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ABSTRACT This paper presents a shallow architecture based on Convolutional Neural Networks (CNN)
for detecting Micro-cracks in Photovoltaic (PV) cells within the manufacturing environment. Based on
Electro Luminescence (EL) imaging principles, this research presents a mechanism for determining the
number of filters within the convolutional blocks, gradient guided filter tuning (GGFT). Observing the
similarity between the original EL images and the filter output images obtained via GGFT, the research
further introduces a mechanism for generating PV cell images based on EL Modelling, termed Filter Fused
Data Scaling (FFDS). The effectiveness of both techniques is presented by benchmarking our developed
architecture against ‘off the shelf” augmentations and State-of-the-Art (SOTA) networks. The performance
criteria was widened to include accuracy, computational, architectural, and post-deployment metrics. The
high performance of our architecture in an intensive and wide-scoped evaluation demonstrates the high
efficacy of our proposed mechanisms for developing PV-specific architectures and addressing the issue of
data scarcity, particularly the difficulty in the procurement of quality EL images from the manufacturing site.

INDEX TERMS Architectural complexities, electroluminescence modelling, filter fused augmentations,

filter tuning, micro-crack, photovoltaics, convolutional neural network, deep learning.

I. INTRODUCTION

The reduction of global emissions is amongst a hand-
ful of objectives accepted by the majority of nations
across the World. The emergence and continuous growth of
solar-powered installations are widely accepted as an alterna-
tive to conventional power generation sources like coal [1].
To signify the effectiveness of solar power and mitigation of
C02 emissions, an example is provided from a solar instal-
lation initiative in California where 113,533 home-based
solar installations have reduced 696,544 metric tons of CO2
emissions [1].

Along with the sun, solar cells are one of the primary
components found within a Photovoltaic (PV) installation.
The purpose of these cells is to transform light energy
into electrical energy. The cells effectiveness to serve their
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purpose of energy conversion is highly dependent on the
production quality of the solar cells. As with many produc-
tion industries, quality control is a key part of the process.
Like many other production processes, PV cell production
is also exposed to the generation of various defects such as
scratches, material defects, dirt, and the infamous cracks.
Cracks, more commonly known as Micro-cracks, are one of
the most common types of defects originating from mechan-
ical or thermal stress during fabrication [2]. This type of
defect can result in the breakdown of electrodes leading to
the obstruction of current collection and transmission, devel-
oping fragments or hotspots on the cell surface that impact
the cell’s performance [3].

The trend of automation and lessening human workload
can also be observed in the PV manufacturing industry.
However, specific tasks within the process of solar cell
manufacturing are still heavily dependent on human inter-
action. One of these tasks is the quality control of cells at
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production lines, i.e., detecting and rejecting defective solar
cells. The subtle nature of various cracks can make identi-
fying these defects through human inspection challenging.
Furthermore, defect detection of more complex and minute
damage requires domain expertise which can be expensive
and time-consuming. The human-led inspection also has an
element of human error. The bias and over reliance on human-
oriented quality control can lead to a higher rate of defective
PV cells making their way into installations, resulting in
poor performance. Based on this premise, we observe an
increase in active research into developing intelligent systems
to detect defective cells, requiring no or minimal human
involvement [4].

Micro-cracks are one of the most challenging when it
comes to defect detection. This is due to the inability of the
human eye to directly observe micro-cracks without requiring
assistance from other means [5]. Therefore, Electrolumines-
cence (EL) imaging is one of the most widely used tech-
niques for the detection of micro-cracks along with various
types of defects in multi-crystalline PV cells in the present
times [6], [7].

Although the detection of Micro-cracks via deep learning
in particular computer vision is an active field of interest
as evident from the subsequent section on literature review,
there is a lack of a ‘systematic design approach’ for devel-
oping and justifying architectures that can not only provide a
high degree of accuracy but also can be deployed onto the
production floor through an edge device. By a systematic
design approach, we refer to the justification for the selection
of components within the designed architecture and how it
impacts the overall computational and inference efficacy of
the network. For example, convolutional filters are a key
component within the Convolutional Neural Network (CNN),
however in most cases as evident from the literature section,
the selection of filters seems to be arbitrary hence it’s impact
on the networks computational and architectural efficiency
cannot be maximized. We address this issue by presenting
a novel filter determination process named Gradient Guided
Filter Tuning (GGFT), for assisting PV researchers with the
development of internal convolutional blocks for their respec-
tive architectures. We showcase how the implementation of
the GGFT process can assist with the selection of an appro-
priate number of filters for each convolutional block hence
keeping a check on the overall computational load of the
network. We also present an additional mechanism for the
generation of representative PV cell augmentations named
Filter Fused Data Scaling (FFDS) as an alternative to the use
of generic augmentations such as flipping, rotating. We show-
case how the implementation of our novel FFDS process for
data augmentation outperforms generic data scaling. A high-
level comparison of the conventional CNN design approach
and our contribution is provided in Figure 1.

A. LITERATURE
To address the shortcomings attached to human inspec-
tion and improve the production output efficiency of solar
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cells, researchers have been exploring the use of Artifi-
cial Intelligence (AI), especially Computer Vision (CV).
Akram et al. [8] propose a convolutional neural network
(CNN) architecture to detect defective PV cells. The authors
share the results of an ‘isolated-model’ (98.67%), i.e., trained
on only EL based images and then use transfer learning
to tune the ‘isolated-model’ for Infrared (IR) based images
achieving an overall accuracy of 99.23%. The dataset consists
of ~800 images, hence the authors argue that a deep architec-
ture would result in overfitting. The research is split into two
distinct phases.

The first phase is based on developing a CNN using EL
images. In the second phase, the EL trained CNN is used as a
pre-trained model that is fine-tuned on Infrared Images (IR)
of defective cells. The pre-trained model (EL-based) achieved
an accuracy of 98.67%. The reported accuracy is impres-
sive, however, looking deeper into the methodology primarily
focusing on data collection and pre-processing, we find that
defects were artificially placed onto the cell images rather
than actual defects. Initially, our research also contemplated
the use of artificially generated ‘cracks’ placed onto images
of solar cells. However, we found the ‘generated cracks’
when placed next to an actual cell containing a ‘micro-crack’;
a significant difference was observed due to the complexity
of various cracks (discussed in the methodology section).
Therefore, a dedicated ‘defect-generator’ would be required
for this type of approach to effectively capture the underlying
features of the cracks that correspond to real cracks found
within solar cells. We could remove this step by implementing
selective data augmentation techniques paired with specific
regularization methods. We achieved a recall rate of 99.20%.
At the same time, we achieved this without manually cre-
ating a ‘crack-generator’ to train an isolated model before
fine-tuning on the data of interest. The authors also opt for
data augmentation to focus on increasing the scale and vari-
ance of the dataset. Understandably, this leads to an increase
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in the model’s accuracy by 6.5%. Looking at the CNN archi-
tecture itself, the authors, through empirical testing, decide
on a four-block CNN network with a fully connected layer
feeding into a SoftMax function.

Deitsch et al. [9] propose an SVM and a CNN network for
various defect detection in EL based solar cell images. The
author claims that both models provide high accuracy, (SVM;
82.44% and CNN; 88.42%). Before scrutinizing the method-
ological approach for the top performer (CNN), it’s worth
mentioning that the advancements in deep learning along with
data scaling, transformation techniques and regularization
means that models performing under 90% are not seen as
ground-breaking. Investigating the CNN itself, we find that
the authors subscribe to the transfer learning domain through
the VGG-19 architecture. The authors carry out the fine-
tuning in two stages. The first stage consists of randomly
initialising the weights of the fully connected layer using
ADAM as the optimizer for weight updation. The second
stage involves the random weight initialization of the fully
connected layer and the preceding convolutional layers. The
author mentions Stochastic Gradient Descent (SGD) for the
second stage and mentions that the ‘Momentum’ parameter
was set to 0.9. It is essential to mention that ‘Momentum’
is a hyperparameter used in SGD-M, which is different from
SGD. Furthermore, it is unclear why replacing the ADAM as
the optimizer was required for the second stage.

Ahmad et al. [10] propose a CNN architecture for detecting
defects in EL based solar cell images with an accuracy of
91.58%. Before discussing the architectural considerations,
the authors highlight the importance of data augmentations
in scaling the dataset and adding variance. The selected CNN
architecture is initiated with the input image, followed by
4 convolutional blocks containing 32 filters each. The next
two convolutional blocks increase the number of filters to 64,
while the final two contain 128 filters. In total, the devel-
oped CNN architecture has 8 convolutional blocks, followed
by a single fully connected layer, feeding into the output.
Although it is a general rule of thumb to increase the number
of kernels (filters) as the model gets deeper, the rationale for
8 convolutional blocks is unclear. An intuitive explanation is
also lacking; for example, was the number of convolutional
blocks driven by the significant variance in the nature of the
faults?

Furthermore, the selection of the learning rate as
0.001 seems to be selected as the default choice rather than
through optimization. By experimenting, for example, with
the learning rate, the authors may have found the model
is able to maintain its accuracy with an increased learning
rate, i.e., 0.02, resulting in faster training time. Contrary, our
research shows the importance of selecting hyper-parameters
based on the specific dataset in question rather than empiri-
cally proven default parameters.

Tang et al. [11] propose a CNN to detect defects in
EL based cell images. The authors claim their first key
contribution is implementing a Generative Adversarial Net-
work (GAN) network for the data augmentation. It is unclear
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as to the rationale for using a GAN network for scaling
and injecting more variance into the dataset. A comparison
of accuracy between GAN and the use of standard data
augmentation techniques already presented in deep learning
frameworks such as TensorFlow, Pytorch, and Keras may
have helped justify the use of GAN. However, the fact that
the overall accuracy after using GAN for data augmentation
was 83% shows the ineffectiveness of the technique for this
particular case.

Furthermore, as GAN is a network used for the generation
of new images, it is much more computationally demanding
than using standard data augmentation techniques, and hence
an unnecessary allocation of resources are required. On the
positive side, the authors provide adequate findings on their
experimentations for selecting the number of kernels. Based
on their findings, the authors explain how increasing the
number of kernels can improve the model accuracy signifi-
cantly to a certain extent. After which, the increase in kernels
will not positively impact the model but can instead lead to
overfitting.

Dunderdale et al. [12] demonstrate a feature-based and
deep learning approach to detect defective solar cells. As we
are interested in deep learning, we will focus on critiquing
the methodology of developing the deep learning models.
For comparison, the authors train the PV dataset on the
VGG-16 [13] and Mobilenet [14] architectures. It is appre-
ciated that the authors not only use ADAM as the ‘off-the-
shelf” optimizer but rather compare results for both SGD
and ADAM. Looking in detail at the VGG-16 trained archi-
tecture, we find the best performance (85.8%) was through
implementing an SGD optimizer with data augmentations;
Horizontal-vertical flipping and rotations. The ADAM opti-
mizer provided an unacceptable accuracy of 27.4% for the
same settings.

On the other hand, Mobilenet architecture achieved the
highest accuracy (89.5%) with the data augmentations
applied as ‘Horizontal-vertical’ flip and ADAM as the
optimizer. The authors do not explain the ‘paradigm-shift’
in results after changing between the two optimizers and
architectures. It is understood that Mobilenet is more compu-
tationally effective and lightweight because depth-wise con-
volutions are applied as opposed to the standard convolutions,
reducing computations by as much as 9-folds [15].

Pierdicca et al. [16] propose a CNN based on the VGG-16
architecture to detect defective PV cells. The authors pro-
vide simplicity of implementation as one of the reasons for
justifying the selection of VGG-16. However, many SOTA
pre-trained models are now facilitated in a user-friendly man-
ner by many frameworks such as Pytorch and TensorFlow
developed by Facebook and Google, respectively. Therefore,
rather than the simplicity of implementation, the selection of
the architecture should be based on the characteristics of the
dataset. The author confesses the implications of the VGG-16
network selection as the lack of batch normalisation within
the convolutional layers of the network. To our understanding
the authors don’t provide any computational information, if
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FIGURE 2. GGFT and FFDS coupling overview.

this was provided, we feel the model training and conver-
gence time would be significantly higher as compared to
models implementing batch normalisation [17]. The author
mentions that data augmentation improves the model perfor-
mance; however, the results are accepted as modest, and the
explanation for this is given as the significant imbalance in
the defective images. The work could have further explored
tuning the model for better accuracy, i.e., by adjusting the
learning rate rather than using 0.001 only.

B. CONTRIBUTION & PAPER ORGANISATION
Our first contribution is developing a shallow CNN architec-
ture for early detection of Micro-cracks within a PV manufac-
turing complex. We present a mechanism, Gradient Guided
Filter Tuning (GGFT), for determining the number of filters
within each convolutional block to achieve high performance
with limited infrastructure. The process can be seen as an
intersection between saliency mapping and the process of EL
modelling. We demonstrate how by developing PV domain
logic around the concept of gradient mapping, we can obtain
a highly efficient architecture in capturing the underlying
characteristics of the dataset. The development of the config-
urable parameters, defined with the GGFT flow, will enable
PV developers to tune their respective architecture designs
based on the type of PV surface faults they are factoring for.
Inspired by the similarity between EL inputs and fil-
ter outputs, dictated by the defined parameters within the
GGFT process, we introduce an additional mechanism, Filter
Fused Data Scaling (FFDS), for the generation of EL based
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augmentations of PV cells. These augmentations are dictated
by the same configurable parameters presented in GGFT,
allowing PV developers to scale and inject more variance
within their datasets. The performance comparison between
the FFDS and generic ‘off the shelf’ augmentation options
such as Random Erasing demonstrates the effectiveness of
our proposed mechanism, outperforming the latter in all
metrics.

Another advantage of the proposed FFDS process is its
ability to address the issue of data acquisition. Data is the
most basic requirement and the inception point for developing
image classification architectures. It is not always possible for
PV developers to directly gain access to PV manufacturing
sites for collecting cell images to an acceptable level of
quantity and quality. By implementing our proposed FFDS
process, PV researchers would have the luxury of generating
representative PV cell images by experimenting with the filter
configurations of the architecture developed via the GGFT
process.

The developed architecture based on GGFT and data scal-
ing via FFDS is benchmarked against SOTA networks on
computational, architectural, and post-deployment metrics,
performing highly in all settings. Hence, we feel the presented
mechanisms will allow PV developers to develop and tune
architectures with respect to the type of PV cell fault(s) they
are researching.

Figure 2 presents a high-level process flow for the two
proposed methodologies. Notice how the FFDS process is
an extension of the GGFT process enabling the generation
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Normal Class

FIGURE 3. Internal variance found within the classes.

TABLE 1. Complete dataset.

Normal 307
Crack 470

TABLE 2. Dataset status post cross-validation split.

Class Training Validation
Normal 246 61
Crack 376 94

of representative samples post network defining via
GGFT.

Il. METHODOLOGY

A. DATASET

The environmental context of the images is based within a PV
manufacturing factory. The original data consists of two types
of PV cells: normal and defective, shown in Figure 3. The
normal cells have no defects and can be expected to operate
as per their specification. Contrary, the defective cells contain
crack(s) of varying size and characteristics that, if signed off
through the quality control process, will negatively impact
the PV system’s performance post-deployment. It is clearly
observable that both classes contain PV cells that signifi-
cantly differ in their visual appearance but belong to the same
class. Taking the normal class as an example, we observe that
the first PV cell (far right) can intuitively be distinguished as a
normal cell. However, the next two PV cells also belong to the
normal class; but due to internal shading, can be misclassified
as defective ones when lacking domain expertise. Another
key finding was the variance in the busbar structure. It can
be observed in Figure 3 that we have three types of busbar
configurations; solid lines across the cell face, solid-line cut-
off at cell ends and periodic cut-off lines represented in the
normal class (far right).

The status of the dataset before splitting into training and
validation sets is shown in Table 1.

The dataset was split into five folds containing training
and validation sets for both normal and crack class. The
training class contained 376 samples of ‘crack’ cells and
246 of ‘normal’ cells. Similarly, the validation set con-
tained 94 ‘crack’ cells and 61 ‘normal’ cells for each fold.
The status of the dataset post cross-validation is shown in
Table 2.
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B. EL EXTRACTION PROCESS

The EL imaging process is essentially a measurement tech-
nique applied to analyze solar cells. Applying current via an
external power source forces the cell to reverse its operation.
The introduction of current leads the cell to emit light that
is not within the visible spectrum, residing around the range
of 1100nm. As a result, EL tuned cameras such as charge-
couple devices (CCD) are commissioned for capturing the
emitted light. The dark shield plays a critical role in min-
imizing reflections caused by external light sources. When
inspecting the EL images, quality inspection personnel look
for darker regions within the image, indicating potentially
faulty segments.

C. GRADIENT GUIDED FILTER TUNING
With the above premise, we aim to model the EL pro-
cess through the backpropagation of gradients, without
weight optimization to assist with the development of the
architecture, in particular the number of filters required.
Simonyan et al. [18] proposed gradient-based saliency map-
ping for initiating GraphCut-based object segmentation mod-
els. The technique essentially enables some level of internal
layer interpretability by visualising the learning of filters for
a given class. As shown in Figure 5, it can be understood that
the regions within the image containing the class of interest
have a higher pixel magnitude. However, as mentioned by the
authors, the process is termed as ‘weakly supervised’ as it
looks at the filter output by simply projecting the gradients
back onto the image without any optimization.

Furthermore, by observing Figure 5, it can be concluded
that the interpretability is of very high abstraction, and by
simply following the filter output in the absence of the actual
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input image, it is very difficult for determining what the object
may be or even a high-level abstraction concept of the type of
object due to the complexity and the high dimensionality that
comes with real-world objects.

However, the level of complexity within the produced
images is reduced significantly due to the EL process. Hence
the challenge is to differentiate between the class of interest
and limited variance, namely busbar configurations, shading
and light intensity.

Therefore, the aim was to develop a model flow mechanism
that would effectively model the input to the filter gradients
enabling filter tuning to determine how many filters should
be used within each convolution block.

A filter is the most fundamental component of the convo-
lutional block. It’s the first architectural component to inter-
act with the input images via element-wise multiplication
for generating transformations and initiating the process of
learning key characteristics.

The importance of this component (filter) begs the ques-
tion, is there a framework or a mathematical model generally
used to determine the number of filters required within each
convolutional block? This is answered by pointing out that the
determination of filters and many other components is based
heavily on the assumptions derived from the inspection of the
dataset and prior domain knowledge. However, in our case,
we demonstrate that by modelling the EL process into our fil-
ter design, we can obtain strategic interpretability that allows
us to tune the number of filters we require. Our Gradient
Guided Filter Tuning (GGFT) process enabled us to analyze
pixel attribution through domain-based logical parameters for
determining the number of filters required within the convo-
lutional process. The GGFT process is shown in Figure 6.

The process is initiated by taking a sample image D1 and
setting the filter parameter f1,,, to one, dictating the number
of filters. The second convolutional block contains 2 * f{
filters (doubling of the filters with respect to the first block)
as the feature extraction level becomes more focused with
the increased architectural depth. A forward pass is carried
out initiated by an input image. Once the forward pass is
complete, the obtained gradients are not sent to the optimizer
for weight optimization, but rather the gradients with respect
to the scoring class are backpropagated unchanged through
the network providing the same input matrix D1, as the orig-
inal image D1 . The two images are then processed through a
‘Structure Comparator’, referring to a set criterion for input
and output evaluation. In our case, the Structure Comparator
had two objectives that D1 must fulfil before accepting the
filter specification. Firstly, the defined number of filters must
have the capacity to reproduce the basic cell structure and
secondly the pixel gradients of potential false activations must
be diminished.

The Structure Comparator can be seen as an AND gate,
so the filters would be adjusted if any of the criteria were
not fulfilled. The process would repeat until both criteria are
reached and the filters are frozen. It’s important to mention
that the set criteria for the structure comparator is domain
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specific. Hence, an adequate level of domain knowledge is
required for setting the objectives needed for the structure
comparator.

The raw gradients are a fundamental component of the pro-
cess proposed above and are obtained via the extraction of the
first-order derivative from the Taylors Series Representation
Theorem. The theorem states that by knowing the function
and its derivative at point ‘a’, we can estimate the function at
another point. Looking at the Taylors estimation in terms of
CNN:

f(a)+¥(x—a)+]¥+(x—a)2+...

Here f (a) represents the trained CNN, and the goal is to
obtain the salient features within each filter, showing what
part of the image was learnt by each filter resulting in the
final classification. As we aimed to use this concept to unearth
local importance approximations, we decided to focus on the
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first part of the expression.

’
/(@)
f(a)+ T (x—a
Furthermore, we wanted to implement the expression for
assisting with the development of the network feature maps
rather than assist with model training, hence:

Q)
1!

So essentially, we take the first-order derivatives, i.e., gra-
dients for a single forward pass. Where f (a) = %, a=
selected image and x = image variable (/):

AT I=1,
ol

D. INITIAL ARCHITECTURE DESIGN

The first iteration of the architecture consisted of only one
convolutional block compromising of 11 filters, followed by a
fully connected layer consisting of 40 neurons. As mentioned
before, there is no general rule for initiating with a specific
number of filters; however, our proposed GGFT mechanism
coupled with the domain knowledge would assist with evalu-
ating the capacity of the selected filters and dictate lowering
or increasing the number of filters.

Reiterating the point that GGFT does not require weight
optimization; hence, an optimizer was not required at this
stage. Two images from the defective class were selected
with high dissimilarity in the degree of damage. The purpose
was to perform a forward pass on the selected image, obtain
gradients with respect to the class of interest, backpropagate
the gradients for the selected class onto the original image.
This would reveal the regions of importance determined by
the architecture.

The resultant filter output for each filter iteration based on
GGFT is presented in Figure 8. Initiating the process with
only a single filter, it can be observed that the network was
partially successful in reproducing the basic structure of the
busbars and considered these pixels as the most important
in influencing the scoring class. Clearly, an increase in the
number of filters was required to unearth at least the basic
structure of the cell. As the filter capacity increased, the
network was able to reproduce the busbar configuration.
However, it was still unable to provide any importance to
the pixels within the upper-left region containing the Micro-
crack. By the sixth iteration containing 11 filters, the actual
busbar configuration was also diminishing in starkness, hint-
ing towards increasing the overall network capacity through
the advent of another hidden layer. Furthermore, the fluctua-
tions in the shading indicated that the model was struggling
with grasping the underlying structure of the PV cell surface.

Before increasing the network capacity, we decided to test
with an input image containing a higher degree of surface
defection. It can be seen from Figure 9 that even after pro-
viding a cell with major defects present on the surface, the
network was unable to interpret these defects through the
scoring function.
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FIGURE 9. GGFT output comparison against increased surface defect.

E. MODIFIED ARCHITECTURE

We decided to double the number of filters in the second
convolutional block with respect to the number of filters in the
preceding convolutional layer. The rationale for this was that
the deepening of the network would enable the architecture to
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Layer Output Shape Calculate Learnable Parameters Total learnable Parameters
Input 3,224x224 N/A N/A
Conv1 11,222x222 (3x3x3+1)x11 308
Relu 11,222x222 N/A N/A
Max-pool 11,111x111 N/A N/A
Conv2 22,109x109 (3x3x11+1)x22 2,200
ReLu 22,109x109 N/A N/A
Max-pool 22,54x54 N/A N/A
Fe1 100 neurons (54x54x22+1)x100 6,415,300
RelLu 100 neurons N/A N/A
Fc2 50 neurons (100+1)x2 102
Total Learnable Parameters 6,422,960

FIGURE 10. Architecture block diagram.

learn key characteristics for unearthing the overall cell struc-
ture and then determining the micro-crack characteristics.
Each convolutional block consisted of a convolutional layer,
activation function and max pooling. The initial convolutional
layer included 11 filters, followed by 22 in the next, based on
the GGFT process, with spatial dimensions of 3 x 3 pixels.

The number of resultant feature-maps were attained
through the equation below. A term introduced in the formula
is ‘P’, referring to ‘padding. Padding is the implementation
of ‘zero’ rows and columns near the margins of the image in
order to compensate for the reduction of the original image,
as a result of the convolutional operation and for the con-
servation of pixel data at the borders. The rationale for not
implementing padding was primarily due to the fact we only
utilized a stride of ‘one’. This would limit the reduction of
the resultant feature maps after the convolution process as
presented in the equation. Furthermore, as our aim was to
attain high accuracy with a shallow architecture, we felt that
the limited convolutional operations mitigate the requirement
for padding. Where n,,, = Nu. of output features, n;, = Nu.
of input features, p=padding size, k=kernel size, s=stride

Nour= [M] +1
s

The justification for the selection of odd dimensional filters
was on the basis that it offers an anchor pixel for encoding the
results, post filtering. This cannot be achieved with the use
of symmetrical dimensional filters as there is no anchor pixel
with respect to the symmetrical nature of the kernel, resulting
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in aliasing errors. The activation function was selected as
ReLu, due to its effectiveness in preventing the vanishing
gradient problem compared to Sigmoid or Tanh, owing to its
mathematical function being fundamentally a ‘max’ opera-
tion. The simplicity of the ReLu function also made it more
efficient for implementation on GPU enabled processors.

Max-pooling was initiated after each convolutional pro-
cess to eliminate any positional dependency which may
tilt the network towards overfitting whilst in the training
phase. Max-pooling takes the highest value from within a
feature map. The basis for selecting max-pooling rather than
average-pooling was due to our findings through data inspec-
tion. It was noted that ‘Micro-cracks’ within a cell were
generally stark and, therefore, could be distinguished from
normal PV cells in most cases. Therefore, when removing
positional dependency, it was justified to implement max-
pooling with the aim to maintain the stark difference between
the normal and defective PV cells.

The final component of our architecture was the fully
connected layers. Fully connected layer is the intermediary
entity residing between the convolutional layers and the out-
put layer. They provide the output layer with access to the
amassed image information acquired through the convolution
layers facilitating the final classification of the input to be
made on a wide range of factors.

The justification for introducing two fully connected layers
post convolutional blocks was to enhance the capability of
the network to further develop the responses received from
the final convolutional block, for the classification process.
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It may be questioned as to why the convolutional layer was
not connected directly to the output. Although, this is the-
oretically feasible, doing so, would suppress the amount of
detail available for making the final classification as con-
volutions are established on segments of the image rather
than the whole image itself i.e., local representations. While
fully connected layers take the output from the convolu-
tional layer via a fully connected structure providing global
representations and maximizing the networks classification
ability.

After designing the raw architecture of the network, the
next part was the selection of a loss function. There are
various loss functions that can be used for regression and
classification tasks. The starting point in the selection of the
loss function is to know what type of output is expected from
the model. We expect our network, given an input image of a
PV cell to output the status i.e., normal, or defective.

58958

Input |
2042243 | i

Proposed CNN
Architecture

conv1(222x222,11)

RELU

: Max-pool
! (111x111,11) !

| | conv2(109x109,22) | |

| RELU = @ Normal

| |

_)
| Max-pool | . Crack
(54x54,22)

'l Fe1(100 neurons) | !

| RELU !

''| Fc2(S0neurons) ||

Rather than using an activation function like ReLu or Tanh
at the very last layer of the network for making the predic-
tions, we used a ‘SoftMax’ function. As a result, this would
convert the output of the last layer into what is essentially
known as probability distribution with the values summing to
one. By having two output distributions, one for the one-hot
encoded output classes (0-normal, 1-defective) and the second
for the predicted output distribution we can feed this into the
loss function, where p=probability of class, q = class label.

H(p.q) = — ) px)logq(x)

X

The selection of ‘cross-entropy’ for the loss function was
not only due to its wide use for classification tasks but
rather cross-entropy can be used for measuring the differ-
ence between two probability distributions (obtained through
one-hot encoding and applying of SoftMax at the output
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FIGURE 12. GGFT maps for modified architecture.

layer). The cross-entropy between the actual distribution and
the predicted distribution is a scalar measure of the difference
between the two. This is exactly what’s required for a cost
function to be initialized with the aim to get the predicted
distribution close to the actual distribution. The proposed
architecture is shown in Figure 11.

Figure 12 shows a more abstract view of the filter out-
put evolution. We wanted to achieve two specific objectives
(Structure Comparator) from this process. The first providing
the base capacity for capturing the fundamental structure of
the PV cell. It is evident from Figure 12 that the first iteration
lacked the required capacity for meeting the stated objective.
By the time we reached the fourth iteration, the network had
achieved the necessary appreciation for the overall structure.
However, it can be seen from the fourth iteration that the bus-
bar structure was a strong indicator for impacting the scoring
function, with similar starkness to that of the Micro-crack
(upper left region of the cell). Therefore, our next objective
was to diminish the level of starkness for the busbar config-
uration. This could be a potential factor for misclassification
due to its similarity between certain Micro-crack structures.

By the 10th iteration, we were able to reduce the impact
of the busbar on the scoring function; however, the starkness
in the Micro-crack had also decreased. This was not a major
concern, as mentioned earlier, the process for the filter design
had only involved backpropagating of gradients without any
optimization. After the filter design had been approved, the
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weight updation would be enabled, allowing the filter weights
to be fine-tuned with respect to the scoring function.

F. FILTER FUSED DATA SCALING

The impetus that led to Filter Fused Data Scaling (FFDS)
proposal was two-fold. Firstly, data scarcity within the PV
industry was a major factor. This is further aggregated when
the data required is after performing EL testing of PV
cells within the manufacturing complex. Secondly and most
importantly, the development of the Gradient Guided Filter
Tuning (GGFT) mechanism for determining the number of
filters provided a major breakthrough. That is, when pro-
jecting the gradient outputs for various filter configurations,
we found that specific configurations projected an output that
was similar to the actual input image with a level of distortion
that was similar to what may be found within EL samples due
to variations in manufacturing processes, EL filter specifica-
tions, shielding etc. Hence, by modifying the GGFT process,
filter configurations that resulted in practically feasible sam-
ples could be used as augmentations, enabling representative
scaling of the dataset.

G. MODIFYING GGFT FLOW

The repurposed GGFT process flow is presented in Figure 13.
The process was initiated with a sample from the original
dataset D,,, passed through the CNN architecture, with the
values for f1,f2, fc1 and f.» being configurable. The gradients

58959



IEEE Access

M. Hussain et al.: Gradient Guided Architecture Coupled With Filter Fused Representations for Micro-Crack Detection

Original Dataset (D)

input image

> Dy —
D, = Fe—— \

Generated Dataset fe—

DnEBatCh ) . .

FIGURE 13. FFDS process flow.

—

e

FIGURE 14. FFDS accepted batch sample set.

with respect to the scoring class S, are extracted without pass-
ing through the optimizer, backpropagating onto the input
image. The fact that the gradients linked to the scoring class
are only backpropagated allows the resultant image to bring
forth pixel-based regions that had the most impact on the scor-
ing class S.. The resulting image D, g and the original image
D, are passed through the structure comparator. The role
of the structure comparator is different from that of GGFT.
Here, the pass criteria’s objective is whether D, is likely to
be produced through the EL process due to production floor
variations.

Generated images D, that are passed through the structure
comparator as containing practical variations with respect to
the domain are included in the augmented dataset D,gp,,,,
as shown in Figure 14.

FFDS generated images that were labelled by the structure
comparator as incapable of manifesting any aspect of the
actual EL obtained cell images were designated as not useable
Dy Eg,.,,,» as shown in Figure 15. As evident from the generated
images due to the configurations for the FFDS parameters,
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these particular cases were not sufficient in capturing any
useful representation of the EL processed image.

Figures 14-15, manifest the importance of empirically tun-
ing the configurable parameters (f1,f2, f-1 and f.o ) for obtain-
ing the relevant variations. The proposed concept (FFDS)
provides a suitable mechanism for addressing the issue of
acquiring large amounts of EL data and transforming the
raw dataset to include variances that may be found with PV
manufacturing facilities located in different countries.

IIl. RESULTS

A. HYPER-PARAMETERS

To evaluate the performance of each technique, we decided to
implement K-Fold cross-validation, with K=5 for each tech-
nique. The dataset was split into 5 folds, each fold containing
training and validation set for both normal and crack class.
The training class contained 376 samples of ‘crack’ cells
and 246 samples of ‘normal’ cells. Similarly, the validation
set contained 94 samples of ‘crack’ cells and 61 samples of
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TABLE 3. Hyperparameters.

Batch Size 32
Epochs 95
Learning Rate 0.02-0.001
Loss Cross Entropy
Optimizer SGD-M
TABLE 4. Network performance comparison FFDS.
FFDS
Precision 98.8%
Recall 99.2%
F1 score 98.8%
Random Erasing

Precision 96.6%
Recall 94.6%
F1 Score 95.4%

‘normal’ cells for each fold. The hyperparameters used for
training our proposed architecture are provided in Table 3.

B. ARCHITECTURAL COMPLEXITY

Firstly, the effectiveness of our network architecture design
via GGFT can be gauged by observing the performance of
the architecture across all metrics. To show the effectiveness
of the FFDS mechanism, we compare the architecture trained
on a standard augmentation technique Random Erasing and
FFDS.

It can be observed that FFDS outperformed in all three
metrics. The results highlight the importance of selective
and domain-specific augmentations. Random Erasing was
selected as an ‘off the shelf’” augmentation that was justified
with respect to our domain, albeit to a certain degree. The
justification was that EL images taken at different manufac-
turing facilities might have a degree of occlusion in the final
image due to variations in EL setup, production line con-
figurations, shading etc. However, when observing Random
Erasing output augmentations from Figure 16, we observe
that the augmentation places a random black square on top of
the cell surface. Looking at the original image and applying
domain logic, we know that such periodic, stark square placed
randomly does not relate to the practical variations found
within manufacturing facilities.

Conversely, augmentations extracted from tuning the con-
figurable parameters within the proposed FFDS process
introduced augmented images of PV cells related to variations
found with PV manufacturing facilities. As aresult, the ability
of the architecture to generalize and provide high perfor-
mance was increased. The ability of the FFDS to provide
highly relevant augmentations is illustrated in Figure 16.

C. SOTA COMPARISON

This section of the research presents the performance of
our designed architecture against state-of-the-art models used
for image classification. In addition to the traditional per-
formance metrics the performance of the models is further
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FIGURE 16. Sample comparison (random erasing vs FFDS).

TABLE 5. Performance comparison vs SOTA models.

Model Precision Recall F1

% % %
Our Architecture 98.8 99.2 98.8
ResNet-18 98.6 97.8 97.8
AlexNet 61.0 100 76.0
GoogleNet 99.4 97.8 98.4
MobileNetv2 98 100 98.8

benchmarked based on broader metrics; computational com-
plexity (GMAC’s), number of learnable parameters, Frames
Per Second (FPS) and latency. The metrics selected are based
on the overall theme of the research i.e., simplicity of network
architecture and high computational efficacy.

Table 5 presents the performance of each architecture
based on precision, recall and Fl-score. It can be observed
that all models performed highly across each metric except
for AlexNet. Critical analysis reveals that while our architec-
ture in general offered impressive results it was not the top
performer across all metrics. However, before passing any
conclusions, it is essential to circle back to the purpose of
the architecture. The architecture is intended to be deployed
within a PV manufacturing factory for detecting Micro-
cracks in PV cells. Therefore, we intentionally selected cross
validation over standard accuracy for evaluating model per-
formance. The justification behind this was that it would
permit us to further tune our network for a specific metric
from precision, recall and Fl-score to suit our application.
Expanding on this further, the architecture post deployment,
would maximise the number of true positives (Micro-cracks),
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TABLE 6. Architectural performance.

Model GMAC Parameters
(&) M)
Our Architecture 0.05 6.42
ResNet-18 1.82 11.69
AlexNet 0.72 61.1
GoogleNet 1.51 13
MobileNetv2 2.88 7.98

TABLE 7. Post-deployment performance comparison.

Model FPS (s) Latency
(s)
Our Architecture 2.37 0.42
ReSNet-18 0.41 2.42
AlexNet 1.18 0.84
GoogleNet 0.27 3.71
MobileNetv2 0.53 1.91

due to this, there may be some normal cells that are wrongly
designated as containing Micro-cracks, however this would
not be detrimental as compared to classifying a faulty PV cell
as normal and validating it for deployment. Hence, the metric
we are most interested in is ‘Recall’ as this would maximise
the number of true positives. Circling back to the results, and
focusing on the recall metric, we observe that our model gave
a recall rate of 99.2%, a difference of 0.8% from the optimal
performance.

To appreciate the effectiveness of our model and its abil-
ity to perform highly compared to other SOTA models,
we present the computational complexity of the evaluated
architectures in Table 6. Multiply-accumulate operations
(GMAC’s) is one of the metrics used for measuring the
model’s speed based on the number of computations involved
within the network. This can also be measured via Float-
ing Point Operations Per Second (FLOPS). The rationale
for selecting multiply-accumulate is that most computations
inside a neural network are dot products. This is an important
parameter for model evaluation as it provides insights into the
feasibility of edge deployment of the model. From Table 6,
we observe that our model was the top performer by a high
margin, with AlexNet coming in second place.

Furthermore, addressing the lack of literature concentrat-
ing on deployment performance, we focused on capturing
two vital performance markers whilst the network sought to
predict the class of the images in the test batch, latency, and
Frames per second (FPS).

We observe our model inference speed was by far the
highest from among the models, validating our hypothesis
of creating a shallow but at the same time highly performing
network. The latency for performing inference on a test image
was recorded at 0.42 seconds, also the highest performance
across all evaluated models, shown in Table 7.

D. PERFORMANCE EVALUATION
Summarizing the overall evaluation process, it can be said
with a high degree of conifidence, that our developed
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architecture via GGFT and scaled via FFDS provided a well-
rounded architecture, highly performant across a broad range
of metrics.

The developed architecture secured top position for the
architectural, computational and post deployment metrics
whilst achieving an impressive recall rate of 99.2%. The
results reiterate the effectiveness of the proposed GGFT
process for providing a framework that guided the level of
complexity required in determining the filters within the
convolutional blocks. By tuning the number of filters within
each convolutional block as well as the number of internal
layers, we were able to effectively suppress the architectural
complexity of the proposed system. Furthermore, the FFDS
process, designed specifically for generating PV cell sam-
ples, and controlled through the defining of the configurable
parameters, enabled the model to highly generalize during the
various training stages.

It can be argued that the number of learnable parameters
are only relevant during the training phase and frozen at
an optimum stage for deployment, hence presenting it as a
comparison metric is baseless. We endorse the fact that the
learnable parameters don’t have an impact post-deployment
due to the freezing of weights, however as we are providing an
architectural comparison coupled with the post deployment
metrics, this metric shows the effectiveness of our GGFT
mechanism for keeping a check on the complexity of the
architecture.

Also, the architectural complexity has a proportional effect
on the training time of the architecture. This doesn’t impact
post deployment, however when we look at the bigger picture
it does come into effect due to the concept of data drift.
As with Machine learning, computer vision networks are also
affected by data distributions, distortions due to external fac-
tors; environmental or productional. Therefore, when these
changes affect the type of data that is being introduced to the
architecture for inference, the architectures need to be trained
again on the new ‘representative data’, hence bringing the
architectural complexity back into the fray.

For example, after deploying our architecture within a
production facility, if radical production level changes occur,
that produce EL images significantly different from the orig-
inal dataset, then re-training of the architecture would be
required for tuning the network in accordance with the drifted
data. Depending on the complexity of the network this may
not be possible on standard hardware specifications. Taking
VGG-19 as a test case model, if re-training was required, this
would take weeks on a CPU device due to its significant num-
ber of learnable parameters (143.67 Million) as compared to
training our architecture within a single day.

IV. CONCLUSION

In conclusion, we were successful in developing a lightweight
CNN architecture for the detection of Micro-cracks within a
PV Manufacturing complex. The impetus of our research was
derived from the inspection of the dataset and studying the
modelling of the EL process for photovoltaic cell.
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Our proposed GGFT process allowed us to determine the
number of filters within each convolutional block with more
stability. Furthermore, whilst reviewing the output samples
from the GGFT process, we felt that, in fact, by tuning
the configurable parameters we had defined within GGFT,
we could acquire new samples that presented real variance
found within PV manufacturing facilities. Hence FFDS was
introduced as an extension of GGFT.

Benchmarking the performance of the FFDS generated
images against of-the-shelf augmentations such as Random
Erasing, the former outperformed the latter in all metrics.
Furthermore, when compared with SOTA architectures on
various metrics consisting of computational, architectural
and post deployment, our network performed better in the
majority of metrics, especially in post-deployment. We are
confident that the FFDS process will provide an effective
mechanism for PV researchers to address the issue of data
scarcity, especially when it comes to EL imaging, enabling
developers to create a more robust fault detection network
for managing defective PV cells at an early stage of man-
ufacturing. For future work the proposed technique can be
employed in sectors utilizing X-ray data such as healthcare
sector [19], [20].
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