tranchina (2000) to analyse

mechanisms for orientation tuning. Bogacz et al. (2006) also

used PDTs to model decision making in a forced choice task.

PDTs have since been extended to attend to various

shortcomings of the original formulation. For example, there

is often an assumption of Poisson distributed input to a

population (Omurtag et al., 2000; Mattia and Del Giudice,

2002; Rangan and Cai, 2007) which in certain circumstances

is not biologically realistic. Ly and Tranchina (2009) outlined a

technique to calculate the distribution of the output spike train

of a population of LIF neurons with different input distributions

(based on a renewal process - with a function involving the

inter-spike interval). Instead of introducing a Poisson process

for their noise term, they use a hazard function which defines

the probability of an incoming spike given the time since the

last spike. This allows them to handle more realistic input

distributions such as a gamma distribution for certain situations

and calculate the output firing rate. They are also able to derive

the output statistics of a population like expected inter-spike

interval and spike distribution. Further work has been done to

develop so-called quasi-renewal processes (Naud and Gerstner,

2012) which define the probability of the next spike in terms

of both the population level activity and the time since the last

spike. Such approaches can simulate behaviors such as spike

frequency adaptation and refractoriness but there is a weaker

link to the underlying neuron model which limits the simulation

of populations of neurons with dynamics that produce behaviors

like bursting.

PDTs have also often been limited to low-dimensional

neuron models with which to derive population level behavior

and statistics. The conductance based refractory density (CBRD)

approach (Chizhov and Graham, 2007) tracks the distribution

of a population of neurons according to the time since they last

spiked (often referred to as their age) instead of across the state

space of the neuron model. In its most elementary form, the

probability density equation, given in terms of time and time

since last spike, is dependent on the neuronal dynamics defined

by the underlying model and a noise process. Crucially though,

the conductance variables defined in the underlyingmodel (such

as the sodium gating variables of the Hodgkin-Huxley neuron

model) can be approximated to their mean across all neurons

with similar age. With this approximation, the dimensionality
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FIGURE 1

(A) The mesh used in MIIND to simulate a population of Izhikevich neurons. The quadratic red curve and blue line are the nullclines where the
rate of change of the membrane potential and recovery variable, respectively, are zero. The strips, made up of quadrilateral cells are formed by
the characteristic curves of the Izhikevich model for a given parameter set. (B) A vector field for the same model showing the direction of
movement of probability mass around the state space. (C) The state space discretized into a regular grid. The parameters and definition of the
Izhikevich model are not given here as it is only required to demonstrate the mesh and grid discretization. As in the original derivation of the
model, the recovery variable has no units.

of the problem is reduced to a dependence only on the

membrane potential, significantly improving the tractability of

such systems. Refractory density approaches (Schwalger and

Chizhov, 2019) have been extended further to approximate finite

size populations, phenomenological definitions, and bursting

behaviors (Schwalger et al., 2017; Chizhov et al., 2019; Schmutz

et al., 2020).

Using these techniques for modeling and simulation

generally requires a large amount of mathematical and

theoretical work to develop a solution for a specific scenario.

As we see above, each additional behavior requires at least an

extension or even reformulation of a previous approach. The

numerical PDT implemented in MIIND (de Kamps et al., 2019;

Osborne et al., 2021) requires only a definition of the underlying

neuron model plus population and simulation parameters. The

definition can be given in the form of a Python function in

a similar fashion to direct simulation techniques. However,

until now, the PDT has been able to simulate populations of

neurons adhering to only a one- or two-dimensional model.

Often, this is enough as many different neuronal behaviors can

be captured with two variables, for example, the action potential

of the Fitzhugh-Nagumo neuron (FitzHugh, 1961; Nagumo

et al., 1962), the spike frequency adaptation of the adaptive

exponential integrate-and-fire neuron (Brette and Gerstner,

2005), or the bursting behavior of the Izhikevich neuron model

(Izhikevich, 2007). Using a one-dimensional neuron model,

MIIND has been employed to simulate a network of interacting

populations in the spinal cord (York et al., 2022). Populations

were based on the exponential integrate-and-fire neuron model

and showed how a relatively simple spinal network could explain

observed trends in a static leg experiment. The main benefit of

using the numerical PDT in this study was to eliminate finite-

size variation in the results which would have hindered the

subsequent analysis. The MIIND software itself also afforded

benefits such as the ability to quickly prototype population

network models, and to observe the population states during

and after simulation. Osborne et al. (2021) have previously

presented the full implementation details of MIIND including

the two “flavors” of the numerical PDT, named the mesh and

grid methods. The mesh method involves discretizing the state

space using a mesh of quadrilateral cells as shown in Figure 1A.

The grid method was developed chiefly to improve the flexibility

of the PDT to avoid building a mesh. In this method, the state

space is discretized into a grid of rectangles which allows for a

more automated approach. Here, we extend the grid method to

greater than two-dimensional models to expand the repertoire

of possible neuron types.

2. Materials and methods

2.1. Recap of the grid method in MIIND

The MIIND algorithm for calculating the change to the

probability mass function is covered in detail by de Kamps et al.

(2019) and Osborne et al. (2021). However, we will cover the

basic algorithm as it is relevant to the extension of the grid

method to N dimensions. As a preprocessing step, the state

space of the underlying neuron model is discretized such that

each discrete volume of state space, or cell, is associated with a

probability mass value. The probability mass is assumed to be

uniformly distributed across the cell. The discretization can take

the form of a mesh as shown in Figure 1A, constructed from

the characteristic curves of the underlying neuron model or a

regular grid which spans the state space as in Figure 1C.

When generating the grid in MIIND, the user provides

the resolution of the grid and the size and location in state

space within which the population is expected to remain during
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FIGURE 2

Figure showing steps for generating the transition matrix to solve the deterministic dynamics of the underlying model using a two-dimensional
grid. Axes are not labeled as they represent arbitrary time-dependent variables. (A) For each grid cell (rectangle), the vertices translated
according to a single time step of the underlying neuron model and the resulting quadrilateral is triangulated. (B) Each triangle is then tested for
intersection with the axis-aligned lines of the original grid. The green crosses mark the intersection points between the tested triangle and the
dashed line. The resulting subsections are again triangulated. (C) The process runs recursively until no more triangulations can be made. (D) The
resulting triangles each lie within only a single cell of the original grid. The area of each triangle divided by the area of the original quadrilateral
gives a proportion of mass to be transferred from the grid cell to the containing cell. From these, the proportions to be transferred can be
summed and the totals stored in the file.

simulation. For each iteration of the simulation, the distribution

of probability mass across the cells is updated, firstly, according

to the deterministic dynamics of the underlying neuron model.

For example, in the Izhikevich neuron model (Izhikevich, 2007),

as shown in Figure 1B, the vector field below −60 mV indicates

that probability mass will move slowly toward −60 mV before

quickly accelerating to the right. Because the underlying neuron

model does not change, the proportion of probability mass

transitioning from each cell according to the deterministic

dynamics remains constant throughout any simulation and can

therefore be precalculated and stored in a file. To generate the

file, the steps illustrated in Figure 2 are performed. For each

cell, the aim is to calculate where probability mass will move

after one time step of the simulation and how much of the

mass is apportioned to each cell. First, the four vertices of

the cell are translated according to a single time step of the

underlying neuron model to produce a quadrilateral which is

assumed to remain convex due to the small distance traveled.

The quadrilateral is then split into two triangles and each triangle

is then processed separately. Each triangle is tested against

the axis-aligned edges of the grid. Because the lines are axis-

aligned, this is a trivial test for points on either side of the

line. If an intersection occurs, the new vertices are calculated to

produce two polygons on either side of the line. Each polygon is

triangulated and the process is recursively repeated on all sub-

triangles until no more intersections occur. Once all triangles

have been tested, the quadrilateral is now split into a collection

of triangles which are each entirely contained within one cell of

the grid. For each cell which contains one or more triangles, the

total area of the triangles is calculated as a proportion of the area

of the quadrilateral and this value represents the proportion of

probability mass which will be transferred from the originating

grid cell after one time step. It is expected that each transformed

cell will only overlap with a few others in the grid so that an

N × N matrix of transitions where N is the number of cells

should be sparsely populated and can be stored in a file then

read into memory. The transitions in the file are applied once

every iteration of the simulation. This is a computationally time

efficient way to solve the deterministic dynamics.

Once the probability mass distribution has changed

according to the deterministic dynamics of the underlying

neuron model, the second part of the MIIND algorithm

calculates the spread of mass across cells due to random (usually

Poisson distributed) incoming spikes. This process is more

computationally expensive than the first because the shape of

the spread must be recalculated every time step by solving
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FIGURE 3

(A) The change in state, J, of a neuron due to a single incoming spike can be split into component parts, Jx and Jy for the horizontal and vertical
dimensions, respectively. All neurons with a state within cell 0 will be translated by Jx due to a single incoming spike. Because all cells are the
same width (Cx), the uniformly distributed probability mass of cell 0 will be shared among a maximum of two cells, cell 1 and cell 2. The o�set of
cell 1 from cell 0 is equal to floor(Jx/Cx) [for negative Jx, it is ceil(Jx/Cx)] with cell 2 being the one beyond that. The proportion of mass transferred
from cell 0 to cell 1 is equal to 1− (Cx% Jx) and the remainder is transferred to cell 2. (B) Once the mass proportions have been calculated in the
horizontal direction, the same calculations are made with cells 1 and 2 in the vertical direction using Cy and Jy. The proportion calculated from
cell 0 to cell 1 is split between cells 3 and 4. The proportion in cell 2 goes to 5 and 6. (C) The proportions of mass to be transferred from cell 0 to
the resulting four cells give an approximation of the e�ect of transition J. With a constant J, this calculation gives the same relative results for
every cell and therefore only needs to be performed once. (D) Iteratively applying the transitions to all cells in the grid spreads mass further
across state space simulating the e�ect of neurons receiving multiple spikes in a given time step. (E) The probability mass function of a
population of leaky integrate-and-fire neurons with an excitatory synaptic conductance rendered in MIIND. The color of each cell indicates the
amount of probability mass. The value has been normalized to the maximum value of all cells. The e�ect of an incoming spike is to shift mass
0.2 nS/cm² in the vertical direction (producing a change in synaptic conductance). At this early point in the simulation, most neurons would
have received zero or one spike (indicated by the bright yellow spots) while only a few would have received up to four spikes. (F) As the
simulation proceeds, mass continues to be transferred upwards due to incoming spikes but the deterministic dynamics of the model causes
mass to also move to the right according to the transitions defined in the matrix file and the population becomes more cohesive.

the Poisson master equation (de Kamps, 2006), which involves

iteratively applying a different set of transitions to the probability

mass function and is dependent on the incoming rate of spikes.

Figure 3 shows how the spread of probability mass can be

calculated in two dimensions based on the width of the cells and

the change in state due to a single incoming spike. Calculating

the transitions for solving the non-deterministic noise process

benefits from the fact that all cells are the same size and regularly
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spaced. It is assumed that a single incoming spike will cause

a neuron’s state to instantaneously jump by a constant vector,

J. Most often this is only in one direction instead of two. For

example, many neuron models expect an instantaneous jump

in membrane potential or in synaptic conductance. However,

calculating the jump transition for any vector is a useful feature

to have for models like the Tsodyks-Markram synapse model

(Tsodyks and Markram, 1997) for which incoming spikes cause

a jump in two variables at once. For a single incoming spike, all

probability mass in a cell will shift up or down according to the

x component of J, where x is the first variable or dimension of

the model. Because all cells are the same size, this shift will result

in probability mass being shared among at most two other cells

which are adjacent to each other. Calculating which cells receive

probability mass and in what proportion requires only knowing

the width of the cells in the x dimension and the x component

of J. If the J vector has a y component, where y is the second

variable or dimension, the same process can be applied to each

of the two new cells. The proportion of probability mass to be

shared to each cell is itself shared among a further two cells for

a maximum of four cells containing probability mass from the

original cell. Due to the regularity of the grid, this calculation

need only be made once and is applicable to every other cell. To

simulate the effect of the incoming Poisson noise process on the

probability mass function, the transitions are applied iteratively

to each cell.

Figures 3E,F show the resulting probability mass function

during a simulation when both deterministic and non-

deterministic processes are applied. From the function, average

values across the population can be calculated as well as the

average firing rate if the underlying model has a threshold-

reset mechanism. In that case, after each iteration, mass that

has moved into the cells that lie across the threshold potential is

transferred to cells at the rest potential according to a mapping

generated during the pre-processing steps. The details of this

mechanism are described by Osborne et al. (2021).

2.2. Extending the grid to N dimensions

An important observation is that the steps shown in Figure 2

for generating the two-dimensional transition matrix file work

similarly in higher dimensions. However, the complexity of

the algorithm increases significantly. For a three-dimensional

underlying neuron model, the grid is extended such that each

cell is a cuboid in state space with eight vertices (Figure 4). For

an N-dimensional (ND) neuron model, an N-dimensional grid

can be constructed with cells made up of 2N vertices. The task

here is to update the calculations involved in the deterministic

and non-deterministic processes described above so that they

work generically for any number of dimensions. For illustration

purposes, we will use a three-dimensional grid.

FIGURE 4

(A) With a three-dimensional state space, the grid discretization
is made up of cuboids. (B) For the two-dimensional case, a
rectangle has two possible triangulations, [A,B,C] and [A,C,D] or
[A,B,D] and [B,D,C]. (C) A cuboid triangulated into six
3-simplices. Other triangulations are possible, some which aim
to achieve the minimum number of simplices or to keep the
volumes of the simplices as uniform as possible. The Delaunay
triangulation makes no guarantees of this kind but is easy to
implement and works in N-dimensions.

For the deterministic dynamics, each of the 2N vertices is

again translated according to a single time step of the neuron

model and the resulting volume must be triangulated into N-

simplices. In three dimensions, a 3-simplex is a tetrahedron.

There aremany possible triangulations of anN-dimensional cell.

As an example, in the simpler two-dimensional case, if the four

vertices of a rectangle are labeled A to D in a clockwise fashion

as in Figure 4B, the possible triangulations are [A,B,C] and

[A,C,D] or [A,B,D] and [B,D,C]. As with the number of possible

triangulations, the number of resulting N-simplices increases

with dimensionality and there are many algorithms available to

generate them (Haiman, 1991). Many algorithms exist to find

the so-called Delaunay triangulation of a set of points, which

has a specific definition: A set of triangles (or N-simplices)

between points such that no point lies within the circumcircle

(or hypersphere) of any triangle (or N-simplex) in the set.

This definition results in a quite well-formed triangulation

(minimizing the number of long and thin triangles). One of

the simplest ways to find the Delaunay triangulation of a set

of points in N dimensions is to use the quickhull algorithm

(Brown, 1979; Barber et al., 1996). The initial triangulation

of the transformed cell is calculated using this method. To

improve efficiency of this triangulation step, instead of finding

the Delaunay triangulation for every translated cell, quickhull

can be applied once to a unit N-cube as shown in Figure 4C.

Under the assumption that the transformed cell remains a

convex hull (not unreasonable given that the time step should
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FIGURE 5

(A,D,G,J) Possible plane intersections with a 3-simplex. (B,E,H,K) Illustration of how each intersection is represented in the algorithm such that
intersections bisect the relevant edges. (C,F,I,L) The resulting triangulations of the bisected 3-simplex which can be applied to all intersections of
this type when calculating the transitions. (A–C) A plane intersection leaving one vertex of the 3-simplex above the plane and three vertices
below. (D–F) A plane intersection leaving two vertices on either side of the plane. (G–I) A plane intersection which goes through one of the
vertices leaving one vertex above the plane and two vertices below. (J–L) A plane intersection which goes through two vertices leaving one
vertex on either side.

be small), the triangulation of the unit N-cube can be applied to

every transformed cell without re-calculating.

As with the two-dimensional version, the next step is

to recursively test each N-simplex for intersections with

hyperplanes of the grid. Figure 5 shows examples of possible

plane intersections of a 3-simplex. Finding an intersection,

again, trivially involves checking if vertices lie on both sides of

the hyperplane. The new vertices resulting from the intersections

with the edges of the N-simplex describe two new shapes on

either side of the plane. These must again be triangulated into

smaller N-simplices. As with the first triangulation of the unit

N-cube, pre-calculated triangulations of a unit N-simplex can be

mapped to each newly generated N-simplex of the transformed

cell. However, as Figure 5 shows, there are multiple ways that

an N-simplex can be bisected with each requiring a different

triangulation of the resulting shapes. Each type of intersection
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TABLE 1 Possible vertex configurations from bisections of a

3-simplex.

Vertices above

the plane

Vertices below

the plane

Vertices on the

plane

Resulting new

vertices

1 3 0 3

2 2 0 4

1 2 1 2

1 1 2 1

can be described uniquely with the number of vertices above

the hyperplane, below the hyperplane and on the hyperplane.

Table 1 gives the possible bisections of a 3-simplex which are

illustrated in Figure 5. The terms “above” and “below” are just

used here to describe each side of the hyperplane and do not

represent a position relative to each other or the hyperplane.

Listing 1 gives the programmatic way to find all possible

intersections of an N-simplex.

Listing 1 Calculate all possible vertex combinations to uniquely

identify each type of intersection of an N-simplex

For each possible number of co-planar vertices
which is between 0 and 2^N - 2:
List all possible combinations of the

remaining vertices above and below the
hyperplane excluding 0

For each of the vertex combinations which uniquely

identifies a type of intersection, the appropriate triangulation of

the resulting shapes can be pre-calculated using the Delaunay

triangulation of a unit N-simplex. To do this, the vertices of the

N-simplex are assigned to be “above”, “below” or “on” according

to the vertex combination. At this point, no hyperplane exists

to test for intersection points. However, we know that edges

that pass between an “above” vertex and a “below” vertex will

be intersected so we can choose to bisect that edge to produce

a new vertex as shown in Figure 5. This represents a good

enough approximation of the eventual N-simplex bisection and

the quickhull algorithm can be performed on the resulting

two shapes. The full dictionary of vertex combinations to

triangulations is stored in a lookup table so that, during

the actual subdivision of N-simplices in the grid, all that is

required is to find the correct intersection in the table and

to apply the triangulation mapping. As before, the algorithm

continues recursively until no more triangulations are required

and the volumes of all N-simplices are summed to calculate the

proportion of probability mass which will be shared among the

relevant cells.

Solving the non-deterministic dynamics in N dimensions

is precisely the same as for two dimensions. In the same way

that the probability mass proportion was recursively shared

among two new cells per dimension, the resulting number of

cells to which mass is transitioned due to a single incoming

spike is at most 2N . No intersections of triangulations are

required for this calculation as only the cell width and the

jump value in each dimension is required as shown in Figure 3.

The MIIND algorithm proceeds in the same way as it did for

two dimensions. First applying the matrix of transitions for the

deterministic dynamics to the grid, then iteratively applying

the jump transition to each cell multiple times to approximate

the spread of probability mass due to Poisson distributed

input. If the underlying neuron model has a threshold-reset

mechanism, probability mass in the cells at threshold (for a

three-dimensional grid, this is a two-dimensional set of cells)

is transferred to a set of reset cells according to another pre-

calculated mapping.

2.3. Running an ND simulation in MIIND

When implementing the ND extension to the grid method

in MIIND, care has been taken to minimize any changes to how

the user builds and runs a simulation. Listing 2 shows a MIIND

simulation file for defining two neuron populations in an E-I

configuration as examined later in Section 2.5.

Listing 2 The XML-style simulation file for an E-I network in MIIND

<Simulation>
<WeightType>CustomConnectionParameters</

WeightType>
<Algorithms>
<Algorithm type="GridAlgorithmGroup" name="

COND3D" modelfile="cond3d.model"
tau_refractive="0.002" transformfile="
cond3d.tmat" start_v="-65" start_w="0.00001
" start_u="0.00001">

<TimeStep>1e-03</TimeStep>
</Algorithm>
</Algorithms>
<Nodes>
<Node algorithm="COND3D" name="E" type="

EXCITATORY" />
<Node algorithm="COND3D" name="I" type="

INHIBITORY" />
</Nodes>
<Connections>
<IncomingConnection Node="E" num_connections="10

" efficacy="0.15" delay="0.0" dimension="1"
/>

<IncomingConnection Node="I" num_connections="10
" efficacy="0.15" delay="0.0" dimension="1"
/>

<Connection In="E" Out="E" num_connections="50"
efficacy="1" delay="0.003" dimension="1"/>

<Connection In="I" Out="E" num_connections="50"
efficacy="4" delay="0.003" dimension="2"/>

<Connection In="E" Out="I" num_connections="50"
efficacy="1" delay="0.003" dimension="1"/>

<Connection In="I" Out="I" num_connections="50"
efficacy="4" delay="0.003" dimension="2"/>
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</Connections>
<Reporting>

<Display node="E" />
<Average node="E" t_interval="0.001" />
<Average node="I" t_interval="0.001" />
<Rate node="E" t_interval="0.001" />
<Rate node="I" t_interval="0.001" />

</Reporting>
<SimulationRunParameter>
<master_steps>10</master_steps>
<t_end>TE</t_end>
<t_step>1e-03</t_step>
<name_log>cond.log</name_log>
</SimulationRunParameter>
</Simulation>

The full details of the syntax for a simulation file is

provided by Osborne et al. (2021). Little in this file has changed

to accommodate higher dimensional neuron models. In the

definition of the Algorithm, COND3D, the attributes start_v,

start_w, and start_u allow the user to define the starting

position (of a Dirac delta peak) for the population in the three-

dimensional space. Similarly-named attributes can be added for

higher dimensions. The modelfile and transformfile attributes

should point to the required pre-processed files generated from

the algorithm described in Section 2.2.

The Connection elements describe the inhibitory and

excitatory connections between the two populations (nodes) E

and I. As discussed earlier, each population simulated using

the numerical PDT is influenced by one or more Poisson

noise processes which change the probability mass function to

approximate each neuron in the population receiving Poisson

distributed spike trains. InMIIND, populations interact via their

average output firing rate which becomes the rate parameter

of the input Poisson process for the target population. Four

such connections are set up here. The num_connections attribute

indicates how many incoming connections each neuron in

the target (Out) population receives from the source (In)

population. This has the effect of multiplying the incoming firing

rate parameter. The efficacy attribute gives the instantaneous

jump value caused by a single incoming spike. The dimension

attribute has been newly added and gives the direction in which

the jump occurs. In this example, spikes from the excitatory

population cause a change of 1 nS/cm² change in dimension 1

which corresponds to the w variable. Finally, the delay attribute

gives the transmission delay of the instantaneous firing rate

between populations which allows MIIND to simulate the

complex dynamics which can arise when this is a non-zero value.

All other aspects of the file remain unchanged though the

Display element which tells MIIND to render the probability

mass function of population E during the simulation now causes

a three-dimensional rendering of the function in state space. For

higher dimensions, which three dimensions to display can be

chosen during simulation.

The main change to MIIND to support ND neuron models

is the addition of the generateNdGrid method in the MIIND

Python module. Listing 3 shows a function set up in Python,

cond, which describes the time evolution of a LIF neuron with

excitatory and inhibitory conductances. The generateNdGrid

method generates the cond3d.model and cond3d.tmat support

files which are referenced in the simulation file above (listing 2).

The method takes as parameters:

1. The Python function defining the model dynamics.

2. The name of the generated files.

3. The minimum values in state space.

4. The span of the grid in state space.

5. The resolution of the grid.

6. The threshold potential.

7. The reset potential.

8. Any additional change in state of a neuron after being reset to

the reset potential (in this case, there is none).

9. The timescale of the neuron model in seconds.

10. The time step with which to solve the neuron model in

seconds.

Listing 3 An example Python script to generate the support files for a

three-dimensional LIF neuron population in MIIND.

import miind.miindgen as miindgen

def cond(y):
V_l = -70.6
V_e = 0.0
V_i = -75
C = 281
g_l = 0.03
tau_e = 2.728
tau_i = 10.49

v = y[2]
w = y[1]
u = y[0]

v_prime = (-g_l*(v - V_l) - w * (v - V_e) -
u * (v - V_i)) / C

w_prime = -(w) / tau_e
u_prime = -(u) / tau_i

return [u_prime, w_prime, v_prime]

miindgen.generateNdGrid(cond, ’cond3d’,
[-0.2,-0.2,-80], [5.4,5.4,40.0],
[50,50,50], -50.4, -70.6, [0.0,0.0,0.0], 1,
0.001)

Running a script such as this performs the steps outlined

in Section 2.2. To see further examples of ND simulations

in MIIND, once the software has been installed (using

pip install miind), the examples/model_archive directory of

the MIIND repository contains the required files for a

number of different three- and four-dimensional neuron

model populations. The three experiments presented below are

available in the examples/miind_nd_examples directory of the

MIIND repository.

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Osborne and de Kamps 10.3389/fninf.2022.883796

TABLE 2 Parameters used for Equations (1) and (2).

Parameter name Values and notes

Equation (1) Leaky integrate-and-fire neuron with

an excitatory and inhibitory synaptic

conductance

gl 0.03 nS/cm²

El −70.6 mV

Ee 0.0 mV

Ei −75 mV

C 281 pF/cm²

τe 2.728 ms

τi 10.49 ms

Refractive period 2 ms

Threshold potential −50.4 mV

Reset potential −70.6 mV

Equation (2) Hodgkin-Huxley Neuron

gl 0.5 mS/cm²

gk 30 mS/cm²

gna 100 mS/cm²

Vk −90 mV

Vna 50 mV

Vl −65 mV

C 1.0 µF/cm²

αm 0.32(13− v+ Vt)/(e
13−v+Vt

4 − 1)

αn 0.032(15− v+ Vt)/(e
15−v+Vt

5 − 1)

αh 0.128e
17−v+Vt

18

βm 0.28(v− Vt − 40)/(e
v−Vt−40

5 − 1)

βn 0.5e
10−v+Vt

40

βh 4/(1+ e
40−v+Vt

5 )

Vt -63 mV

2.4. Testing a single population

Initially, a single population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductance

variables was simulated in MIIND and compared to a so-called

Monte Carlo approach. The definition of the underlying neuron

model is given in Equation (1) and the parameters are listed

in Table 2. v represents the membrane potential, u represents

the conductance of inhibitory synapses which will increase with

increased inhibitory input. w represents the conductance of the

excitatory synapses. C is the membrane capacitance and gl is

the leak conductance. Vl, Ve, and Vi are the reversal potentials

for their respective conductances. The refractory period, during

which the state is held constant at the reset potential, has been

set to 2 ms. Figure 6 shows a schematic of the neuron model

state space in three dimensions and the effect of excitatory and

inhibitory input spikes. Due to the dynamics of the model,

mass in cells with a high u value will move to lower values

of v and mass at high w values will move to higher cells

in v.

C
dv

dt
= −gl(v− Vl)− w(v− Ve)− u(v− Vi)

τe
w

dt
= −w

τi
u

dt
= −u

v > threshold −→ v = reset (1)

The Monte Carlo simulation was set up in Python for a

population of 10,000 neurons following the dynamical system

in Equation (1). For a time step of 1 ms, neurons receive a

number of input spikes sampled from a Poisson distribution

with a given rate parameter. Each spike causes a 1.5 nS/cm²

increase in the excitatory synaptic conductance variable,w. Each

neuron also receives excitatory and inhibitory Poisson noise at

50 Hz, again, with each excitatory spike causing a 1.5 nS/cm²

increase in w and each inhibitory spike causing a 1.5 nS/cm²

increase in u. Both u and w were set to 0 nS/cm² at the start of

the simulation.

A MIIND simulation was similarly set up. Six separate

grid transition files were generated all according to Equation

(1) but with different grid resolutions: 50 × 50 × 50 (for

u, w, and v, respectively), 100 × 100 × 100, 150 × 150 ×

150, 100 × 100 × 200, 200 × 200 × 100, and 50 × 50 ×

300. For all resolutions, the grid spans the model state space

for u = −0.2 nS/cm² to 5.2 nS/cm², w = −0.2 nS/cm² to 5.2

nS/cm², and v = −80 to −40 mV. These ranges represent the

limits of the values that the variables can take in the MIIND

simulation but were chosen because all significant probability

mass is contained in this volume throughout. All simulations

produced 1.2 s of activity. The average membrane potential,

synaptic conductances, and firing rate of the population

were recorded.

Though MIIND has not been fully benchmarked, it is

instructive to see the relative benefits to computational efficiency

with differing grid resolutions. For the grid resolutions, 50 × 50

× 50, 100 × 100 × 100, 150 × 150 × 150, and 50 × 50 × 300,

the time from starting the MIIND program to the beginning of

the simulation was recorded to give an indication of the effect

of load times with greater transition file sizes. Then the time

to complete the simulation was recorded. The same simulation

from above was performed without recording the membrane

potential or firing rate to the hard drive. The machine used to

produce the results has a solid state drive (SSD), an Intel(R)

Core(TM) i7-8750H CPU @ 2.20GHz, and an NVidia Geforce

GTX 1060.
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FIGURE 6

(A) A schematic of the E-I population network. The excitatory population, E is made up of NE neurons. The inhibitory population, I contains
NI = 10, 000− NE neurons. Each population receives an excitatory external input of 500 Hz. Each neuron in both populations receives 0.01NE

excitatory connections and 0.01NI inhibitory connections. Arrows represent an excitatory connection, circles represent an inhibitory connection.
(B) The three-dimensional state space of the leaky integrate-and-fire neuron with an excitatory and inhibitory synaptic conductance. v is the
membrane potential, w is the excitatory synaptic conductance, and u is the inhibitory synaptic conductance. The vector field shows the direction
of motion in state space for neurons with no external impulse. Neurons which receive an excitatory input spike are shifted higher in w. Neurons
which receive an inhibitory input spike are shifted higher in u. The solid curves show trajectories of neurons under excitatory impulse alone. The
dashed curves show trajectories of neurons under inhibitory impulse alone.

2.5. An E-I network

To demonstrate how MIIND is able to simulate the

interaction of multiple populations and capture changes in

behavior with different parameters, a population network was

set up in an E-I configuration (Brunel, 2000). Figure 6 shows the

population level connections. In both the MIIND and Monte

Carlo simulations, for each connection, the average firing rate

of the source population is used as the rate parameter for

the Poisson input to the target population. The Monte Carlo

simulation was set up in Python for 10,000 neurons following the

dynamics of Equation (1). Parameters for the neuron model and

E-I network model are adapted from Sukenik et al. (2021). The

10,000 neurons are shared among the two populations according

to a ratio parameter of excitatory to inhibitory neurons. That

is, the number of inhibitory neurons, NI was chosen and the

number of excitatory neurons, NE was set equal to 10, 000 −

NI . The excitatory and inhibitory conductance jump values are

held constant and a weight is multiplied by the Poisson rate

parameter of each connection to reflect that each neuron should

receive 0.01NE excitatory connections and 0.01NI inhibitory

connections. A transmission delay of 3 ms is applied to all

inter-population connections. Finally, each population receives

a 500 Hz excitatory Poisson distributed input with each spike

causing a 1.5 nS/cm² jump in w. Table 3 gives the full list

of parameters for the E-I model. MIIND was set up in the

same way using a newly generated grid with resolution 150 ×

150 × 150. The grid for this simulation covers a much larger

volume of state space as it is expected that there will be large

fluctuations in the conductance variables. Therefore, the size

of the grid was set to u = −10 nS/cm² to 100 nS/cm², w =

−5 nS/cm² to 25 nS/cm², and v = −80 to −40 mV. Across
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TABLE 3 Parameters used for the E-I network model.

Parameter name Values and notes

Parameters apply to both the MIIND and Monte

Carlo simulations

External firing rate 500 Hz to both E and I populations

External excitatory jump 1.5 nS/cm² change in w per incoming spike

NI Free parameter in the range 1,000–9,000

NE 10, 000− NI

Number of E to E connections 0.01NE

Number of E to I connections 0.01NE

Number of I to I connections 0.01NI

Number of I to E connections 0.01NI

Excitatory jump for E to E

connections

1 nS/cm² increase in w per incoming spike

Excitatory jump for E to I

connections

1 nS/cm² increase in w per incoming spike

Inhibitory jump for I to I

connections

4 nS/cm² increase in u per incoming spike

Inhibitory jump for I to E

connections

4 nS/cm² increase in u per incoming spike

E to E transmission delay 3 ms

E to I transmission delay 3 ms

I to I transmission delay 3 ms

I to E transmission delay 3 ms

simulation trials, all parameters were kept constant except

for NI .

2.6. A four-dimensional neuron
population

To test the performance of MIIND with populations of four-

dimensional neurons, we simulated a population of Hodgkin-

Huxley neurons (Hodgkin and Huxley, 1952). This gold-

standard model has not been simulated with a population

density approach before. A fourth time-dependent variable

significantly increases the amount of computation required to

generate the transition matrix and its size beyond the three-

dimensional case above. As before, a Monte-Carlo simulation

was set up for comparison. The Hodgkin-Huxley neuron model

is defined in Equation (2). As in Equation (1), the neuron

has a capacitance, C, and a leak conductance, gl, with reversal

potential,Vl. The potassium and sodium synaptic conductances,

gk and gna remain constant with respective reversal potentials,

Vk and Vna. However, they are modulated by the three time

dependent gating variables, n,m, and h. The definitions of α and

β are given in Table 2.

C
dv

dt
= −gkn

4(v− Vk)− gnam
3h(v− Vna)− gl(v− Vl)

m

dt
= αm(1−m)− βmm

n

dt
= αn(1− n)− βnn

h

dt
= αh(1− h)− βhh. (2)

The population was given a Poisson distributed input at

various rates between 0 and 40 Hz. The number of input

connections to each neuron in the population was set at 100

and can be considered a weight so that the incoming rate would

be multiplied by this amount. Each incoming spike produces

a 3 mV jump in membrane potential. For MIIND, only one

Hodgkin-Huxley grid was generated with dimensions 50 × 50

× 50 × 50 for h, n, m, and v, respectively. This resolution was

chosen to keep the total number of cells low. The size of the grid

was set between −0.1 and 1.1 for the gating variables, and v =

−100 to 60 mV.

3. Results

3.1. A single population of
three-dimensional neurons

Figure 7 shows the probability mass functions for six

different simulations of a population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductances.

Each cell has a color/brightness and an alpha or transparency

value such that cells with a higher probability mass are a brighter

yellow, and more opaque than cells with lower probability mass

which are darker red and more transparent. This plotting style

allows the center of the function volume to be seen from the

outside. Cells with zero probability are entirely transparent so

that only significant cells are visible. Due to the greater opacity

which often appears in the central volume of the function,

the MIIND user may also rotate the entire volume to view

the function from all angles. In Figures 7A,B, when only an

excitatory input is provided, the function remains in the two-

dimensional plane at u = 0 and is the same function as produced

in the purely two-dimensional model demonstrated in de Kamps

et al. (2019) and Osborne et al. (2021). Likewise, when only an

inhibitory input is provided (Figures 7C,D), the function stays

at w = 0. Figures 7E,F show the result of both an excitatory

and inhibitory input.When enough excitatory input is provided,

probability mass reaches the threshold membrane potential and

is reset causing a sharp cut-off at those values. The brighter

yellow cells in the center of the function’s volume indicate that

the majority of neurons can be found there traveling from the

reset to threshold potential receiving close to the average number

of excitatory and inhibitory input spikes. Further out, at higher
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FIGURE 7

Visualizations of a population of leaky integrate-and-fire neurons with an excitatory and inhibitory synaptic conductance in MIIND. Cells with no
probability mass are transparent. With increasing probability mass, they become more opaque and change from red to yellow. The color and
opacity are normalized to the value of the cell with the highest probability mass. (A,C,E) The probability mass function across a 150 × 150 × 150
grid. (B,D,F) The probability mass function across a 50 × 50 × 50 grid for the same simulation time as the image above. (A,B) When the
population receives only excitatory incoming spikes, the probability mass function remains in the plane at u = 0. (C,D) When the population
receives only inhibitory incoming spikes, the probability mass function stays in the plane at w = 0. (E,F) When the population receives both
inhibitory and excitatory incoming spikes, the probability mass function extends into the state space. In this case, the excitatory input is enough
to overcome the inhibitory input and the mass function moves across the threshold potential. The bright face shows the probability mass at the
threshold. Probability mass which has been reset reappears at the reset potential and moves further into the state space.

values of u and w, the probability of finding a neuron reduces as

neurons are less likely to receive many more spikes than average.

Figure 8 shows average membrane potential recorded from

multiple simulations of a population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductances.

The scatter points show the average potential of 10,000

individual neurons simulated using the Monte Carlo approach.

The remaining curves show the average potential of populations

simulated in MIIND using 3-dimensional grids of different

resolutions. For the transient period before the membrane

potential reaches a steady state, all the MIIND simulations

remain synchronized with the Monte Carlo results. As would

be expected, the least accurate result comes from the lowest

resolution grid, 50 × 50 × 50. However, even at this resolution,

themean error between theMonte Carlo activity and theMIIND

result is only 0.354 mV. The error is reduced significantly for

100 × 100 × 100 (0.115 mV) then further reduced but only

slightly for 150 × 150 × 150 (0.063 mV) suggesting a degree

of diminishing return for increasing the resolution in an equal

fashion across dimensions. The error from the 200 × 200 ×

100 grid is the same as the 100 × 100 × 100 grid but the

100 × 100 × 200 grid does better (0.059 mV) indicating that

increasing the resolution of the membrane potential dimension

is a more efficient way to attain accurate results for this

underlying neuron model. To illustrate this further, the 50 ×

50 × 300 grid performs the best of the trials with an average

error of 0.054 mV despite the low resolution of the conductance

dimensions. Over a range of average rates (Figure 8B) of the

Poisson distributed input, the steady state membrane potential

of theMIIND simulations, again, approaches those of theMonte

Carlo results with increasing resolution. For low input rates,

when the majority of neurons are subthreshold, the 150 × 150

× 150 grid gives the closest approximation to the Monte Carlo

results. However, once the majority of neurons are crossing

the threshold and firing, the 50 × 50 × 300 grid gives better

agreement. Figure 8C shows the average excitatory conductance

variable for the grids across the range of lower input rates (1–

10 Hz) in comparison to the Monte Carlo approach. The 50

× 50 × 300 grid underestimates the conductance which could

account for the underestimation of the membrane potential for

the same input. The 150 × 150 × 150 grid, by contrast, has

better agreement with the membrane potential and excitatory

conductance for these rates which producemostly sub-threshold

activity in the population.
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FIGURE 8

(A) The average membrane potential for a single population of leaky integrate-and-fire neurons with excitatory and inhibitory synaptic
conductances simulated using a Monte Carlo approach and using MIIND with grids of di�erent resolutions. (B) The e�ect on the average steady
state membrane potential with di�erent rates of the Poisson distributed input for the Monte Carlo simulation and di�erent MIIND grid
resolutions. (C) The e�ect on the average steady state excitatory conductance variable with increasing Poisson input rate. Only the mean of the
values for the Monte Carlo simulation are shown here (without a variance or standard deviation) because the MIIND simulation produces no
such statistic and so no comparison can be made.

Figure 9 shows the average firing rates of the same

Monte Carlo and MIIND simulations. The differences in grid

resolution produce a similar trend in error, with the lowest

resolution, 50 × 50 × 50 laying furthest away from the

Monte Carlo simulation and the 50 × 50 × 300 grid the

closest. However even at lower resolutions, all the average firing

rates of the MIIND populations are very well matched to

direct simulation.

3.2. Simulation speed for di�erent grid
resolutions

Table 4 shows the load and simulation times for 1 s of a single

population of leaky integrate-and-fire neurons with excitatory

and inhibitory synaptic conductances. As expected, as the total

number of cells increases the load times and simulation times

increase. When running multiple short simulations, the load
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FIGURE 9

(A) The average firing rate of a single population of leaky integrate-and-fire neurons with excitatory and inhibitory synaptic conductances
simulated using a Monte Carlo approach and using MIIND with grids of di�erent resolutions. (B) The e�ect on the average steady state firing rate
of the population with increasing rate of the Poisson distributed input.

TABLE 4 Times to simulate 1 s of a population of leaky

integrate-and-fire neurons with excitatory and inhibitory synaptic

conductances in MIIND using di�erent grid resolutions.

Grid resolution Time to load the grid

(s)

Time to run the

simulation (s)

50× 50× 50 4.82 2.71

100× 100× 100 35.58 15.18

150× 150× 150 126.01 48.7

50× 50× 300 27.62 11.93

time becomes a significant consideration. However, only the

simulation time is dependent on the required length of the

simulation. The load time remains constant.

3.3. Three-dimensional neurons in an E-I
population network

For the Monte Carlo simulation of 5,000 excitatory and

5,000 inhibitory neurons (with an average of 50 excitatory and 50

inhibitory incoming connections to each), the two populations

reach an equilibrium state after an initial transitory phase.

Figure 10A shows excellent agreement between the average

membrane potentials from the two approaches. The initial

oscillation in the transient period covers nearly 100 nS/cm² in

u and 12 nS/cm² in w which requires a much larger volume

of state space than the single population simulation because of

the large synaptic efficacies and recurrent connections involved

in the E-I network. In MIIND, as the oscillations reduce, the

state space covered by the probability mass function reduces and

is therefore discretized by fewer cells. In other words, the cell

density covering the function is lower. However, this only causes

a minimal amount of additional damping to the oscillation as

the function reaches equilibrium.

In the Monte Carlo simulation, with 8,000 excitatory

neurons and 2,000 inhibitory neurons, both populations

produce an oscillating pattern as shown in Figure 10B. In the

MIIND simulation, in order to match the connection ratios

between populations, the number of excitatory and inhibitory

connections is set to 80 and 20, respectively. The simulation

is also able to produce a similar oscillatory pattern. As would

be expected, the population density approach produces a

regular oscillation while the Monte Carlo has some variation

in the length and amplitude of each oscillation. The double

peak of each oscillation can be explained by observing the

probability mass function in MIIND during the simulation

(Figures 10C–H). The initial peak is produced as the whole

population depolarizes and approaches the threshold potential.

As mass begins to pass the threshold, the reset mass brings

the average membrane potential back down. The probability

mass is pushed higher in w and u as the recurrent excitatory

input and inhibitory input from the other population increase.

The excitatory input has the strongest effect on the probability

mass close to the reset potential which begins to push the

average membrane potential back up toward a second peak. The

inhibitory input has the strongest effect on the probability mass

close to threshold and less and less mass reaches threshold. The

split probability mass function coalesces oncemore and the cycle

can repeat.

When the ratio of excitatory to inhibitory neurons is 9:1,

the Monte Carlo simulation demonstrates how the excitatory
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FIGURE 10

(A) The average membrane potential of the excitatory population in the E-I network with a ratio of 1:1 excitatory and inhibitory neurons
(NE = NI ). In the MIIND simulation, each connection between populations has the “number of connections” value set to 50. (B) The average
membrane potential of the excitatory population in the E-I network with a ratio of 8:2 excitatory to inhibitory neurons (NE = 8, 000,NI = 2, 000). In
the MIIND simulation, the excitatory connections have the “number of connections” value set to 80 and the inhibitory connections have the
“number of connections” value set to 20. For clarity, the traces from the Monte Carlo simulation and the MIIND simulation have been separated.
(C–H) The probability mass function for the excitatory population in MIIND during the double peaked oscillation with a connection ratio of 8:2.
(H) shows the corresponding points in the oscillation. At (C), The population only experiences the external input of 500 Hz and is pushed toward
the threshold. At (D), though some probability mass has passed threshold and been reset, the majority is close to the threshold and so the
average membrane potential is at a peak. At (E), probability mass has continued to cross the threshold so that now a large amount is near the
reset potential which brings the average back down. The function has also shifted higher in w due to the excitatory self-connections and more
probability mass is pushed across threshold. The function also begins moving upwards in u from the increased inhibitory input but this is not
enough to overcome the excitation. At (F), the inhibitory input has continued to push the probability mass function higher in u and much less
probability mass now crosses the threshold. At (G), the function continues to shift back away from threshold approaching (C) once again.
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self-connection causes the excitatory population activity to

“blow-up” such that the excitatory conductance reaches a

maximum value and neurons fire at their maximum rate. This

state is a challenge for MIIND to emulate. Firstly, the number

of iterations required to solve the Poisson master equation each

time step must be increased to 1,000 due to the instability caused

by such high firing rates. Secondly, the excitatory conductance

variable frequently approaches 80 nS/cm² and so the grid must

cover a large amount of state space requiring an unreasonable

resolution in the w dimension to maintain the same cell density

as previous simulations.

3.4. A single population of
four-dimensional Hodgkin Huxley
neurons

Even with a low resolution of 50 × 50 × 50 × 50, MIIND

is able to simulate the probability mass function of a population

of Hodgkin Huxley neurons and achieve good agreement with

the transient activity and steady state membrane potential of

an equivalent Monte Carlo simulation (Figure 11A). Figure 11B

shows how, for a range of input firing rates, the resulting average

membrane potential at steady state approximates that of the

Monte Carlo simulations better for higher frequencies. At low

input rates, the membrane potential is overestimated. MIIND

displays the probability mass function for three of the four

dimensions at a time as shown in Figure 11C. With a key press,

the user can change the order of dimensions displayed and see

any combination of variables. Figure 11F shows the three gating

variables,m, n, and h.

4. Discussion

The original motivation for applying a population density

approach to simulate neurons was to reduce the computational

complexity when analyzing a large population of homogeneous

neurons. This has since been made somewhat redundant with

the development of more powerful computers and especially

the use of GPGPU architectures. For example, GeNN (Yavuz

et al., 2016; Knight et al., 2021) can simulate in real time

the well known Potjans-Diesmann microcircuit model (Potjans

and Diesmann, 2014) which comprises around 10,000 neurons.

The analytical solution for the behavior of a leaky integrate-

and-fire population developed by Omurtag et al. (2000) using

the diffusion approximation would undoubtedly prove efficient,

requiring only a single calculation per population per time

interval. However, it would require a lot of manual work to

define the full population network and if a different neuron

model were to substitute the integrate-and-fire neuron, the

entire solution would need to be re-derived. Even with newer

techniques such as the refractory density approach, work is

required to get the underlying neuron model in a form that

can be processed. MIIND uniquely overcomes this limitation

allowing the user to define the neuron model without any

further manual process to produce a numerical solution to

the population density approach. However, solving the master

equation for the non-deterministic noise component of the

dynamics requires repeated applications of the jump transitions

shown in Figure 3. As discussed by Osborne et al. (2021),

depending on the model, the time step, and the input firing

rate, solving the master equation can require tens or hundreds of

iterations per time step of the simulation. This was the case for

the EI network in the 8:2 ratio. The sharp changes in firing rate of

the two populations combined with large synaptic conductance

jumps meant that solving the master equation required 100

iterations per cell per time step to remain stable. The numerical

population density approach in MIIND should, therefore, not

be used for simulations where computational speed is the most

important factor. However, it has been shown (de Kamps et al.,

2019) that there is at least an order of magnitude improvement

in memory consumption over direct simulation techniques,

such as that of NEST, as there is no requirement to store the

spike history.

Although computational efficiency is not the primary reason

for using the population density approach, there are some

benefits to generating the probability mass function over a direct

simulation of individual neurons. The probability mass function

can be considered the idealized distribution of neuron states.

Cells in the grid which have zero mass correspond to volumes

of state space where neuron states should never appear. This can

be difficult to approximate with a direct simulation of individual

neurons for parts of the distribution with a low but non-zero

probability mass. Inconsistencies between the behavior of real

neurons and a model could be identified more effectively by

comparing to the probability mass function. Also due to the

idealized probability mass function, the output metrics of a

population such as average firing rate and average membrane

potential have no variation due to noise or a specific realization

of the Poisson distributed input. Therefore, no averaging or

smoothing is required to produce more readable results as

would be expected from a direct simulation (Figures 8, 9). In

the E-I network, 10,000 Monte Carlo neurons was enough to

produce a similar result to the MIIND simulation. But when

that number is reduced to 1,000, there is greater variation in the

firing rate and average membrane potential of the population.

In the E-I network, a temporarily high number of spikes from

the excitatory population leads to increased excitatory input 3

ms later and increased inhibitory input 3 ms after that. The

resulting reduction in average membrane potential and firing

rate is therefore exaggerated which produces an overall skew

of these metrics. A population in MIIND can be thought of as

an infinite number of trials of a single neuron or as an infinite

number of neurons performing a single trial once. Because of

this, a MIIND simulation is independent of the number of
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FIGURE 11

(A) The average membrane potential of a single population of Hodgkin-Huxley neurons simulated using a Monte Carlo approach and in MIIND
with a 50 × 50 × 50 × 50 grid. (B) The average steady state membrane potential with di�erent rates of the Poisson distributed input. (C–E) The
three-dimensional marginal probability mass function of the four-dimensional Hodgkin-Huxley neuron population in MIIND having reached a
steady state. The membrane potential v, sodium activation variable m, and potassium activation variable n are shown. (F) The three-dimensional
marginal probability mass function showing the gating variables, w, n, and h (sodium inactivation variable) only.

neurons in the population and cannot produce so-called finite

size effects. This can be a useful feature as it is not always as clear

from a Monte Carlo simulation what behavior stems from the

finite size and what is a population level effect.

Finally, the visualization of the probability mass function

in MIIND could prove to be a valuable educational tool

for understanding the behavior of neural populations under

the influence of random spikes. In fact, any N-dimensional

dynamical system under the influence of shot noise could be

observed although this has not been attempted. It would be

easy enough to plot points in a three-dimensional state space

for individually simulated neurons but points at the front of
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the distribution would obscure those at the back and in the

center. Producing a smooth enough distribution and to pick

an appropriate transparency value for each cell would require

a population of millions of neurons.

The increased time to produce the probability mass function

over direct simulation does not negate the usefulness of lower

resolution grids to improve the simulation time as shown in

Table 4. In particular, using a low resolution grid can greatly

improve workflow when designing or prototyping a new model.

Building a model which performs as required involves multiple

runs of the simulation as parameters are adjusted or when

errors are identified. This is another reason why it is convenient

that MIIND renders each population’s probability mass function

while the simulation is running. As shown in Figure 11, viewing

the probability mass function across all dimensions from any

angle as the simulation progresses gives both insight into

how the population behaves and any unexpected behavior is

quickly identified.

4.1. What is the theoretical output spike
distribution of a population in MIIND?

Different populations in MIIND interact via their average

firing rates. For each connection, the average firing rate of

the source population is taken as the rate parameter to a

Poisson distributed input to the target population. For a one-

dimensional neuron model such as a leaky integrate-and-fire

neuron for which incoming spikes cause an instantaneous jump

in membrane potential, it is reasonable to assume that neurons

in the population are pushed over threshold directly and only

due to the Poisson distributed input suggesting that the output

distribution should also be Poisson distributed. However, in

higher dimensional models with, for example, the addition of

excitatory and inhibitory synaptic conductances, it becomes

clear that neurons can move across threshold without direct

influence from the Poisson input. If a sample of neurons are

taken from the probability mass distribution at the beginning

of a simulation, by definition, the probability that each sampled

neuron is above threshold in a given time step is the probability

mass which sits above threshold to be transferred to the reset

potential. As the behavior of all neurons are independent by

virtue of being unconnected and homogeneous, the distribution

of spiking neurons from the population at each time step can

be considered binomial with p equal to the total probability

mass above threshold. Using the average firing rate as the

parameter to a Poisson input for each population is therefore

a reasonable approximation. Models such as the E-I network

which have self-connections and loop-connections invalidates

the assumption of independence and further work is required to

assess if using Poisson distributed outputs is appropriate under

such circumstances.

4.2. Finite size populations

The main function of MIIND is to use the numerical

population density approach to simulate population behavior.

However, a population of finite size can also be simulated

which makes use of the transition matrix file and calculated

jump transitions. This hybrid version of the algorithm is closer

to direct simulation. A list of M grid coordinates is stored

which represents the location in state space of M individual

neurons. At each time step, each coordinate is updated to one

of the possible transition cells defined in the transition file with

probability equal to the proportion of mass in that transition. To

capture the non-deterministic dynamics, a Poisson distributed

random number of spikes is sampled and the calculated

jump transition is applied that many times. Again, the jump

transition mass proportions are used as the probability for

choosing the coordinate update with each jump. The average

firing rate of the population is the number of neurons above

threshold (which are then translated to the reset potential)

divided by M. Currently direct connections between neurons

is not implemented and instead, the average firing rate is

used as the Poisson rate parameter applied to all neurons in

the target population. Because the Poisson master equation

is not required to solve the non-deterministic dynamics, this

algorithm is much faster than the population density technique

and approaches the speeds of simulations in GeNN although

this has not been fully benchmarked. The two main reasons for

using the finite size algorithm in MIIND are to further speed

up prototyping of new models and to more easily eliminate

finite-size effects.

4.3. Other potential models for study

The ability to easily simulate populations of three- and

four-dimensional neuron models opens a world of possibilities

for the population density approach. The Tsodyks-Markram

synapse model (Tsodyks and Markram, 1997), for example, can

be combined with a leaky integrate-and-fire neuron model to

define a four-dimensional system. In the original work, the

model was shown to support both rate coding between neurons

and more precise spike timing based on the configuration of

resource management in the synapse. For a large population,

simulating the rate coding configuration makes more sense but

MIIND could also be used to investigate the resilience of the

spike timing configuration to noise. Booth and Rinzel (1995)

developed a two-compartment minimal motor neuron model.

Each compartment requires two dimensions and MIIND would

therefore be able to simulate a population of both compartments

together. This model can reproduce the bi-stable behavior of

motor neurons such that a suitable incoming excitatory burst of

spikes can shift the population to an up state where it remains

even in the absence of further input. This is a candidate for
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identifying any finite size effects and, in the presence of noise,

estimating the amplitude and duration of the required excitatory

and inhibitory bursts to switch states.

4.4. Limitations

The population density approach suffers from the so-called

curse of dimensionality. With each additional time-dependent

variable in the underlying neuron model, the number of

cells in the grid is multiplied by the resolution of the new

dimension. Not only does this produce an exponential increase

in the number of cells for which the deterministic and non-

deterministic dynamics must be solved, but the number of

transitions per cell in the transition file also increases in most

cases. The 50 × 50 × 50 × 50 transition file for the Hodgkin

Huxley model runs to nearly 1.5 Gb all of which must be loaded

into graphics memory. There is still work to do to improve

the memory management in MIIND but it is likely that a 5-

dimensional transition matrix would not fit in the memory of

current graphics hardware. In addition, generating theHodgkin-

Huxley transition file takes over 100 h on the four CPU cores of

a typical PC. This is a one-time preprocessing requirement that

can be mitigated somewhat with high performance computing

systems but, again, for higher dimensional models the time

required would become unfeasible.

In many cases, the number of cells in the grid that

contain a non-zero amount of probability mass at any time

during the simulation is much lower than the total number of

cells. For higher dimensions it would be possible to calculate

the non-deterministic dynamics transitions required for a cell

when probability mass is first transferred to it during the

simulation. The simulation would be considerably slower at

the beginning but would approach the original speeds as more

cells are calculated. The memory requirements would only come

from the cells involved in the probability mass function. This

adaptation would still have an upper limit on the number

of dimensions as the number of involved cells would still

increase with greater dimensionality but it would be far from the

exponential increase currently.

Another potential method for improving performance in

both memory and computation speed would be to relax the

requirement that all grid cells are the same size. In areas of

state space where the dynamics are expected to follow a shallow

curve (as opposed to the sharp turns in state space which can

occur near unstable stationary points for example), larger cells

could be defined. In order to preserve the benefit of equally

sized cells when calculating the jump transition, the larger cells

could be subdivided at simulation time and the deterministic

dynamics transitions into the large cell could be linearly

interpolated throughout. While not significantly affecting the

computation time, the memory requirements would improve

with the reduced number of transitions.

5. Conclusion

We have demonstrated for the first time, a numerical

population density technique to simulate populations of N-

dimensional neurons. Although models of higher than 5

dimensions are currently technologically out of reach, it is

a significant achievement to produce the probability mass

function of a population of 4-dimensional Hodgkin-Huxley

neurons and to be able to visualize it in such a fashion.

Implementing this technique in MIIND results in a very low

barrier to entry for new users allowing them to define their

desired neuron model in Python, automatically generate the

required transition files and run the simulation without expert

knowledge of the technique or any involved technical knowledge

beyond some basic Python and XML. Although originally

conceived as a technique to improve computational efficiency

when simulating large populations of neurons, the population

density technique cannot achieve the speeds of some other

simulation methods. However, there are a number of benefits to

using it, particularly in the areas of theoretical neuroscience and

as a tool for analysis.
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