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Abstract

With the unprecedented shift towards automated urban environmens in recent years, a new
paradigm is required to study pedestrian behaviour. Studying pe@éstrian behaviour in futuris-
tic scenarios requires modern data sources that consider both the Aomated Vehicle (AV) and
pedestrian perspectives. Current open datasets on AVs predominantlfail to account for the latter,
as they do not include an adequate number of events and associated defithat involve pedes-
trian and vehicle interactions. To address this issue, we propose uy Virtual Reality (VR) data
as a complementary resource to current datasets, which can be desighéo measure pedestrian
behaviour under speci c conditions. In this research, we focus orthe context-aware pedestrian
trajectory prediction framework for automated vehicles at mid-block unsignalized crossings. For
this purpose, we develop a novel multi-input network of Long Short-Term Memory (LSTM) and
fully connected dense layers. In addition to past trajectories, he proposed framework incorporates
pedestrian head orientations and distance to the upcoming vehicles asequential input data. By
merging the sequential data with contextual information of the environment, we train a model
to predict the future pedestrian trajectory. Our results show that the prediction error is reduced
by considering contextual information extracted from the crossing erironment, as well as the
addition of time-series behavioural information to the model. To analyze the application of the
methods to real AV data, the proposed framework is trained and applied topedestrian trajectories
extracted from an open-access video dataset. Finally, by implementig a game theory-based model
interpretability method, we provide detailed insights and propose recommendations to improve the
current automated vehicle sensing systems from a pedestrian-oriéed point of view.

Keywords: Pedestrian trajectory, LSTM, model interpretability, virtual r eality, pedestrian
crossing behaviour

1. Introduction

The rapid technological development in Automated Vehicles (AVs), folloved by a tremendous
increase in their adoption, promises a signi cant transformation in the dynamics of urban roads.
An important transformation expected to occur is the e ect of AVs on pedestrians, as the most
vulnerable road users. Particularly, the absence of a driver in the ghicle leads to the absence
of eye contact and observation of head and body movements by the driver. Aerefore, there is
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a strong need to re-examine the interaction between vehicle and mgestrian, while accounting for
the expected changes. To be able to compensate for the silent agreememrrently between the
driver and the pedestrian and establish a similar type of interactiors between them in an automated
environment, AVs need to nd a way to anticipate pedestrian behaviour, i.e. intentions, choices and
movements/trajectories, based on the pedestrian reactions and postes the AV captures. Failures
in predicting pedestrian behaviour and the absence of timely actios by the AV have already
resulted in catastrophic accidents in recent years, even at very e speeds (Lubben, 2018; Porter,
2019). Studying pedestrian behaviour is an active and extensive area oksearch. However, we
focus on pedestrian behaviour when crossing mid-block, unsignakd roads. As rule-obeying AVs
nd their way on the streets in the future urban spaces, it is a likely scenario that the proportion
of this type of crossing increases (Millard-Ball, 2018). On the other hand by going through the
o cial reports of Uber's test AV incidence in Arizona, it can be concluded that the vehicle's
sensing system could not predict the pedestrian's path correctlybecause she was crossing mid-
block, and \the system design did not include consideration for jaywalking paestrians.” (Lubben,
2018; Sumwalt Il et al., 2018). Thus, a thorough investigation of mid-block crosings is timely
and of vital importance.

At a conceptual level, we can simplify the interactions of an AV and a pelestrian crossing mid-
block to three parts (Kalatian and Farooq, 2021): (a) a pedestrian waits on tte sidewalk for the
right time to initiate a cross, (b) he/she follows a certain trajectory based on the characteristics of
the approaching vehicle and geometric and environmental conditions, (cthe approaching vehicle
anticipates pedestrian behaviour and reacts by making the requirediecisions to provide a safe and
comfortable interaction for both the pedestrian and the passengers. Wexplored the rst part of
this interaction, i.e., wait time of a pedestrian, in our two previous studies (Kalatian and Farooq,
2019, 2021) and others have optimized AV behaviour based on approaching pededsins (Vasquez
and Farooq, 2019). In this study, the focus is to understand and developrediction models for the
second part, i.e. the pedestrian trajectory. As depicted in Fig. 1, arious factors might contribute
to the trajectory followed by a pedestrian while crossing the steet. Prior actions by the pedestrian
and vehicle, as well as the features of the environment in which theross takes place, can be used
to predict the next movements of the pedestrian. Together, both pat (a) and part (b) predictive
models can be integrated and utilized by AVs to understand and predit pedestrian behaviour
more accurately and to proactively make maneuvering decisions (Vasqueand Farooq, 2019).

In this study, we rst provide an extensive review of the open-acess AV datasets from a
pedestrian-oriented point of view and discuss existing gaps withinthem. As all the currently
available open-access AV datasets fail to provide an adequate number ofichblock crossing events
and rich contextual information, we then propose using Virtual Reality (VR) controlled experiments
as a complementary tool to better understand the pedestrian behawur under speci ¢ conditions.
A novel multi-input network of Long Short-Term Memory (LSTM) and full y connected dense layers
is developed to model pedestrian trajectory while crossing a roadhian automated environment.
In the proposed model, time-series data of the initial steps of crossg are added to non-time-
series data of contextual information of the crossing's environment to pedict the next steps of
pedestrian trajectories. The proposed framework is rst trained andtested on VR data, and then
on an open-access video dataset to analyze the applicability of the framexk to real datasets. A
game theory-based post-hoc interpretability method for neural netvorks is then applied to analyze
the contributing factors to pedestrian trajectory prediction accuracy. By providing insights into
the most important factors in trajectory prediction, we propose suggesions that can improve
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Figure 1: lllustration of possible involving factors in pedestri an trajectory prediction

currently available datasets from a pedestrian-oriented point of viev. This study contributes
to the transportation research community by proposing and utilizing virtual reality data as a
complementary tool for pedestrian trajectory data collection in the context of automated vehicles.
Providing an extensive and pedestrian-oriented review of the cuently available AV datasets and
presenting insights on their drawbacks and ways to address thesa@vbacks is another contribution
of this research study, which we believe has not been adequately adessed in the literature.

The rest of this paper is organized as follows: a review of relevant stues in trajectory prediction
and an extensive review of currently available open-access AV datasetare provided in the next
section. Section 3 brie y discusses data collection and pre-prossing procedures. Methodology
and proposed architecture are described in Section 4. The application ajur proposed framework
on the data and their interpretation are discussed in Section 5. Final, Section 6 is dedicated to
conclusions, nal remarks, and future research plans.

2. Background

This section provides an overview of the research studies on peddan crossing behaviour,
emphasizing the trajectory prediction studies. Traditional approaches to pedestrian trajectory
modelling and recent data-driven trends are discussed in this dpter. Modern data-driven ap-
proaches require novel large-scale datasets. In order to understandedestrian behaviour in the
presence of AVs, real datasets from AV manufacturers are the most reliabl resources. Thus, a
review of the available datasets from a pedestrian-oriented point of \@w is provided in this section.

2.1. Pedestrian Trajectory Prediction

Early models in the literature tried to model the pedestrian movement using the concepts
and theories of ideal gases (Henderson, 1974) or uids (Helbing, 1998). However, ghturning
point in pedestrian movement modelling was the social force modddy Helbing and Molnar (1995).
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Based on the idea that behavioural changes are caused by so-called socialds, Helbing and
Molnar described forces a ecting pedestrian behaviour as a result afhe internal motivations of an
individual to decide and perform actions. Researchers later calibragd social force models based on
the purpose of their studies. In a study investigating pedestrianbehaviour at signalized crosswalks,
for instance, Zeng et al. (2014) incorporated forces from con icting vehites, signal phase and
crosswalk boundaries to develop a modi ed social force model. The ahbrs later added route
plans, pedestrian acceleration or deceleration choice and their leaddollower behaviour as well as
other underlying characteristics of pedestrians to further calitrate the social force model (Zeng
et al.,, 2017). Antonini et al. (2004) applied random utility maximization based discrete choice
models to pedestrian movement analysis using video data. The mioscopic approach of the model
allowed a detailed analysis of pedestrian movement. The choices tha pedestrian was facing
at a certain time in their model were: (1) speed level and (2) discree radial direction. Utility
functions for each of these choices were de ned based on the presermeobstacles, proximity to
the destination and positions and speeds of other pedestrians. Later stlies on these models added
other variables, helping the model gain strength by observing varioudactors. For instance, Guo
et al. (2012) added visibility parameters to the model while Asano et al. 2010) later incorporated
density. The major weaknesses of such microscopic methods are: 1.ethhighly myopic nature, as
most of them focus on the immediate interactions and behaviours of pedgrians, and 2. their need
of hand-craft functions, which makes it di cult to apply them to more complex settings (Alahi
et al., 2016). Moreover, models using logit formulation require the modker to discretize the space
and speed into arbitrary levels.

The widespread success of machine learning methods in recent ysaas well as the availability
of large pedestrian datasets, have resulted in a shift of pedestrianesearch trends to data-driven.
In particular, recurrent networks, i.e., RNN and LSTM, have been the dominant machine learning
methods for trajectory prediction. In most cases, the input data usd for trajectory prediction
is only the past trajectory of the pedestrians (Xue et al., 2019; Zhang et al.2019a; Alahi et al.,
2016; Gupta et al., 2018). Alahi et al. (2016) introduced Social LSTM, a method thatincorporated
interactions among pedestrians in sequential models, namely Long Sheferm Memory (LSTM),
to forecast pedestrian trajectory using video footage of walking indiiduals in crowded scenes.
In their method, a Social Pooling Layer is added to the framework. Through this layer, LSTM
layers trained for individuals in a scene share their information. Despite the success of the Social-
LSTM model in forecasting pedestrian trajectory, this model doesnot account for the contextual
information on the environment and aspects like where the pedestriaris looking. The model may
be applicable in pedestrian-dominant environments, e.g., shoppingnalls or train stations, but
it is di cult to apply to situations like road crossing behaviours of p edestrians in an automated
environment. Furthermore, the future trajectory predicted by Social-LSTM assumes a xed-length
future trajectory. More recently, Gupta et al. (2018) introduced Social-GAN, a model that predicts
socially acceptable trajectories by training adversarial against a regrrent discriminator. Similar
to (Alahi et al., 2016), this model fails to capture context information from the environment, and
its applicability is limited.

Some other research studies have incorporated contextual and semantiaformation into the
pedestrian trajectory to predict their next locations (Lee et al., 2017; Chandra et al., 2019; Rasouli
et al.,, 2019). The semantic information used can be occupancy maps (Bi et al2019), road
topology (Casas et al., 2018), the shape of objects (Chandra et al., 2019), and the sk of the
vehicles (Bhattacharyya et al., 2018; Rasouli et al., 2019). Lee et al. (2017), for ingnce, added
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semantic contexts, such as road structure and interactions and dynamg of the agents to their
proposed RNN model and predicted pedestrian trajectory of variable lagths in a video dataset.
Despite all the diversity in models, data and objective functionsin the relevant research studies,
only a few models have attempted to predict pedestrian trajectoy in the context of AVs. In most
such cases, analyzing pedestrians is limited to crowds and not in #hcontext of interactions with
vehicular tra c. To the best of our knowledge, almost all the models in the literature have used
general-purpose video footage of pedestrian movements as the input dat Because pedestrian
road crossing behaviour in the presence of AVs may di er, current daasets and scenarios may not
apply to futuristic scenarios. One of the reasons behind this gap can b&aced back to the lack of
pedestrian data in open-access AV datasets. In the next subsectiomn overview of these datasets
is provided.

2.2. Open-Access AV Datasets

Despite the signi cant improvements in AV's general operations through video and sensor
datasets, pedestrian-AV interaction modelling using such dataset has not been thoroughly ex-
plored. AV datasets have been widely explored for object detection@hang et al., 2019), semantic
segmentation (Porzi et al., 2019), and vehicle trajectory prediction (Guet al., 2020; Chandra et al.,
2020; Lee et al., 2017). However, a lack of pedestrian behavioural studies ugithese open-access
AV datasets made us explore the gaps and missing components in these dagas. For the pur-
pose of this study, we investigated four open-access AV datasets. Thedatasets were selected
among several available datasets because of their proper annotations of pedtigans and vehicles
over consecutive frames, the inclusion of urban areas and the duration dhe drives.

NuScenes dataset was the rst AV dataset investigated. With 1,000 scenesf 20 seconds
each (Caesar et al., 2019), nuScenes is one of the largest open-access datasedslable for AV
research. The vehicle containing sensors (ego vehicle) in nhuSea=h data collections is equipped
with 6 cameras, 1 LiDAR? and 5 RADAR, GPS, and IMU?3 sensors as the entire sensor suite
of an AV. With around 5.5 hours of driving in congested urban areas of Boston and Sigapore,
nuScenes is a suitable match for studying modern urban spaces. Twy-three classes of objects
are annotated in the dataset, including pedestrians, children, bigcles, construction zones, etc.
High-quality annotations of pedestrians make it easier to extract relevahframes from the dataset
and focus on the pedestrian side of the scenes. With detailed inforation on the ego vehicle
(the vehicle containing the sensors) position, the dataset enablesnding the vehicle-to-pedestrian
distance at each time frame. Although the dataset is inclusive of di erst weather conditions,
vegetation, and road markings, such information is not provided in the datagt and needs to be
extracted by processing frames and videos. Including the undeying maps of the ego vehicle is
another advantage that the nuScenes dataset provides, enabling extraicty some context from the
map.

Built upon the nuScenes database schema, Lyft level 5 dataset provige2.5 hours of automated
driving in Palo Alto, California (Kesten et al., 2019). Similar to nuScenes, underlying maps,
annotations and di erent weather conditions are included in the dataset Although it is relatively
new, using the same database format as nuScenes gives Lyft level 5 datasetrobust and well-
documented structure.

2Light Detection and Ranging sensor
3Inertial Measurement Unit sensors



Google's Waymo dataset is another large and annotated AV dataset publicly azilable (Sun
et al., 2020). With 1,950 scenes of over 6 hours of driving, the covered 76m? area in the
Waymo dataset is the largest among all the available datasets. Using threeoordinate systems and
providing means to transform data between frames, it is easy to follew and extract the trajectories
of objects by having the positions of objects both in global coordinates andehicle frame (relative
to the ego vehicle position). Extensive hours of data collection inaide driving in various scenarios,
including nighttime and daylight, construction areas, downtown and suburban areas, and diverse
weather conditions. The recordings have been captured in PhoenixMountain View and San
Francisco, enabling research opportunities in domain adaptations. The dtabase format used for
Waymo is new and di erent from those of other datasets, making the applcation of the models
designed based on other datasets require further data cleaning proderes. However, having an
active GitHub community with strong documentation helps smooth this transition. Unlike other
popular AV datasets, the Waymo dataset currently does not include an underlying map of the
events, making utilization of semantic information of the map in the algorithms impossible.

Finally, PIE (Pedestrian Intention Estimation) dataset was investi gated as an AV dataset specif-
ically focused on pedestrians (Rasouli et al., 2019). Over 6 hours of annotalevideo footage of
driving in Toronto, Canada, including over 1,800 pedestrian samples wit annotated attributes
and behaviours, makes PIE a relevant dataset for our research objectiveBeing limited to camera
information, and not including LIiDAR data, is the main drawback of the PIE d ataset, making it
di cult to measure the distance of the objects to the ego vehicle. Table 1 summarizes di erent
features of the reviewed AV datasets.

Table 1: AV dataset comparison

| NuScenes Lyft Waymo PIE \

Dimensions:

Scenes 1000 366 1950 36
Duration (hr) 5.5 2.5 11 6
Coverage km?) 5 NA 76 NA
Labelling:

Annotations 1.4 M 1.3M 12 M 3M
Pedestrian 80 K 25K 28M 800K
Annotations

Environment:

Night/Rain/Snow Yes No Yes No
Maps Yes Yes No No
Sensors:

LiDAR 1 2 5 No
Camera 6 7 5 1
RADAR 5 No No No
GPS Yes Yes Yes Yes
IMU Yes No No No

To study pedestrian behaviour in unsignalized crossings, we invéigate the four datasets men-
tioned above to extract the relevant frames to the objective of this sudy.



2.2.1. Pedestrian crossing in AV datasets

We extracted pedestrian instances based on the LiDAR data of Lyft, nuScees and Waymo
datasets, and the annotations provided. As the PIE dataset did not incluce LIDAR data, the
pedestrian labels provided in the dataset are used to extract the rguired information. For the
rst three datasets, we de ned seven criteria and applied them tothe datasets to narrow down to
events involving mid-block crossings of pedestrians. The de nedtriteria are:

1. Pedestrian is detected in front of the car: as LIDAR data enables detd@n of pedestrians
even if they are on the rear side, a proportion of pedestrians detectedre not interacting
with the ego vehicle when during the scene. This Iter makes sue that the ego vehicle is or
will interact with the pedestrian during the scene

2. Pedestrian is seen on both left and right sides of the ego vehicle: tbmit the event to
pedestrian crossings, it is expected that during the scene, theguestrian is detected on both
sides of the ego vehicle

3. Pedestrian is moving in front of the ego vehicle: remove instancseof pedestrians waiting,
walking on the sidewalk, sitting, etc.

4. Trajectory of detected pedestrians form an angle of 45 to 135 degrees withe trajectory of
the ego vehicle

5. Ego vehicle's change of direction forms an angle smaller than 60 degreeshis lter is added
to avoid turning vehicles to be included as they might pass all the pevious criteria with no
crossing of a pedestrian taking place

6. The distance between a pedestrian and the ego vehicle is less th&0 meters

7. Pedestrian and ego vehicle have intersecting trajectories meary that they path a similar
point during the scene

A diagram of the criteria de ned is presented in Fig. 2. It should be noted that due to the short

length of scenes, the last criteria should be loosened as the ego velki might not necessarily pass
the points that pedestrian is observed. The scenes related to remaed data are then manually
observed to verify if a pedestrian is crossing mid-block in frontof the ego vehicle. In the PIE

dataset, the pedestrian behavioural labels provided in the datasetriclude crossing pedestrians,
and spatial annotations enable separating pedestrian trajectories basedn the type of the cross.
Thus, mid-block unsignalized crossings of pedestrians can be extriad using the provided labels
in the dataset without any further analysis.

We start with the Lyft dataset, as the smallest dataset of all. In total, 350 scenes were available
within the original dataset. Not considering the distance, and applyingthe rst ve lters, 137
possible instances of jaywalking pedestrians are found. However, wh the instances are limited
to a 50-meter maximum distance between pedestrian and ego vehicle, lyn20 instances remain.
After carefully watching the 20 remained instances, it appeared that o jaywalking events occurred
within the dataset. The relatively short 2.5 hours length of the Lyft dat aset can be mentioned as
the reason behind the failure to nd any instances.

Moving forward to the nuScenes dataset with the same format as Lyft leve5, 5.5 hours of
driving is available in the nuScenes dataset, leading to a compresd size of 350 GB. After tracking
and detecting pedestrians among di erent frames of scenes using aotation IDs, 8,143 unique
pedestrians were found and tracked in the dataset. After applying all he criteria de ned, 200 of
the instances remain in the dataset. However, by viewing the videosf the remaining instances, it
appears that further Iters are required in order to extract jaywalk ing instances more accurately.
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Figure 2: The criteria for extracting mid-block crossings

For example, in some instances, the ego vehicle is interacting with pedestrian in a parking lot or
a private driveway. Although such instances meet the criteria de ned in our lIters, they cannot
be categorized as mid-block crossing events. Having more information alit the environment that
the ego vehicle is driving can help distinguish such instances aatnatically without the need for
manual subjective observations or complex video processing.

The Waymo dataset was the next dataset investigated to extract crossig pedestrian events. In
the rst step, an impressive number of 23,056 unique pedestrians wertracked between the frames.
However, only 1,182 of the total pedestrians passed Iter 1 and were detéed in front of the car.
By applying lIter 2,280 of the remaining pedestrians passed the criteia of being observed on both
sides of the ego vehicle. One hundred of the remaining pedestriamgere removed from the data by
adding the walking lter, leading to 211 instances of potential mid-block crossings. By applying
the angle criteria, 117 pedestrians were left in the dataset. Howevenyhen observing the video
data of the remaining instances, it appeared that a major part of the croses was related to ego
vehicle turning events, which made the walking pedestrians on th sidewalks pass all the previous
lters. By introducing Iter 5 and focusing on vehicles followi ng a relatively straight trajectory,
only 55 instances were left in the dataset.

Finally, PIE dataset, which concentrates on pedestrians and provide the labels required to
study them was explored. In total, PIE includes 1,842 instances of pedgrians, 517 of which are
related to crossing pedestrians. After cleaning the data and limithg the instances to unsignalized
mid-block crossings, 47 instances of cross remained in the dataset.

By investigating some of the most well-established open-access AV dagets, it can be concluded
that in order to extract events of a speci ¢ behaviour of pedestrians larger and more extensive
datasets are required. A solution to overcome this challenge would beot combine data from
di erent resources to create a hybrid dataset focused on pedestins. However, the di erences in
data formats, sensors, environments and coordinate systems used makea challenging and di cult
task to combine these datasets. Another solution would be to collect datawith a particular focus
on pedestrians. However, most popular video datasets used for pedeistn behaviour analysis are
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dedicated to pedestrian interactions with each other and their dynanics in crowds (Robicquet et al.,
2016; Zhang et al., 2019b). In recent years, researchers have tried to addeethis issue and collect
and provide pedestrian-oriented AV datasets (Kotseruba et al., 2016). Havever, these datasets are
still not well-established in the literature. To understand essential context information required
for pedestrian trajectory studies, we developed a controlled VR expriment. The controlled nature
of our data allows us to record pedestrian behaviour under several ct@mized conditions and test
the e ects of various contextual information on model accuracy.

3. Virtual Reality Data

Lack of inclusiveness for pedestrians and, in particular, crossing pkestrians in the available
AV datasets raises the need for exploring sources speci cally desigd to account for behavioural
patterns of jaywalking and mid-block crossing pedestrians. One sation to achieve such data in a
controlled environment, with the possibility of customizing scerarios to include desired conditions,
would be to develop and conduct Virtual Reality (VR) experiments. By doing so, and analyzing
the behaviour in a controlled, safe, and relatively low-cost enviroment, we can acquire information
on factors determining pedestrian trajectory and provide solutionsand suggestions for improving
and complementing AV datasets.

For this study, Virtual Immersive Reality Environment (VIRE) is us ed to simulate a range of
di erent scenarios and conduct experiments on di erent aspects of gdestrian crossing and walking
behaviour. Introduced by Farooq et al. (2018), VIRE uses Head Mounted Diplay and virtual
reality to enable interactive, immersive and complex simulated senarios. Hypothetical trac
scenarios can be projected directly to the eyes of users, and with Buman-in-the-loop simulation,
the behaviour of simulated vehicles is in uenced by the participants' behaviour. In this study,
scenarios involve a mid-block crosswalk, with vehicles passing bygn the street. Each scenario is
designed by a set of variables with di erent levels designed. Partiipants wearing the VR headset
start on the simulated sidewalk, and in di erent conditions, are askedto cross the street when
they feel it is safe to do so. While performing the experiment, pdestrian reactions, including their
coordinates, head orientation and distance to the approaching vehiclesare recorded in 0.1-second
intervals.

The data collection campaign was conducted in the summer of 2018 in four di eent locations
to cover a heterogeneous population. A total of 180 individuals from di erent age groups partici-
pated in the experiment over a period of 5 months. The experimerg were performed at Ryerson
University, City of Markham Public Library, Toronto City Hall, and North Yor k Civic center. Par-
ticipants were exposed to multiple scenarios, with changing parametrs in each round. In Fig. 3,
an experiment and two sample views of the VR environment are shown.

In addition to the recorded time-series data from participants, contextual variables from the
scenario's environment were captured to include in trajectory pediction models. The context
variables include the type of road (one-way, two-way or two-way with madian), speed limit (30, 40
or 50 km/hr), lane width (2.5, 2.75 or 3 m), weather conditions (snowy day or dear view), time
of the day (day or night), and arrival rate of cars (530, 750, 1100 veh/hr). These varables are
selected so that a hypothetical AV can capture and utilize them as init to its trajectory prediction
algorithm. Detailed information on the data collection campaign, collecteddata, scenario details,
etc. can be found in Kalatian and Farooq (2021). To concentrate on the interadons of pedestrians
with AVs, scenarios involving simulated human-driven vehicles inthe tra ¢ are not included in
this study. Also, other scenario variables that cannot be captured by cameras or LIiDAR sensors
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(a) A sample day view of the environment (b) A sample night view of the environment

(c) A participant doing the experiment

Figure 3: Images from a virtual reality experiment

are not used in the modelling to ensure that a hypothetical AV can depoy the proposed algorithms
without requiring information that they cannot capture inherently.

4. Methodology

Pedestrian movement patterns are highly correlated both temporally aml spatially (Song et al.,
2016). Recurrent Neural Networks (RNNs) are a popular choice to deal with the poblem by
treating mobility patterns of a pedestrian as a sequence predictiorproblem. However, it has been
shown that RNNs are not capable of remembering long-term temporal and spatiaiependencies
as a result of the problem of vanishing gradient (Hochreiter and Schmituber, 1997). Introduced
in (Hochreiter and Schmidhuber, 1997), Long Short-Term Memory (LSTM) is a modi cation to
traditional RNN architecture that enables learning sequence labels dr longer time intervals by
implementing four interactive gates.
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In this study, we propose,Aux-LSTM, a novel framework consisting of multi-input LSTM layers
and fully connected dense layers, to predict the next coordinate of pedestrians as output. Initial
steps of time-series data, i.e., coordinatesxp; Yo), head orientations (0p), and distance to vehicle
(do), are used as input to the LSTM layers. The output of the LSTM layers will then merge with
extra information from contextual variables (C), and the mergers enter a series of fully connected
dense layers to predict the pedestrians' future trajectory s ; ys ) in the rest of their crossing. In the
mathematical form, the neural network architecture to predict the future trajectory of a pedestrian
(T = fx¢;y; Q) using time-series data S = f Xg; Yo; 0p; dog) is as follows:

" LSTM hidden layer(s):

Hi = L(S;W; ) 1)
~ Dense hidden layer(s) variables
Hg=f(H;CiWg; ) 2)
" Qutput layer:
T=f(HaWo; ) (3)

where W,; Wqy; W, are the weights of hidden LSTM, hidden dense and output dense layers and
are activation functions with ReLU and Sigmoid nonlinearities, andL and f are LSTM and Dense
layers, respectively.

As a regularization mechanism to the framework, the model is supervid through two iden-
tical loss functions. Both loss functions are de ned as the mean squareeérror of the predicted
coordinates. By using the loss function after the LSTM layers, a.k.a. secondary loss, we allow
smoother training for the framework. Batch Normalization and Dropout layers are also used in
order to reduce over tting in the model. Fig. 4 depicts the generl framework of Aux-LSTM.

Input time-series data are de ned in two ways: time-based and distance-based In the time-
based approach, the pedestrian's coordinates in the next seconds are predicted based on their last
t1 seconds of behaviours. At each point during the cross, pedestrian oadinates, head orientations,
and their distance to the approaching vehicle during the lastt; seconds are used as time-series input
to predict the coordinates of the pedestrian in the nextt, seconds. In the distance-based type of
models, however, the proportion of data used as inputp, is de ned as the proportion of lane width
that the pedestrian has passed when the algorithm tries to predict tle pedestrian coordinates in
the rest of the cross. For instance, ifp is set to 0.3, the framework tries to predict the pedestrians'
trajectory based on their trajectory in the rst 30% of the lane width. Dierent values of t;, t»
and p are tested in order to provide insights into the required methodof data preparation. In
the AV context, a time-based approach enables the continuous observarwf pedestrian behaviour
and prediction of their next movements. A distance-based approach, orthe other hand, makes
it possible to predict the whole trajectory of the pedestrians in font of the vehicle to the point
when they fully cross the road. It should be noted that time-based moels and distance-based
models are not meant to be competing as each serves to provide answeosa di erent question.
In time-based models, it is assumed that the vehicle observes thmovements of the pedestrians
continuously, and thus it can periodically update the coordinates wth ground truth information.
On the other hand, distance-based models aim to provide insights o the performance of the
model on longer sequences. For practical purposes, time-based mosla@lre used and compared in
the relevant literature.
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Figure 4. Schematic framework of Aux-LSTM

One of the main barriers to even more prevalent use of neural networkespecially in practical
applications, is the di culties involved in their interpretabil ity and their blackboxnature. As this
study suggests Virtual Reality data as a tool to complement AV datasets, poviding insights on the
contributing factors to the error in trajectory prediction of pedestrians can be bene cial to future
AV data collections, as well as current AV data analysis. In this study, SHAP (Lundberg and Lee,
2017), a post-hoc game theory-based interpretation method is utilizedd understand the e ect of
variables on the prediction error.

Shapley value is a method rooted in game theory to allocate the payo of agb done in a
coalition, to the involved contributors. The same concepts can be appéd in determining the
contribution of each variable to the model output. Shapley value of each &riable i is calculated as
follows (Lipovetsky and Conklin, 2001):

X jSji(Fj j Sj 1)
jFj!

Osif ig(Xspf ig)  9s(Xs) (4)
S2Fnfig

In Eq. (4), Sis a subset of all features £), gsjr ig is the model trained using a subset with feature
fig present, andgs is the model trained without the feature i. Similarly, Xgs j4 and xs represent the
values of input features in subsetS when featurei is and is not present, respectively. Lundberget
al. (Lundberg and Lee, 2017) applied the concept of Shapley values to model ietpretation and

proposed to estimate the importance of a variable in an instance based on & corresponding
Shapley values.
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5. Results and Analysis

In this section, we discuss the results of applying the proposed #mework to the virtual reality
dataset. The two input data formats are presented and analyzed to test he performance of
prediction in di erent conditions. Moreover, in order to test the applicability of the models to real-
world video data, the model is also trained on pedestrian trajectoris at mid-block crosses extracted
from PIE dataset. Finally, a game theory-based machine learning interpetability method is applied
to the model trained on the VR data to assess the contribution of contexual variables to the model
accuracy.

5.1. Implementation Details

All data pre-processing and model development are coded in Pythonrmpgramming language,
using Keras library and its implementation of TensorFlow with GPU support. After the data
preparation process, an exhaustive grid search is conducted to nd th best network con gurations.
Dropout layers and their rates, number of nodes (neurons) in each hiden layer, batch size, number
of hidden LSTM and dense layers are con gured based on 8-fold cross-validan over 100 epochs,
and the best con gurations are selected to test on a separate test datasetModels are trained on
a Core i7 4 GHz CPU and a 16.0 GB memory.

In total, 3,276 instances of cross were collected using the virtual redyi experiments, which
is signi cantly higher than the mid-block crossing events detectd using all the open-access AV
datasets currently available. To compare the order of magnitude, the masrelevant open-dataset,
PIE, includes 47 such instances. For distance-based models, eaalstance of cross is divided into
two parts: 1. input to feed the time-series part of the networks and 2. output to be predicted.
Three input proportions (p) are tested as the proportion of the length of the road that shapes the
input data: 0.3, 0.5, 0.7. A larger p means that the vehicle predicts the next movements of the
pedestrians based on longer observations of their behaviour. Therefgréhe models with larger p
as input are expected to perform more accurately. On the other hand, incases of higher speeds,
vehicles might not have enough time to react timely in a largerp. The corresponding distance-
based data types areD _3;, D _5 and D _7, respectively. In time-based models, on the other hand,
each instance of crossing is converted to multiple sequences. Bdsen model parameters, eachy
second of the pedestrian trajectory is used as input to the time-s#es part of the data, and the
following t, seconds are used as the output to be predicted using the model. Hescin time-based
models, data size increases signi cantly compared to distance-bademodels. Three combinations
of sequence duration lengths are tested in this study. In the rst geerated data of this type, T_1.1,
each 1 second of the pedestrian's recorded behaviours are used to ghict the next 1 second. T_ 1.2
and T_2_1 are the two other time-based data types used to train time-based maels in this study,
with a t1 of 1 and 2 seconds and & of 2 and 1 seconds, respectively. By using various proportions
and formats of the input data, we tried to understand the performance of ou proposed algorithm
under di erent scenarios. Table 2 provides the number of samples sed for training and testing
each of the models, generated from the 3,276 crossing instances. All theoatels are trained and
validated using 80% of the data and tested on the remaining 20%.

A grid search of hyperparameters is conducted to nd the best-perfoming model of each type.
Parameters investigated in the search include batch sizes (32, 64 and 128jropout rates (0, 0.2
and 0.5), number of nodes (10, 50 and 100), number of hidden LSTM layers(1, 2, and) and
number of hidden dense layers (1, 2 and 3).
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Table 2: Number of samples of VR data used for training and testi ng for each data type

Distance-based Samples Time-based Samples
D3 3,261 T11 58,654
D5 3,261 T12 32,455
D.7 3,261 T21 32,455

5.2. Baseline Model

Vanilla LSTM models are used as the baseline model to assess the pmrhance of Aux-LSTM
models. The data processing procedure and other con guration setupteps for the baseline models
are similar to the Aux-LSTM models. To nd the best combination of the t ime-series information
to be fed into the models, four variants of the models are trained and empared. Time-series input
include: Participants' coordinates f Xg; yog, head orientations f opg and distance to vehiclesf dgg.
To nd the best combination, four variants of the models are de ned and trained as follows:

A~

Variant-xy : receives solely pedestrians' coordinatesx; yo) as time-series input

Variant-xyo : receives pedestrians' coordinatesx(;yo) and head orientations (0g) as time-
series input

Variant-xyd : receives pedestrians' coordinatesx(; yo) and distance to vehicles ¢lp) as time-
series input

Variant-xyod receives pedestrians' coordinatesx(; yo), head orientations (0p) and distance
to vehicles (dp) as time-series input.

For each variant, distance-based and time-based models as discussedthe next subsections are
developed, and the performance of the models is compared based on thearon the validation set

to nd the best con guration. Test sets are used in the nal step for th e nal model performance
assessment. The loss function to be minimized during the trainig of the models is de ned as the
Mean Square Error (MSE) of the predicted and ground truth values for the coordinates followed
by the pedestrian. Moreover, the Root Mean Square Error (RMSE) of thedi erence between
predicted and ground truth coordinates is used as the indicator of the prformance of the models.
Based on the results of the top-performing models of the four variantsit appears that the addition

of head orientation and distance to vehicle to the coordinates of pedestins improves the accuracy
in predicting the pedestrians' future trajectory. As this infor mation can be obtained with relatively

low costs in real-world AVs by either their sensors or cameras, they cahe collected periodically and
used to enhance the accuracy of trajectory prediction models. In th next sections, Variant-xyod
is further investigated. The cross-validation results of all four variants are provided in Appendix
A.

5.3. Distance-based Models

Table 3 presents the con gurations of top distance-based Vanilla and AuxtSTM models based
on 3 di erent values of p, the proportion of lengths of the road that its corresponding time-series
data are used as input to the model. As shown in this table, adding droput layers has not
contributed to the better-performing models, and in all of the 6 top con gurations of di erent
models, the dropout rate has appeared to be 0. Also, a general trend of a dexase in the depth
and density of the networks by the increase in the length of the inputsequence can be observed.
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Table 3: 8-fold cross-validation results for top distance-based models trained on VR data: Variant-xyod. Errors are
reported in meters as root mean square error over all predicted time steps

b Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train

Layers Layers Size Loss Error Loss Error
0.3 Aux-LSTM 2 3 100 32 0 0.0219 0.1481 0.0171 0.1306
" Vanilla NA 2 100 32 0 0.0180 0.1341 0.0183 0.1351
05 Aux-LSTM 2 2 50 128 0 0.0104 0.1021 0.0115 0.1071
"~ Vanilla NA 1 50 128 0 0.0088 0.0940 0.0071 0.0841
0.7 Aux-LSTM 1 3 50 32 0 0.0069 0.0830 0.0059 0.0769
" Vanilla NA 1 10 32 0 0.0025 0.0500 0.0030 0.0545

Table 4: Mean error of test set in meters for selected distance-based models over 100 epochs trained on VR data

ID Model Type |Error
P: 0.3 | Aux-LSTM 0.3284
Vanilla 0.3307
P: 0.5 | Aux-LSTM 0.2826
Vanilla 0.3019
P: 0.7 | Aux-LSTM 0.2329
Vanilla 0.2795

In addition to model con gurations, loss and error over validation and training data are pro-
vided in Table 3. Comparing Aux-LSTM models with the baseline models it can be observed that
validation errors of all the vanilla models are less than their Aux-LSTM counterparts. The di er-
ence in error ranges from around 0.01 meters in 3 model with p = 0.3, to around 0.03 meters in
D_7 with an input proportion of 0.7. It can be observed that in general and based orthe validation
error, adding auxiliary information has not helped the model perform bdter. In addition, with an
increase in the length of the time-series input sequence, the ctibution of auxiliary information
is decreased. To assess the performance of the networks more accurgtall the selected trained
models are applied to the test dataset. The errors of applying the moels on test set over 100
epochs are provided in Table 4. According to the table, the performane of all the Aux-LSTM
models, when applied to the test set, is better than the vanilla laseline models. Interestingly, the
input proportion with the most accurate models over the validation dataset, i.e. p = 0.7, has the
most signi cant gap between its Aux-LSTM and baseline model. The Di erence in the performance
of the models over validation and test sets can be traced back to the e & of adding auxiliary data
to the input sequences and their contribution to the diversi cation of the input information and
to the reduction of relying solely on time-series input data. A biggerdi erence in errors of models
with p = 0.7 con rms the idea that having longer sequences of time-sges data as input leads to
more reliance of the model on the available time-series input, whitis reduced by adding auxiliary
information to the input data. In distance-based models with p = 0.3, 0.5 and 0.7, considering
auxiliary data in the models has reduced the root mean square error of arydinate predictions by
2%, 6% and 17%, respectively. As stated earlier, the di erences betvem accuracy improvements of
the models con rm that relatively longer input sequence lengths bae t to a greater extent when
auxiliary data is added.

5.4. Time-based Models

Similar steps are followed for time-based models. Table 5 presentie con gurations of top-
performing time-based models over validation data, as well as their caesponding validation and
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training error. It is interesting to note that except for the numbe r of hidden LSTM layers in T 2.1,
all the other con gurations of the top models appear to be similar to each otfer.

Unlike distance-based models, all Aux-LSTM time-based models outpéorm the baseline mod-
els over the validation data. The same pattern exists when the modelsre applied to the test set
(Table 6), and the performances of the time-based Aux-LSTM models are #t better than the
baseline models, which is achieved through a shorter length of sequees as input data. In general,
root mean square errors of coordinate prediction using time-based Auk-STM models outperform
the baseline models over T1.1, T_1 2 and T_2_1 data types by 7%, 12% and 12%, respectively.
Compared to distance-based models, the gap between accuracy imprawents of di erent time-
based data types is smaller, which can be traced to the smaller di eences in input and output
sequence lengths in time-based data. Fig. 5 depicts two predictiosamples from distance-based
and time-based models. Ground truth trajectories of sample usersrém the test set, along with
their corresponding predicted trajectories using vanilla and AuxLSTM models are provided in
the gures. The Y axis in the gures corresponds to the X coordinate of the trajectories, which
is also equivalent to the distance from a reference point on the otheside of the road. In Ap-
pendix B, more sample trajectories from all data types and for di erent pedestrian speeds are
provided (animated versions of samples from all data types are also ingtled in the supplementary
materials).

Table 5: 8-fold cross-validation results for top time-based models trained on VR data: Variant-xyod. Errors are
reported in meters as root mean square error over all predicted time steps

t t Tyoe Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train
1 2 P Layers Layers Size P Loss Error Loss Error
1 1 Aux-LSTM 3 2 100 32 0 0.0181 0.1344 0.0085 0.0922
Vanilla NA 2 100 32 0 0.0312 0.1767 0.0170 0.1304
1 9 Aux-LSTM 3 2 100 32 0 0.0305 0.1748 0.0139 0.1178
Vanilla NA 3 100 32 0 0.0781 0.2795 0.0322 0.1795
2 1 Aux-LSTM 3 3 100 32 0 0.0068 0.0827 0.0049 0.0700
Vanilla NA 2 100 32 0 0.0097 0.0983 0.0053 0.0726

Table 6: Mean error of test set in meters for selected time-based nodels over 100 epochs trained on VR data

ID Model Type | Test Error
ti: 1, t2: 1| Aux-LSTM 0.2606
Vanilla 0.2801
ti1: 1, t2: 2| Aux-LSTM 0.3642
Vanilla 0.4122
t1: 2, t2: 1| Aux-LSTM 0.2707
Vanilla 0.3083

5.5. Application to open-access AV dataset

A major criticism of virtual reality data is the e ect of a controlled an d safe environment on
the behaviour of participants (Kinateder et al., 2014). In order to test the Aux-LSTM framework
on a real dataset, and after a careful investigation of several available datats, we selected PIE
dataset, as an open-dataset featuring detailed labels of pedestrians. Ehpedestrian-oriented data
collection in this dataset makes it a great choice for our study, as other snilar datasets did not
contain adequate instances of pedestrian crossings. To account for the dience in the provided
information in PIE dataset, auxiliary variables used for training the model are re-selected based

16



(a) A distance-based model sample, p : 0.3: 1 (b) A time-based model sample, ti: 1, t2: 1

Figure 5: Sample user's trajectory and prediction using vanilla an d aux-LSTM models

on the annotations of the dataset. Moreover, PIE dataset does not include IDAR data, which
prevents measuring the distance of the ego-vehicle to the pedeg&ns. Thus, the coordinates of
pedestrians provided in the dataset are based on their relative locébn in the camera frame. Type
of road (one way or two way), number of lanes and the ego vehicle speed wié¢he pedestrian is
rst detected are used as auxiliary variables. Head orientations and disance to vehicle, which were
used as time-series data for the model trained on VR data, are not availabléhrough PIE dataset.
Speed of the vehicle at each time interval is instead used as input tthe LSTM layers, along with
coordinates of the crossing pedestrian in the camera frame. It shoulbe noted that PIE dataset
includes other behavioural annotations such as gender and age category of psthians. However,
such annotations are not used in order to avoid human-labelled informationto make sure that the
model can be deployed independently by a typical AV without a nee for other sociodemographic
predictions, which might add to the error and bias in the model. . As the distance followed by
the objects is not measurable in the data, PIE data is only investigated ér time_based models.
Table 7 presents the number of sample sizes generated by the 47 instas of mid-block crosses
extracted from PIE dataset. As it can be seen in this table, the numberof instances that can be
used for training the model over PIE dataset is signi cantly smaller than the number of instances
collected using VR. This reinforces the idea that VR enables the cofiction of larger amounts of
data under speci c scenarios. Although for general purposes, video datenight give us faster and
more realistic choices for data collection.

Table 7: Number of samples used for training and testing of PIE d ataset

Time-based Samples
T11 2,051
T12 1,581
T21 1,581

Table 8 shows the results of 8-fold cross-validation for the top modelsrained on PIE dataset.
The similar con gurations of the best models in the PIE dataset and VR dataset show that the
structures found for the VR dataset can be applied to the video dataset wthout a further need
to nd the best hyperparameters. Out of the 6 best models in Table 5and Table 8, four of them
have the exact same con gurations, and the di erence among the other twois limited to only
one parameter. Similar to Table 5, it can be seen that adding auxiliary inbrmation to the model
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improves the error of the prediction over validation and training data. The best improvement is
observed over T1 2, where the movements of the pedestrian in the next two second isrpdicted
with the prior 1 seconds of movements. This is also in line with theresults of the VR dataset,
where auxiliary information is most helpful when the amount of prior tim e-series data is the least.

Table 8: 8-fold cross-validation results for top time-based models trained of PIE dataset. Errors are reported in
pixels as root mean square error of the center of the bounding boxes over all predicted time steps

ot Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train
Layers Layers Size Loss Error Loss  Error

11 Aux-LSTM 3 2 100 32 0 943 31 1233 35
Vanilla NA 2 100 32 0 1451 38 2249 47

1 2 Aux-LSTM 3 2 100 32 0 2031 45 1995 44
Vanilla NA 2 100 32 0 6312 79 9070 95

5 1 Aux-LSTM 1 3 100 32 0 907 30 725 27
Vanilla NA 2 100 32 0 2031 45 1523 39

5.6. Interpretation of Results

The results of applying SHAP to a selected trained model are preserd in this section. Fig. 6
plots the summary of the SHAP values applied to the Aux-LSTM model trained on T_1.1 data.
The e ects of variables on the error of predicting pedestrian trajecory are provided in this plot.
Having a positive SHAP value for a variable in an instance means higher errodue to the presence
of that factor.

Figure 6: Plot summary of the e ects of auxiliary variables on error

The most contributing variable to the error is snow. According to the gure, in all the instances
with snowy weather, the prediction error is increased. A similar rend holds in night scenarios,
with the majority of instances in night scenarios leading to an increas in prediction error. With
the a ected sight distance in the night and snowy environments, participants were expected to
follow more erratic trajectories. The high impact of weather conditions in the VR environment
shows the importance of having environmental diversity in AV datasés. Regarding the variable
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related to speed limit, it can be observed in the plot that at lower speeds, the models can predict the
trajectory more accurately. It can be concluded that in our experimen, participants were behaving
more predictably when confronting slower trac. The same behaviour can be seen in scenarios
with lower vehicle ow rates. In most instances with a low ow rate (530 veh/hr), the SHAP value
of the corresponding arrival rate variable is negative, meaning the posive impact of this variable
on achieving higher accuracy in trajectory prediction. Assuming morestress levels of participants
when confronting faster or more congested tra cs, more uncertain and unpedictable trajectories in
these conditions can be explained. Another signi cantly contributing variable seems to be the road
type. In the scenarios with a two-way road and median, the prediction tas higher errors, showing
a more unpredictable trajectory of pedestrians when facing vehids in two directions. Finally, lane
width variables do not seem to have a consistent impact on the instanes, with SHAP values in
di erent instances spreading to both sides of the spectrum. In gearal, contextual information on
tra c characteristics, road geometry, and weather conditions appear to have the greatest impact
on the error of the model. Based on these observations, we recommend caeing such variables
during the data collection and modelling pedestrian behaviour wha interacting with AVs. All the
variables included in the model were set so that a typical AV can captire or calculate based on
the information obtained by its camera, LIDAR, or other sensors available tothem.

6. Conclusions and Future Works

Pedestrian trajectory prediction models can be used in various autorated contexts, e.g., auto-
mated vehicles or automated delivery robots. By having a better estination of pedestrian's future
behaviour based on their current behaviour, we can ensure a safe andmfortable trip for both
pedestrians and passengers in the vehicle. Moreover, accurate pietion of pedestrian trajectory
leads to a more e cient choice of speed for the vehicles, as well as thminimization of unnecessary
breaks and stops, meaning smoother tra ¢ ows on urban roads.

In this study, we explored the use of naturalistic virtual reality d ata and advanced machine
learning models to predict pedestrian crossing trajectories. f the proposed method, contextual
information from the environment is used as auxiliary data. The auxiliary data are then added
to sequential data of pedestrian's past trajectory, head orientationsand distance to the upcom-
ing vehicles, to train an LSTM network for predicting pedestrians' next coordinates. By adding
auxiliary data, our framework takes into account the e ects of road speci cations, i.e., lane width
and type of road, tra c parameters, i.e., speed limit, arrival rate, and e nvironmental conditions,
i.e. weather conditions and time of the day. All the auxiliary variables are chosen in a way that a
hypothetical AV can observe and use the information for its prediction aforithm.

To show the generalizability of the proposed model, we applied the mposed methodology to
sensors data of pedestrian trajectories, extracted from PIE datasetThe results showed that incor-
porating contextual information within the trajectory prediction mo dels increases the prediction
accuracy, on both VR and video data. By implementing a neural network interpretability method,
we conclude that a pedestrian-oriented AV dataset requires to inalde diverse weather and vision
conditions, as well as di erent tra ¢ conditions, to be able to predic t and model pedestrian trajec-
tories accurately. Despite the growing accessibility of open-accesAV datasets, a major part of the
currently available datasets fails to provide such variety in envronmental conditions. Furthermore,
currently available open-access AV datasets often lack adequate inforation of pedestrians on spe-
ci ¢ crossing conditions. AV manufacturers can use our methodologicalramework and results to
better understand the contextual factors that can negatively a ect their prediction algorithms and
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try to address the possible shortcomings by changing the focal point oftieir data collection e orts
to include problematic situations. Providers of open-access datasstto this point have mainly
focused on improvements of object detection, annotations and vehicleriented tasks, and a lesser
amount of focus has been dedicated to pedestrians. Collecting and plishing datasets that focus
on particular types of interactions, e.g. with pedestrians or cycliss, can help research communi-
ties to develop more accurate and generalizable models, ultimately &ling to a safer urban area.
Furthermore, controlled data collections can be utilized to include a wider range of demographics
who might not be represented in data collections concluded in partialar areas.

This study is not without limitations, which are remained to be explored in future studies.
Although pedestrian intention and waiting time can be determining factors in predicting the next
movements of pedestrians, the current study does not account for fls e ect. A joint model
consisting of both the pedestrian intention and trajectory can provide a comprehensive tool for
AVs to predict the behaviour of pedestrians in a broader sense. Althogh we demonstrated an
application of our framework on real-world video data, utilizing models fom other state-of-the-art
trajectory prediction methods, and transferring the ideas behird them to the context of interest in
this study can be another way to compare the performance of our methodologyo other studies.
Moreover, comparing the trajectory of pedestrians when facing AVs andegular vehicles can help
understand the expected changes in the future urban areas. In the fure steps of the study, the
two-way communication and training of the AV can also be explored. Redening the problem to
include the vehicle side of the interaction with pedestrians conislering the comfort and safety of
passengers is another possible dimension to discover in future sties. One of the objectives of this
study was to introduce features that can be used to improve the prdiction accuracy of trajectory
models. With a collaboration with computer vision experts, extracting these features from an
available AV dataset and applying the model trained on VR data to the AV datasets would lead
to a better understanding of the capabilities of VR data. Finally, presenting a hybrid dataset on
pedestrian behaviours when confronting AVs by incorporating various ogn datasets as well as VR
data can be a direction to follow in future studies. Training on a hybrid dataset would allow a
more generalized model, which can bene t from the collective advantageof di erent data sources.
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Appendix A. Extended cross-validation results for trajectory pre diction models

The results of the best con gurations of Aux-LSTM and vanilla LSTM models trained using
di erent combinations of the time-series VR data as input are provided in this section. The best
con gurations are chosen based on 8-fold cross-validation results. Timeesies data derived from
the VR reality include pedestrian coordinates, head orientations, anddistance to the ego vehicle.
To nd out the impact of the addition of head orientation and distance to vehicle on predicting
the coordinates of pedestrians, four variants of the models were delmped, where each variant
receives a subset of time-series data as input. These variants anthé cross-validation results for
their top-performing models are presented here. In all the followng tables, errors are reported in
meters as root mean square error over all predicted time steps.
1. Variant-xy: receives solely pedestrians' coordinatesxg; yg) as time-series input:

Table A.9: 8-fold cross-validation results for top distance-ba sed models trained on VR data: Variant-xy

o Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train

Layers Layers Size Loss Error Loss Error
03 Aux-LSTM 2 2 100 32 0 0.0354 0.1882 0.0374 0.1935
"~ Vanilla NA 1 100 32 0 0.0299 0.1729 0.0348 0.1866
05 Aux-LSTM 2 2 50 128 0 0.0230 0.1518 0.0190 0.1382
"~ Vanilla NA 1 50 32 0 0.0183 0.1354 0.0163 0.1278
0.7 Aux-LSTM 1 3 50 32 0 0.0053 0.0727 0.0047 0.0692
" Vanilla NA 1 50 32 0 0.0042 0.0644 0.0038 0.0619

Table A.10: 8-fold cross-validation results for top time-base d models trained on VR data: Variant-xy

t t Type Dense LSTM Nodes B_atch Dropout Validation Validation Train  Train
12 Layers Layers Size Loss Error Loss  Error
1 1 Aux-LSTM 3 2 100 32 0 0.0263 0.1622 0.0215 0.1466
Vanilla NA 1 100 32 0 0.0519 0.2279 0.0507 0.2251
1 2 Aux-LSTM 3 2 100 32 0 0.0459 0.2142 0.0427 0.2065
Vanilla NA 2 100 32 0 0.1883 0.4340 0.1758 0.4193
2 1 Aux-LSTM 3 3 100 32 0 0.0150 0.1225 0.0137 0.1172
Vanilla NA 3 100 32 0 0.0437 0.2090 0.0385 0.1963

2. Variant-xyo: receives pedestrians' coordinatesxp; yo) and head orientations (0p) as time-series
input:

Table A.11: 8-fold cross-validation results for top distance-b ased models trained on VR data: Variant-xyo

b Type Dense LSTM Nodes Bfatch Dropout Validation Validation Train  Train

Layers Layers Size Loss Error Loss Error
0.3 Aux-LSTM 2 3 100 32 0 0.0258 0.1605 0.0172 0.1312
" Vanilla NA 1 100 32 0 0.0205 0.1431 0.0130 0.1139
05 Aux-LSTM 3 2 50 128 0 0.0112 0.1059 0.0095 0.0972
"~ Vanilla NA 1 100 32 0 0.0071 0.0840 0.0066 0.0812
0.7 Aux-LSTM 1 3 50 32 0 0.0051 0.0711 0.0047 0.0682
" Vanilla NA 3 100 32 0 0.0035 0.0589 0.0017 0.0409
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Table A.12: 8-fold cross-validation results for top time-based models trained on VR data: Variant-xyo

th t Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train
Layers Layers Size Loss Error Loss Error

1 1 Aux-LSTM 2 3 100 32 0 0.0239 0.1547 0.0115 0.107
Vanilla NA 3 100 32 0 0.0378 0.1944 0.0230 0.151

1 2 Aux-LSTM 2 2 100 32 0 0.0518 0.2275 0.0216 0.146
Vanilla NA 3 100 32 0 0.0958 0.3095 0.0447 0.211

5 1 Aux-LSTM 2 3 100 32 0 0.0182 0.1351 0.0126 0.112
Vanilla NA 3 100 32 0 0.0107 0.1032 0.0063 0.079

3. Variant-xyd:
series input:

w010 OO

receives pedestrians' coordinatesxp;Yyo) and distance to vehicles ¢p) as time-

Table A.13: 8-fold cross-validation results for top distance-b ased models trained on VR data: Variant-xyd

o Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train

Layers Layers Size Loss Error Loss Error
03 Aux-LSTM 1 3 100 32 0 0.0255 0.1598 0.0206 0.143
" Vanilla NA 3 100 32 0 0.0251 0.1583 0.0170 0.130
05 Aux-LSTM 1 1 100 32 0 0.0084 0.0914 0.0077 0.087
"~ Vanilla NA 1 100 32 0 0.0068 0.0826 0.0051 0.071
0.7 Aux-LSTM 1 3 50 32 0 0.0027 0.0521 0.0024 0.048
" Vanilla NA 2 100 32 0 0.0018 0.0422 0.0028 0.052

~Noo b~ NODN

Table A.14: 8-fold cross-validation results for top time-based models trained on VR data: Variant-xyd

t t Type Dense LSTM Nodes B_atch Dropout Validation Validation Train  Train
12 Layers Layers Size Loss Error Loss  Error
1 1 Aux-LSTM 3 2 100 32 0 0.0337 0.1834 0.0189 0.137
Vanilla NA 2 100 32 0 0.0449 0.2120 0.0427 0.206
1 2 Aux-LSTM 3 2 100 32 0 0.0651 0.2551 0.0326 0.18(
Vanilla NA 3 100 32 0 0.1542 0.3927 0.1261 0.355
2 1 Aux-LSTM 3 3 100 32 0 0.0225 0.1499 0.0198 0.14(
Vanilla NA 3 100 32 0 0.0340 0.1844 0.0319 0.178

~Noo N~ OOG

4. Variant-xyod: receives pedestrians' coordinatesx(;Yo), head orientations (0p) and distance to
vehicles dp) as time-series input:

Table A.15: 8-fold cross-validation results for top distance-b ased models trained on VR data: Variant-xyod

b Type Dense LSTM Nodes Bfatch Dropout Validation Validation Train  Train

Layers Layers Size Loss Error Loss Error
0.3 Aux-LSTM 2 3 100 32 0 0.0219 0.1481 0.0171 0.1306
" Vanilla NA 2 100 32 0 0.0180 0.1341 0.0183 0.1351
05 Aux-LSTM 2 2 50 128 0 0.0104 0.1021 0.0115 0.1071
"~ Vanilla NA 1 50 128 0 0.0088 0.0940 0.0071 0.0841
0.7 Aux-LSTM 1 3 50 32 0 0.0069 0.0830 0.0059 0.0769
" Vanilla NA 1 10 32 0 0.0025 0.0500 0.0030 0.0545
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Table A.16: 8-fold cross-validation results for top time-based models trained on VR data: Variant-xyod

th t Type Dense LSTM Nodes Bgtch Dropout Validation Validation Train  Train
Layers Layers Size Loss Error Loss Error
1 1 Aux-LSTM 3 2 100 32 0 0.0181 0.1344 0.0085 0.0922
Vanilla NA 2 100 32 0 0.0312 0.1767 0.0170 0.1304
1 2 Aux-LSTM 3 2 100 32 0 0.0305 0.1748 0.0139 0.1178
Vanilla NA 3 100 32 0 0.0781 0.2795 0.0322 0.1795
5 1 Aux-LSTM 3 3 100 32 0 0.0068 0.0827 0.0049 0.0700
Vanilla NA 2 100 32 0 0.0097 0.0983 0.0053 0.0726

Cross-validation results provided in the tables above reveal that ingeneral, the accuracy in
prediction obtained by models in all the variants follows a similar pattern. In time-based models,
the addition of auxiliary information helps reduce the validation error, whereas, in distance-based
models, vanilla models tend to perform better. Comparing the reslts of di erent variants, it can be
seen that the addition of both head orientations and distance to vehicle & pedestrian coordinates
as input improves the validation accuracy of the models, and the best prformance is achieved when
they are all incorporated simultaneously (variant-xyod). Comparing other variants, it appears that
within time-based models, the addition of head orientation improvesthe performance of the model
more than distance to vehicles. This is particularly more signi cant in vanilla models, which might
be due to the lack of input information in this type of developed modet. Among distance-based
models, the di erences between di erent variants is more subté, with distance to vehicle showing
to have a slightly better contribution in decreasing the validation error.

Appendix B. Trajectory prediction samples on test data

For each data type, three samples from the test set are selected to diet the prediction per-
formance of the models. For each sample, the ground truth trajectory, abng with the predicted
trajectory using vanilla and Aux-LSTM models are provided in this section. To show the pre-
diction performance of the models under di erent conditions, sampés include pedestrians with
di erent speeds. It can be observed that the performance of the two mdelling approaches over
distance-based models varies among the samples, with the fast walks @garing to have the least
accurate prediction performance (Fig. B.7 to Fig. B.9). On the other hard, the samples con rm
the prediction accuracies obtained in Section 5 that Aux-LSTM outperforms Vanilla LSTM within
time-based data (Fig. B.10 to Fig. B.12).
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.7: Distance-based models, p : 0.3
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.8: Distance-based models, p : 0.5
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.9: Distance-based models, p : 0.7
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.10: Time-based models, t;: 1, t5: 1
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.11: Time-based models, t;: 1, ty: 2
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(a) slow walk (b) regular walk

(c) fast walk

Figure B.12: Time-based models, t;: 2, t5: 1
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