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Abstract: Adult referrals to specialist autism spectrum disorder diagnostic services have increased
in recent years, placing strain on existing services and illustrating the need for the development of
a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD
diagnosis. In this work a detailed overview of existing approaches is presented and a data driven
analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases.
Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to
all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up
avenues for further research. The main direction of this research is the development of a novel autism
screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the
ASTA is suitable for use as a screening tool for adult populations in clinical settings.

Keywords: machine learning; autism diagnosis; decision support

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized
by a pervasive impairment in reciprocal social interaction and communication, alongside
restricted interests and repetitive behaviors [1,2]. Thus far, no biological markers are evident.
It is estimated to affect 9.8 per 1000 adults in England [3]. ASD is usually diagnosed in
childhood; however, it is recognized as a lifelong condition [4–8]. In recent years there
has been a marked increase in the number of adults referred for autism assessment [9],
consequently placing greater demands on health services. Because of this pressure, the
time for diagnosis is lengthy with one report finding 29% of adults with autism and 46% of
those with Asperger’s disorder did not receive a diagnosis until adulthood [10].

NICE (National Institute for Health and Care Excellence, UK) guidelines recommend
diagnosis of ASD in adulthood is reached on a consensus of expert opinion made by obser-
vations from a variety of assessments, including detailed history taking, current behavioral
factors, and cognitive abilities [11]. This means that ASD diagnosis is expensive in time and
resources; typically, assessments are lengthy, and subjective. Observations undertaken by
multidisciplinary teams should be usual diagnostic procedure [12], which are comprised of
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evaluation of current functioning and behaviors, together with a detailed history taking [13].
This process can be complex as the ASD phenotype presents with a range of severities,
language ability, and intellects [11]. Furthermore, pertinent to adult ASD populations, is-
sues may occur due to (1) difficulties acquiring an accurate early history; (2) differentiating
autistic symptoms from learned behavior or compensation strategies; and (3) differentiat-
ing from other conditions, or mental health disorders, specifically schizophrenia [14,15].
These factors may lead to misdiagnosis [12,14–23]. Diagnosing autism is resource intensive
because of the quantity of information which is required, ideally from a variety of sources.
If information from a caregiver is not available, it can be a challenge to obtain an accurate
account of the neurodevelopmental period, as self-insight from the service user may be
inaccurate [17,18].

There is a necessity to relieve the pressures on specialist diagnostic services by screen-
ing waiting lists to identify and prioritize referrals that are at a greater probability of
receiving an autism diagnosis [24]. Employing screening tools can facilitate a timely and
economical approach for specialist services if they can identify patients who are more likely
to have autism, using a standardized method [24].

Whilst a varied collection of ASD screening measures is available for both developmen-
tal and adulthood populations, for ASD in adulthood, the most generally used screening
measures for ASD is the autism questionnaire presented in [25], which forms the basis
of the analysis in the first part of this work. The objective of this part of the work is to
apply machine learning for analyzing autism questionnaire results and investigating the
components of the assessment, in relation to diagnostic outcome in a clinical setting. In
turn, analysis results can over insights for decision support for autism diagnosis. This
is followed by the introduction of novel assessments tools: the first is completed by the
clinician and the second is completed by the patient.

The remainder of this paper is organized as follows. Background and related work
are presented in Section 2. Assessment data and analysis over current data is presented in
Section 3. Novel screening tools are presented in Section 4 and conclusions and directions
of future work are presented in Section 5.

2. Background and Related Work

Numerous screening tools are available for quantifying childhood and adulthood
ASD [26–32], yet issues of validity are apparent. Recommended clinical screening measures
for quantifying ASD in adulthood include the autism-spectrum quotient (AQ) [33] the
Ritvo Autism and Asperger Diagnostic Scale-Revised (RAADS-R) [9,13,34]. The AQ was
developed to quantify high functioning autism (HFA) and Asperger’s syndrome (AS) in
adult populations. It serves as a standardized measure which can aid clinicians to identify
patients that would benefit from a full ASD assessment [25]. Generally, the AQ boasts
high sensitivity and specificity [25,33–36]. However, clinically the AQ has shown to be
problematic [37–40].

In a clinical sample of 132 patients referred for clinical diagnostic assessment, Kenny
and Stansfield [37] reported no difference in scores on the AQ, regardless of ASD/non-ASD
diagnosis after full assessment. More recently, Adamou et al. [39] explored the predictive
efficacy of the AQ compared to final diagnostic formulation by an expert multidisciplinary
team, in a sample of adults referred to a specialist diagnostic service. The AQ measured
74% sensitivity and 30.3% specificity, respectively. No significant association between
scores on the AQ and diagnostic outcome was evident. Similar levels of sensitivity (77%)
and specificity (29%) have been reported by Ashwood et al. [40] in an ASD sample of
476 patients. In a study which explored AQ scores in adults diagnosed with ASD with
average and below average intelligence, only 17% of the sample scored above the diagnostic
cutoff of the AQ which again indicates a significantly lower sensitivity than in the original
study [41]. Furthermore, AQ scores have failed to correlate with other popular measures of
ASD, such as the Autism Diagnostic Interview-Revised or Vineland scores [41].
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In studies employing control samples, the AQ has shown discriminative ability be-
tween ASD profiles and neurotypical profiles [32,36,42–46], yet it remains uncertain as
to how well the AQ performs in those who do not have a clinical diagnosis of ASD, but
display ASD traits [46]. In a systematic review of screening tools for ASD populations it was
concluded that even though the AQ is commonly utilized in clinics, it is considerably under
researched, therefore no recommendations on its use could be put forth by the review [47].

Validation issues are also evident for different measures of ASD that are often used
in clinics [48]. The Ritvo Autism Asperger’s Diagnostic Scale-Revised (RAADS-R) was
developed for adults, based on the ICD-10 and DSM-5 diagnostic criteria. It covers four
areas of neurodevelopment (language, sensory motor, circumscribed interest, and social
cognition). The RAADS assessment has a reported sensitivity of 97% and specificity of
100% [49,50]. However other studies have questioned its validity.

In a recent study, Jones et al. [51] found RAADS failed to differentiate between
ASD/non-ASD patients after full clinical assessment. Levels of false positives were high,
with the assessment only having a 3.03% chance of detecting the absence of ASD in the
sample. Other studies have found the assessment (including RAADS-14 [52]) is likely to
result in high levels of false positives [34], is unable to differentiate between ASD/non-ASD
groups [53], and has significantly reduced specificity in psychiatric control groups [54].
Due to the high levels of false positives, it has been recommended the cut-off threshold
score is too low to be clinically valuable [55], and that the assessment fails to cover a full
range of behavioral issues, particularly those relevant to milder forms of ASD [56].

The concept of concurrent validity is appropriate here. The RAADS-R has shown a
strong positive correlation with AQ scores [52,57] and with validity issues surrounding
the AQ [37,39,40], this is problematic for both assessments. It is important to note that a
potential justification for the low levels of specificity reported in these studies may be due
to the high levels of comorbidity demonstrated in ASD profiles [6,58–63]. For instance,
anxiety and depression, may imitate particular ASD symptoms [40,64] thereby leading
to false positives. However, until these issues are fully resolved, such assessments are
not reliable gauges of which patients should receive full ASD assessment as priority [65].
Notice also that extensive work has been done on ASD diagnosis for children using machine
learning [66–70], but adult ASD diagnosis, which is the topic of this work, is a much less
studied topic.

3. Data Analysis Using Machine Learning

The dataset used in the machine learning based analysis initially presented in [71]
consists of autism assessment results for 192 patients, from Adult ADHD and Autism
Service, South West Yorkshire Partnership NHS Foundation Trust, in the South and West
Yorkshire geographical area, between 2017 and 2018. The Adult ADHD and Autism Service
is a specialist Service in diagnosing ADHD and autism in adulthood. Patients are referred
to the service by health care professionals, whom deem it appropriate based on patient’s
history and current difficulties. Inclusion criteria dictated that participants were over the
age of 18 years (no cut of), had a good comprehension of the English language, and IQ
within normal range. The assessment is designed to identify adults who may benefit from
a full diagnostic assessment for autism spectrum disorder.

The assessment procedure adopts the procedure proposed in [25] and consists of
two parts. The first part consists of a test that the examined individual completes based
on AAA AQ and AAA EQ parts (the RAADS AQ, EQ, RQ questionnaires presented in
Section 2). The second part (AAA RQ score) is the result of answers of persons familiar
with the examined individual, typically close relatives. Related to the diagnosis are social
aspects, communication, imagination and obsessions of the examined individual (these
are features CLASS SOCIAL, CLASS OBSESSIONS, CLASS COMMUNICATION and
CLASS IMAGINATION) and they are defined from responses to AAA AQ, EQ and RQ and
clinician’s input. These parts of the AAA examination in turn are the Autism-Spectrum
Quotient (AQ) score [33] and the Empathy Quotient (EQ) score [25], in addition to Relatives
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Quotient (RQ). Given the AAA AQ, AAA EQ and AAA RQ responses clinicians confirm
answers (Yes = 1), which count towards CLASS classification. Thus, CLASS classification
is a function of AAA responses and clinician’s assessment. The last feature of the dataset
is the diagnostic outcome which is a binary categorical feature that the machine learning
model has to predict. Overall, the dataset is unbalanced with 28 out of 192 examined
patients (14.58%) being diagnosed with autism after a full assessment is completed. Thus,
in total the dataset consists of seven numerical input features (three consisting solely of
questionnaire’s results and four based on questionnaire’s results and clinician’s input) and
an output categorical feature.

The objective of data analysis is to create a model for predicting the diagnostic outcome
given the AAA test data [25] as input. Specifically, the input data are AAA test results
consisting of AAA AQ, AAA EQ and AAA RQ scores. The AAA AQ has numerical
values ranging from 4 to 50 with a mean 34.74 and a standard deviation 8.47, for EQ the
corresponding values are 0, 80, 19.99 and 11.38 and for RQ the values are 0, 31, 18.21 and
6.31. In addition, the input data include the features CLASS SOCIAL, CLASS OBSESSIONS,
CLASS COMMUNICATION and CLASS IMAGINATION derived from AAA test responses
as defined in [34]. The CLASS SOCIAL values range from min = 0 to max = 11 with mean
value 2.39 and standard deviation 1.46, for the CLASS OBSESSIONS the corresponding
values are 0, 9, 2.30 and 1.22, for CLASS COMMUNICATION values are 0, 5, 2.17 and
1.32 and for CLASS IMAGINATION min, max, mean and standard deviation values are
0, 4, 1.05 and 0.87. The dataset consists of exam results of 192 individuals, with 85.24% of
diagnostic outcomes being negative. In this work, various classification methods have been
used for the analysis.

3.1. Analysis Using Weka

The first part of the analysis consisted of the application of six machine learning
algorithms using Weka [72] over the dataset as presented in [71]. Three of the algorithms
are non-interpretable and three are interpretable. The non-interpretable algorithms are
multilayer perceptron (the neural network implementation in Weka), SMO (sequential
minimal optimization algorithm for training a support vector classifier) and random forest.
The interpretable algorithms are the decision tree (J48), logistic regression and semantic
artificial neural networks (SANN) [73]. SANN is a variant of neural networks with labeled
hidden layer nodes which can be interpreted as logistic regression over each layer given
the previous one. In all experiments, pre-processing has been applied by replacing missing
values with the average value, while performance estimation and model selection was
based on 10-fold cross validation.

The results of experiments using the non-interpretable classification algorithms of
Weka and the default hyperparameters are presented in Table 1 (optimal values as marked in
bold). Although Table 1 presents some basic results using the non-interpretable algorithms,
the imbalance of the dataset and the relative importance of the different diagnostic outcomes
and corresponding consequences make the overall precision of algorithms one—but not
the only—factor to take into account in the analysis. Thus, a detailed examination is
required in order to assess the true usability of a data driven analysis in the decision
process. Specifically, the cost of error varies given its type, typically it is a more serious
error to predict a negative diagnostic outcome when it is actually positive resulting in the
patient not receiving the needed treatment, compared to predicting a positive diagnosis
when in fact it is negative with the cost being that of that of conducting a full assessment
that eventually leads to a negative diagnosis. This observation in turn changes the use of a
machine learning model in practice.

Typically, when each class is considered equally important and having similar costs
for all types of errors a classifier selects the class having the higher probability. However,
when classes have different importance and also different costs in case of classification
errors, then the selection threshold of an algorithm must be adjusted accordingly. Data
driven analysis may help making such policies more accurate and efficient. In practice,
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up to a certain degree, it is better to make an additional assessment of positive diagnosis
to the patient rather than to select a negative diagnostic outcome (which could actually
be positive).

Table 1. Classification results using non interpretable algorithms of Weka.

Model Total Positive Rate ROC Area

Multilayer Perceptron 0.885 0.805
SMO 0.854 0.500

Random Forest 0.859 0.870

After taking the above observations into account the detailed results for each algorithm
are the following: SMO actually assigns all instances as having negative diagnostic outcome
where the total positive rate is 0.854 (percentage of instances with negative diagnostic
outcome) and the receiver operating characteristic (ROC) curve (or area under the curve—
AUC) is 0.500, corresponding to a random classification, thus this model cannot be used in
practice. Random forest achieved better results with total positive rate 0.859 and the ROC
curve is 0.870. In this case, the classifier can be useful in practice. For example, given a
policy that assigns much higher cost to a false negative error than to a false positive, the
diagnostic outcome can be classified as positive even if the probability is low, in order to
avoid false negative errors. Subsequently, if an assessment result is positive even if the
probability of such outcome is according to classifier just 1% then all 28 positive cases will
be classified correctly and so are 47 of the negative ones, with the cost of having to provide
full assessment in the 117 remaining negative cases. Thus, the classifier can be used for
making a decision for filtering out some cases, but also providing full assessment to all
cases that have a positive diagnosis. By increasing the threshold to 2% the classification is
correct for 26 out of the 28 positive cases and 69 out of the 164 negative cases (95 negative
cases will still have full assessment). Thus, reduction of false positives is combined with
increase of false negatives and the relative cost of errors is used for defining the proper
threshold and decision policy rather than the threshold value that maximizes classification
accuracy, that is reported in Table 1. In case of multilayer perceptron (neural network),
the total positive rate is 0.885 and the ROC curve is 0.805, thus offering the possibility of
implementing a selection policy minimizing the cost of errors, but without creating an
interpretable model.

Even though non-interpretable algorithms can assist in decision making by producing
models that can predict the probability (given the results of an assessment) of a specific di-
agnostic outcome, thus facilitating the definition of a decision policy given the relative costs
of errors, interpretability of the prediction model is often an important issue. Compliance to
legal requirements and regulations means that specific rules have been taken into account
when applying an AI-based system and this in turn means that the system’s functionality
is transparent and interpretable. A proposed approach is to employ interpretable machine
learning algorithms, such as logistic regression and decision trees [74]. These algorithms
are often efficient but do not always perform as non-interpretable ones, such as support
vector machines (SVM) and neural networks.

In the case of neural networks, using existing knowledge for building neural networks
was first proposed in [75] and further developed in [76], introducing the knowledge-
based artificial neural networks (KBANN). These networks are constructed based on
knowledge represented using logic rules, and in [73] a variant of KBANN called semantic
artificial neural networks (SANNs) is proposed. SANNs are neural networks with labeled
hidden layer nodes as KBANNs, but the construction of such neural networks is based
on knowledge graphs rather than rules. In this work the interpretable algorithms applied
to the autism assessment dataset are: logistic regression, J48 decision tree and SANN.
The SANN is constructed by introducing to the hidden layer nodes representing the
AAA score (combining AAA AQ, AAA EQ and AAA RQ scores) and the CLASS score
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(combining the CLASS SOCIAL, CLASS OBSESSIONS, CLASS COMMUNICATION and
CLASS IMAGINATION scores). The resulting network is presented in Figure 1.
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The results using the interpretable algorithms of Weka are presented in Table 2 (optimal
values as marked in bold). In medical diagnosis, interpreting the models is significant for
decision making, thus we choose to present the two categories of algorithms separately,
since in case that interpretability is not an option but a strict requirement then only the
corresponding algorithms can be used. Decision tree (J48) achieved a total positive rate of
0.870 and ROC curve of 0.775.

Table 2. Classification results using interpretable algorithms of Weka.

Model Total Positive Rate ROC Area

Logistic Regression 0.844 0.814
Decision Tree (J48) 0.870 0.775

SANN 0.875 0.870

In the case of logistic regression, the coefficients for predicting a negative diagnosis
result are AAA AQ: 0.0381, AAA EQ: −0.0064, AAA RQ: −0.1282, CLASS SOCIAL: −0.585,
CLASS OBSESSIONS: −0.2791, CLASS COMMUNICATION: −0.371, CLASS IMAGINA-
TION: −0.6105 and Intercept: 7.344. These coefficients indicate factors correlated positively
or negatively with negative diagnosis and the degree of this correlation (with CLASS
features and AAA RQ having more weight).

The third algorithm, SANN, (using the network of Figure 1) achieved a total positive
rate of 0.875 and ROC curve of 0.870, outperforming the other two interpretable algorithms.
There are two hidden layer nodes in the SANN, the AAA Score node representing the
cumulative AAA score and CLASS Score node representing cumulative CLASS score. The
output node representing negative diagnostic output has weights of 3.21 at input from
the AAA Score node and 4.84 at input from CLASS Score node, while the corresponding
weights at positive diagnostic outcome node are −3.21 and −4.48, respectively. Thus, the
positive diagnostic outcome has lower probability when cumulative AAA and CLASS
scores are higher. The AAA Score in turn has weights of 5.07 from AAA AQ input,
−10.10 from AAA EQ and −12.39 from AAA RQ indicating that overall the higher the
AAA AQ the lower the probability of a positive diagnosis and that lower AAA EQ and
AAA RQ scores increase the probability of positive diagnostic outcome. Furthermore, AAA
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EQ and AAA RQ scores have more weight than AAA AQ. The corresponding weights for
the cumulative CLASS Score are for CLASS SOCIAL: −12.70, CLASS OBSESSIONS: −3.24,
CLASS COMMUNICATION: −3.81 and CLASS IMAGINATION: −2.81 indicating that
lower CLASS scores increase probability of positive diagnostic outcome.

Depending on the relative cost of classification errors, by setting a low threshold for
accepting a positive diagnosis, the created model can be used to filter out cases which
have a negative diagnostic outcome with very high probability. For example, when setting
a threshold for classifying a case as positive to 1% then 26 out of 28 positive cases are
classified correctly and so are 86 out of 164 negative cases (thus a full assessment is applied
for 78 negative cases). Thus, practically more than half of negative cases can be exempted
from further examination while keeping almost all of positive cases. This is actually similar
to the clinical assessment practice. For example, in this dataset, out of the 192 cases, 28
are positive and 164 are negative. In the screening process, 125 cases went through full
assessment and 67 did not. Finally, of these 125 cases, 26 were positive and 99 were
negative. Out of the 67 cases, not further assessed, 65 were negative and 2 were positive.
Thus, the policy adopted in clinical practice corresponds to that of applying a low threshold
classifier, minimizing false negatives for the positive diagnosis class. Notice that, although
SANN achieved high performance and is interpretable, a disadvantage of this method is
that the construction of network topology must be done manually, thus this algorithm is
incompatible with a fully automated data analysis process.

3.2. Analysis Using JADBio

Even though tools such as Weka can be used whether interpretability is required
or not, when using a tool such as Weka there are two disadvantages; first the user must
be familiar with machine learning which is not always the case in an environment such
as the medical domain and second the analyst must apply various algorithms and also
has to tune their hyperparameters in order to achieve optimal results. Overall, this is a
time-consuming process, and in addition to this it is also uncertain, especially in the case
of a large search space for hyperparameter’s values, with respect to the optimal selection
of hyperparameters. This is the reason why systems automating machine learning are
very important for wide scale adoption of machine learning for data analysis and decision
support in the medical domain.

In this work, in addition to the analysis done manually using Weka, the automated
analysis tool called JADBio [77] was used as well as in [71]. By using JADBio, users sim-
ply upload their data and provide their preferences, subsequently the system selects the
optimal model. In an application domain such as medical diagnosis where expertise on
machine learning may not be available and a series of trials with many algorithms and their
hyperparameters may not be an option due to limitations over resources such as time, the
use of tools that automate machine learning tasks is expected to be widespread. JADBio
allows for setting user preferences related to feature selection (optional or required), inter-
pretability (optional or required) and time preference (preliminary, typical and extensive).
Results using the above preferences are summarized in Table 3.

Table 3. Area under the curve (AUC) results using JADBio.

Analysis Type
Interpretability Required Interpretability Not Required

Feature Selection No Feature
Selection Feature Selection No Feature

Selection

Preliminary 0.756 0.794 0.750 0.833
Typical 0.778 0.807 0.798 0.830

Extensive 0.794 0.806 0.833 0.823

When using the JADBio system, in the case that interpretability is not required, a
support vector machine (SVM) is the optimal model selected when combined with feature
selection (and extensive time preference) and classification random forests training 100 trees



Digital 2022, 2 231

is the optimal algorithm when feature selection is not applied. In case the algorithm must be
interpretable then ridge logistic regression is the best performing algorithm when combined
with feature selection (and extensive time preference) and without feature selection (and
typical time preference). Feature selection, pre-processing and hyperparameter selection is
performed automatically by the JADBio system and results are presented below.

Specifically, after examining various possible settings the JADBio system applied in pre-
processing is constant removal and standardization. Then in feature selection the algorithm
applied is the statistically equivalent signature (SES) algorithm with hyper-parameters:
maxK = 2 (i.e., the maximum conditioning set to use in the conditional independent sets),
and alpha = 0.1 (i.e., threshold for assessing p-value significance). JADBio selected three
out of the total number of features in the original dataset: CLASS SOCIAL, AAA RQ
and CLASS COMMUNICATION. Performance when using all features instead of only
these three remained almost identical. The feature selection was applied by estimating the
performance decrease when the feature was removed.

The best predictive model was support vector machines (SVM) of type C-SVC with
polynomial kernel and hyper-parameters: cost = 0.001 (cost parameter trades off correct
classification of training examples against maximization of the decision function’s margin),
gamma = 10.0 (gamma parameter defines the degree of the influence of a single training
example), degree = 3 (degree of the polynomial that SVM returns) having an area under
the curve (AUC) of 0.833. Notice that the corresponding algorithm using Weka (SMO) has
lower performance because of the different hyperparameter selection. The ROC curve of
the best performing model using JADBio is presented in Figure 2. Using the diagram, the
user can specify the true positive rate for a specific class (in the case its class 2 indicating a
positive diagnostic outcome) given the threshold selected.
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The best interpretable model with feature selection was ridge logistic regression with
penalty hyper-parameter lambda = 100.0 (lambda defines the amount of regularization
used in the model produced by the algorithm), with AUC (ROC) 0.794. The ROC curve for
ridge logistic regression is presented in Figure 3. Based on the curve, we can see that when
setting the threshold to 9.4%, the true positive rate for the positive diagnostic outcome class
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is 0.969 and false negatives rate is 0.005. Taking into account the trade-off between false
positive error rate and false negative error rate and the corresponding costs the optimal
threshold can be defined for cost minimization.
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Notice that JADBio adopts the bootstrap corrected cross validation performance esti-
mation protocol presented in [78]. The objective of bootstrap corrected cross validation is to
overcome the optimistic bias of cross validation, that is the typical method for performance
estimation and model selection in machine learning (notice that 10-fold cross validation
was used as performance metric in the experiments using Weka). The performance esti-
mation is a task both difficult and critical, especially in medical applications where the
reliability of the prediction model is a crucial parameter in decision making. This means
that the performance metric of JADBio is less optimistic than that of Weka, but this stricter
performance evaluation is also desirable in critical applications.

Overall, the JADBio system produced models (including interpretable models) that
offered high performance in addition to fully automating the analysis process which is
a great advantage over traditional systems such as Weka. Although the dataset was not
balanced and the two classes were difficult to separate (this is illustrated by the poor
performance of SMO algorithm using Weka), by carefully selecting the threshold value
of the classification model, after taking into account corresponding costs, the performed
analysis can assist the decision-making process. Notice also that depending on the cost
estimation, a cost benefit analysis, when combined with an examination of the classification
models, may lead to a decision to revise the assessment or even discontinue it in case there
is no benefit of applying this assessment before the full assessment. This, for example, can
be the case when the cost of making a false negative prediction regarding the diagnostic
outcome is far greater than that of false positives. Overall, when using Weka the best
performing algorithms were typical dense neural networks and random forest and the best
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performing interpretable algorithm was SANN. In the case of JADBio, the best performance
was achieved using SVM and the best performing interpretable algorithm was ridge
logistic regression.

4. Autism Screening Questionnaire

The analysis using machine learning demonstrated the potential but also the limita-
tions of machine learning applications using current datasets, since either the user adopts a
low selection threshold which eliminates the false negative results but also allows many
false positives or increases the threshold risking having false negative cases. In order to
overcome these limitations a novel autism screening questionnaire is proposed (consisting
of two parts, one for clinicians and another for patients) and although related datasets
are still in development, an analysis based on machine learning is thus not yet feasible,
preliminary statistical results are also presented. The new questionnaire can be used in
order to add future autism datasets with more data points per case and subsequently
improve the performance of machine learning methods over these datasets. The first tool
(first part of the questionnaire) consists of 15 questions, where only binary answers are
allowed. The questionnaire was undertaken by 30 patients; 8 of them have been diagnosed
with autism.

The data contain binary answers, demographic information (age, gender) and the final
score calculated based on the answers. Figure 4 shows the distribution of ages according to
the diagnosis.
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Figure 4. Distribution of ages according to the diagnose.

It can be noticed that ages are strongly skewed towards the younger age. Ages of
patients affected by autism lay in the range of 18–31 with the mean being 23.88 years. Ages
of patients without autism are strongly skewed to the left and are between 18 and 60 years.
The majority of ages are distributed between 20 and 34 years with the mean value of 30.33.
The results might be affected by sample size.

Figure 5 demonstrates gender balance for patients affected by autism. It can be
concluded that while the collected data shows an equal gender balance for healthy patients,
there is a gender imbalanced for patients affected by autism. This result might be affected
by sample size.
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Figure 5. Gender-based frequencies for two diagnoses.

To test the questions for importance the Barnard’s exact test was applied. The test gave
the indication that questions Q6, Q7, Q10 and Q14 might be important (unadjusted p-values
are 0.23, 0.13, 0.23, 0.23). However, it can be noticed that p-values are higher than 0.05 and
additional data are required to prove or disprove the claim. Figures 6 and 7 demonstrate
how answers are distributed amongst two categories of patients: healthy and those affected
by autism.
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Figure 6. Bar plots demonstrating frequencies of “yes”-”no” answers to questions 1–8; 0 corresponds
to “no”, 1 corresponds to “yes”.

Figure 8 shows that in the Dim1–Dim2 factor space the diagnosis “Autism” is strongly
associated with Q5-yes and Q2-yes. The diagnosis “No Autism” does not have any strong
associations: Q15-no and Q5-no are the closest points. Q7-no, Q3-no and Q8-no are close to
each other. Questions Q4-yes, Q10-yes, Q14-yes, Q1-yes and Q11-yes are strongly associated
with male gender while Q6-no and Q15-no are closer to female. It should be noted that the
contribution of these questions into variability of data is rather low.
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Figure 8. MCA shows the most contributing variables in factor plane Dim1–Dim2.

It can be noticed that Q13-no and Q11-no have a rather strong contribution to variabil-
ity along Dim1 and Dim2. However, they are far from diagnosis autism/no autism and do
not have an association with them.

In factor plane Dim2–Dim3 (see Figure 9) we can see the association of autism and
Q14-no as well as no autism and Q11-yes, Q14-yes and Q11-yes. On the other hand, Q6-yes
has little association with diagnosis autism/no autism.

In factor plane Dim3–Dim4 (see Figure 10), Q6-yes is still far from diagnosis. Q8-no
and Q3-yes are close to no autism while Q3-no and Q9-no seem to have some association
with autism.

It can be concluded that being diagnosed with or without autism has little contribution
to variability in all five dimensions. Therefore, despite the associations of certain answers
with certain diagnoses, at this stage we cannot select them as strong contributing factors.

The second proposed tool consists of 20 questions, where only binary answers are
allowed. The questionnaire was undertaken by 18 patients; 4 of them have been diagnosed
with autism.
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The data contain binary answers, demographic information (age, gender) and the final
score calculated based on the answers. Figure 11 shows distribution of ages according to the
diagnosis. It can be noticed that the ages of patients affected by autism are generally older
(this can be affected by small sample size). Both samples contain outliers which represent
older patients. The mean value of ages of patients affected by autism is 32.25 while the
mean value of ages of healthy patients is 27.21. The majority of ages for all patients lay
between 20 and 31.

Figure 12 demonstrates gender balance for patients affected by autism. It can be
concluded that while the collected data maintains an equal gender balance for healthy
patients, there is a gender imbalanced for patients affected by autism. This result might be
affected by sample size.

To test the questions for importance the Barnard’s exact test was applied. The test
gave the indication that questions Q19 and Q15 might be important (unadjusted p-values
are 0.0068, 0.1553). Q19 looks particularly promising. However, it can be noticed that
additional data are required to prove or disprove the claim.

Figures 13–15 demonstrate how answers are distributed amongst two categories of
patients: healthy and those affected by autism.
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It is interesting to see that all patients answered in the same way to Q18. There seems
to be no large difference in ratios autism/no autism in answers to Q6 and Q17 (0.33/0.27).
However, it may be worth analyzing answers on the larger sample before making a final
decision to discard Q18, Q6 and Q17.

Figures 16 and 17 show that autism mostly contributes to data variability in factor
planes Dim3–Dim4 and Dim4–Dim5. It confirms the association of diagnosis “Autism”
with Q15-no and Q19-yes as well as Q15-yes and Q19-no and “No Autism”. The plots also
show associations of “No Autism” with Q3-no and Q16-no.
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Figure 17. MCA shows the most contributing variables in factor plane Dim4–Dim5.

It is also interesting to note that Q18-yes has zero contribution to variability, which
confirms with calculated p-values and grouped bar plot shown above.

Overall, our analysis shows that the novel tool contains information that is statistically
relevant for identifying people with autism. This is a promising result, but of course more
data is needed for gaining further insights and confidence in the tool’s accuracy.

Another interesting question for future exploration is to establish if the new tools
will improve prediction accuracy of machine learning methods when applied to dataset
containing both the information included in Section 3 and in Section 4.

5. Conclusions and Future Work

This paper presented a data driven analysis over a dataset for autism assessment. Pre-
liminary results showed that various algorithms achieved high performance although the
diagnostic outcome classification was not an easy task because of the dataset characteristics
(unbalanced, having some features that were not useful and not easily separable i.e., in
a linear way). Furthermore, when applying such an analysis in practice, there are other
crucial factors besides the total performance, such as the requirement of interpretability
and automation of the analysis process, in addition to optimal performance for specific
classes and the relative cost of various types of errors when specifying the decision process.
In addition, in order to overcome the limitations demonstrated in the performed analysis
this work aims to evaluate the validity of an easy to administer new scale, to be used as a
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self-report screening tool for adult patients referred for an ASD. This study prioritizes the
importance of investigation within a clinical environment similar to where it is intended
for use. Data was gathered from patients referred to the Adult ADHD and Autism Service,
South West Yorkshire Partnership NHS Foundation Trust.

Future work will proceed in various directions. A particular direction will be to
consider richer clinical data; there are even ideas to capture either neurological data, facial
expressions through video or in combination. Another interesting idea is to expand the
AI technologies used by capturing and representing explicitly, through declarative rules,
medical knowledge about how clinical data should be interpreted. Such a knowledge
model could be used in conjunction with a machine learning model as discussed in this
paper, thus deploying a hybrid AI approach.
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