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Abstract: Heart disease, caused by low heart rate, is one of the most significant causes of mortality in
the world today. Therefore, it is critical to monitor heart health by identifying the deviation in the
heart rate very early, which makes it easier to detect and manage the heart’s function irregularities at
a very early stage. The fast-growing use of advanced technology such as the Internet of Things (IoT),
wearable monitoring systems and artificial intelligence (AI) in the healthcare systems has continued
to play a vital role in the analysis of huge amounts of health-based data for early and accurate
disease detection and diagnosis for personalized treatment and prognosis evaluation. It is then
important to analyze the effectiveness of using data analytics and machine learning to monitor and
predict heart rates using wearable device (accelerometer)-generated data. Hence, in this study, we
explored a number of powerful data-driven models including the autoregressive integrated moving
average (ARIMA) model, linear regression, support vector regression (SVR), k-nearest neighbor
(KNN) regressor, decision tree regressor, random forest regressor and long short-term memory
(LSTM) recurrent neural network algorithm for the analysis of accelerometer data to make future
HR predictions from the accelerometer’s univariant HR time-series data from healthy people. The
performances of the models were evaluated under different durations. Evaluated on a very recently
created data set, our experimental results demonstrate the effectiveness of using an ARIMA model
with a walk-forward validation and linear regression for predicting heart rate under all durations and
other models for durations longer than 1 min. The results of this study show that employing these
data analytics techniques can be used to predict future HR more accurately using accelerometers.

Keywords: heart rate; accelerometer; time series; data analytics; machine learning

1. Introduction

According to the World Health Organization (WHO), heart disease (HD), also known
cardiovascular disease (CVD), is one of the major causes of mortality in the world today [1].
It reported that 17.9 million people were estimated to have died from CVDs in 2019,
accounting for 32% of all global deaths. Heart disease describes a series of conditions that
affect the heart, which in turn affects the heart to pump blood around the body normally [2].
However, there is no way to track cardiovascular or heart disease without considering the
heart rate (HR), which is one of the important measures of heart health. The HR is the
number of times the heart’s chambers contract (squeeze) and relax to pump blood within a
specified period (i.e., minute) and at rest, a normal heart beats approximately 60–80 times
per minute [2]. The heart rate, however, is affected by the activities a human engages in and
in turn, the heart rate data are nonstationary in nature, which are unpredictable and cannot
be modelled or forecasted [3,4]. This may be complicated by unpredictability attributes
and other behavioral risk factors such as tobacco use, unhealthy diet and obesity, physical
inactivity and harmful use of alcohol, which contribute to worse wellbeing and may even
double the death risk of a CVD patient [4,5]. It is then important to detect cardiovascular
disease as early as possible.
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Recent advancement in artificial intelligence is bringing a paradigm shift to health-
care, ranging from early disease detection and diagnosis, to personalized treatment and
prognosis evaluation [6–10]. The ongoing revolution in health and clinical examination
procedures has continued to witness improvement with the increasing rates of wearable
sensors [11]. For example, the health monitoring system is currently monitoring a patient’s
cardiovascular conditions at home in order to provide appropriate recommendations to
both patients and the medical consultants [12]. The low cost and non-invasive feature of
the wearable devices has made it possible to record large quantities of physiological data,
track medications, follow the recovery of post-op patients and track sleep, which in turn,
provides real-time health monitoring of vital statistics, providing more timely data for
analysis and earlier detection of disease or the risk of major health events.

This huge contribution to the fast-growing IoT and wearable monitoring system in the
healthcare space has played a vital role in early detection of a high heart rate to prevent the
risk of cardiovascular disease progression. Early detection and diagnosis of cardiovascular
disease are very important because it is easier to manage and treat at early stages of the
disease [1,4].

Several research works have used various techniques such as statistical models, ma-
chine learning models and historical data to measure various risks factors of several
diseases. Recently, new novel mechanical elements have been used as wearable sensors
and actuators due to their incredibly small sizes. Accelerometers are sensors that are used
to accurately monitor human activity by measuring external forces along a reference axis.
Accelerometers can be tools to monitor heart rates [13]; they generate time-series streaming
heart rate data that can be processed on a row-by-row basis by time progression. In recent re-
search, [14] used an accelerometer to monitor several subjects and their 24 h HR and shared
their collection of raw data including several other 24 h continuous psycho-physiological
information that enables investigation of possible relationships between the physical and
psychological characteristics of people in daily life. Further, the combination of these data
enables the development of tools that can predict the users’ well-being. However, the
HR time-series dataset provided by the study needs to be analyzed in a consecutive and
incremental way using a sliding time window approach. In working towards employing
data analytics and machine learning to analyze the effectiveness of using accelerometer
data to monitor and predict heart rates, we explored several data analytics techniques in
this study for the analysis of accelerometer data to make future HR predictions from the
accelerometer’s univariant HR time-series dataset.

Over the last few decades, there has been much research directed at understanding
and predicting the future from time series data. In the literature, several linear approaches
have been proposed for time series forecasting. Autoregressive integrated moving average
(ARIMA) models have gained popularity as linear models over the past three decades [15]
and hence, have been widely applied to construct more accurate hybrid models in time
series forecasting. ARIMA models have been applied for forecasting in many fields such
as health, social, economic, engineering, foreign exchange and stock problems. A study
by [16] used ARIMA to perform a spatial prediction of the COVID-19 epidemic to forecast
the epidemiologic pattern in India. Further, ARIMA was used to forecast coronavirus
disease in Indonesia in a study by [17]. An investigation on the effect of post-traumatic
stress disorder (PTSD) on various factors including heart rate by [18] employed ARIMA
models to analyze the heart rate data. An ARIMA model was used to capture the trend of
pulse production in India by [19] to predict pulse production from 2020 to 2029 to bridge
the gap between the supply and demand. Two time series models were employed to
estimate the growth rate of glioblastoma in response to ionizing radiotherapy treatment in
a comparative study presented by [20]. Their study showed that ARIMA performed better
based on the mean square error (MSE) and MAPE values obtained than the Holt method.
Ref. [21] applied an ARIMA time series model to forecast the future gold price in India to
mitigate the risk in gold purchases. A study presented by [22] proposed a novel approach to
improve an ARIMA model by applying a mean estimation error for time series forecasting.



Int. J. Environ. Res. Public Health 2022, 19, 2417 3 of 14

A novel hybridization of artificial neural networks (ANNs) and an ARIMA model was
proposed by [15] to overcome limitations of ANNs. Their model produced more general
and more accurate forecasting than traditional hybrid ARIMA–ANNs models. However,
ARIMA models perform best when the time series is stationary and the data are free from
missing values that may be imputed through advanced interpolation techniques [23,24].
Due to the linearized nature of ARIMA, which may not capture nonlinear behavior [25], it
is unreasonable to assume that a particular realization of a given time series is generated
by a linear process. This limitation has led to the exploration of alternatives to statistical
linear models: machine learning and deep learning.

Many studies have been conducted using machine learning and deep learning to
examine time series data. A study by [26] explored the applicability of machine learning
and the advantages of recurrent neural networks (RNNs) for pore-water pressure (PWP)
time-series prediction. A comparative investigation between different deep learning models
such as LSTM, BI-LSTM and CNN, using univariate and multivariate time-series data,
was conducted by [27] for forecasting blood pressure and heart rate. The models were
used to predict blood pressure (BP) 30 min in advance and HR 30 min in advance as
univariates and to predict BP and HR as multivariates. In work by [28], a novel hybrid
machine learning technique was proposed to improve the accuracy in the prediction of
cardiovascular disease. Their prediction model produced an enhanced performance level
with an accuracy level of 88.7% using a hybrid random forest with a linear model (HRFLM).
A real-time prediction system for heart rate was proposed by [4] using deep learning and
stream processing platforms using heart rate time-series dataset extracted from Medical
Information Mart for Intensive Care (MIMIC-II). Their proposed system consists of two
phases, namely, an offline phase and an online phase. Different deep learning forecasting
techniques were used to find the lowest mean square error for the offline phase. The best
developed model from the offline phase was used to predict the heart rate in advance from
the online phase. In a telehealth system architecture developed by [29] for monitoring
the cardiovascular risk, a fuzzy inference system (FIS) was employed to predict the level
of cardiovascular risk from vital parameters related to cardiovascular diseases such as
heart rate, respiration rate, blood oxygen saturation and color of lips that were collected
through a contact-less smart object. A machine learning approach was proposed to improve
the accuracy of HR detection in naturalistic measurements in study by [30]. A four-layer
deep neural network, two CNN layers and two LSTM layers, was used by [31] to model
and predict heart rate. The proposed network was evaluated on the TROIKA dataset
with 22 PPG records collected during various physical activities. The proposed system
achieved an improved mean absolute error accuracy for heart rate prediction. A novel
deep learning framework was developed by [32] for real-time heart rate estimation from
facial video captured by an RGB camera. [33] proposed the use of an LSTM deep learning
model for initial diagnosis of heart failure (HF). Their proposed model was compared with
other baseline models such as multilayer perceptron (MLP), logistic regression, k-nearest
neighbor (KNN) and support vector machine (SVM). The results show that the proposed
model achieved the best accuracy compared to other algorithms.

However, none of the methods is a universal model that is suitable for all circumstances.
The approximation of ARIMA models to complex nonlinear problems as well as machine
learning to model linear problems may be totally inappropriate, as well as for problems
that consist of both linear and nonlinear correlation structures. Using hybrid models
or combining several models has become a common practice in order to overcome the
limitations of components models and improve the forecasting accuracy [15]. A study
presented by [34] used two approaches for energy consumption forecast: an autoregressive
integrated moving average (ARIMA) model and a non-linear autoregressive neural network
(NAR) model.

Hence, the limitations and the inapplicability of using a specific method for solving
time-series prediction problems shows a need to explore the effectiveness of these popular
forecasting techniques in cardiovascular disease prediction using a 24 h accelerometer-
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generated HR time-series recordings. To the best of our knowledge, none of the existing
studies on heart rate prediction used the ARIMA model for predicting future heart rates.
For this reason, in this paper, we employed the ARIMA model, regression models and a
deep learning model for predicting heart rates. The data analytics methods included an
autoregressive integrated moving average (ARIMA) model, linear regression, support vec-
tor regression (SVR), k-nearest neighbor (KNN) regressor, decision tree regressor, random
forest regressor and a long short-term memory (LSTM) recurrent neural network algorithm.
We compared the performances of these models by evaluating the root mean squared error
(RMSE) and calculating the scatter index (SI) of each model against the different sliding
windows.

Our experimental results prove that the ARIMA model can better perform in predicting
future heart rates from univariant heart rate time-series data than machine and deep
learning models. Thus, our findings demonstrated that ARIMA is a better model for
predicting future heart rates more accurately.

2. Materials and Methods
2.1. Data

In this study, we used the Multilevel Monitoring of Activity and Sleep in Healthy peo-
ple (MMASH) dataset [14] providing 24 h of continuous inter-beat interval data (IBI), triaxial
accelerometer data, sleep quality, physical activity and psychological characteristics (i.e.,
anxiety status, stress events and emotions) for 22 healthy young males (age = 27.29 ± 4.21
years; height = 179.91 ± 8.22 cm; weight = 75.05 ± 12.79 kg). Participants’ anthropomor-
phic characteristics (i.e., age, height, and weight) were recorded at the start of the data
recording. Moreover, participants filled in questionnaires that provide information about
their psychological status, i.e., chronotype, anxiety status and sleep quality. During the 24-h
data recording, participants wore two devices that continuously recorded heart response
(Polar H7 heart rate monitor-Polar Electro Inc., Bethpage, NY, USA) and Actigraph data
(ACTi Graph wGT3X-BT-ACTi Graph LLC, Pensacola, FL, USA). Moreover, the perceived
moods were recorded at different times of the day, and the daily stress was provided before
sleeping in order to summarize the individual’s stressful events of the day. Finally, twice a
day (i.e., before going to bed and when they woke up), the subjects collected saliva samples
at home in appropriate vials in order to assess the melatonin and cresol saliva concentration.
More details about the experimental setup of the MMASH dataset are provided in the data
descriptor paper [14].

In this study, we used the IBI and Actigraph data that were continuously recorded
over 24 h on 22 healthy young males using a Polar H7 chest strap (Polar Electro Inc.,
Bethpage, NY, USA) and Actigraph (Actigraph wGT3X-BT-Actigraph LLC, Pensacola, FL,
USA), respectively. During the test, participants wore two devices continuously for 24 h:
(between 9:00 a.m. and 9:00 p.m. on the next day) and were instructed to wear the chest
straps during both the day (during physical activities too) and at night. The heart rate time
series (univariate dataset) from Actigraph dataset was recorded on a second-by-second
basis for one subject.

2.2. Data Pre-Processing

To detect ectopic beats (i.e., disturbance of the cardiac rhythm frequently related
to the electrical conduction system of the heart) or missing values induced by motion
artifacts from the Actigraph data, we used the Python hrv-analysis library (https://pypi.
org/project/hrv-analysis, accessed on 6 February 2021) to reconstruct the RR-intervals
from the inter-beat-interval (IBI) dataset to obtain the maximum and minimum heart rate
that was used to filter out the outliers from the Actigraph dataset.

Due to the nonstationarity of the HR time-series dataset, we had to transform it into a
stationary dataset to be fitted with the prediction model using a transformation method
called differencing, which is described by Equation (1) below. The differencing method’s
function was used to remove the series dependence on time by subtracting the values

https://pypi.org/project/hrv-analysis
https://pypi.org/project/hrv-analysis
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of successive HRs of a certain period from the last values of the time series to eliminate
varying means.

di f f erence(t) = observation(t)− observation(t − 1) (1)

2.3. Autoregressive Integrated Moving Average (ARIMA) Model

The ARIMA model is effective in capturing a suite of different standard temporal
structures in time series data. However, configuring the ARIMA model with the best
tuning parameters p, q and q (the lag order, degree of differencing and the order of the
moving average, respectively) that require estimation by iterative trial and error can be
challenging [35]. Fitting of the ARIMA model followed the Box–Jenkis methodology classi-
cal approach [36]. To determine the best fit configuration hyperparameter of the ARIMA
model, the model was tuned with an automated GridSearch algorithm that evaluates
ARIMA models on different combinations of model hyperparameters and obtains the best
fit tunning configuration. We specified a grid of p, d and q of the ARIMA parameters to
iterate between the ranges of 0–10, 0–3 and 0–3, respectively. The GridSearch automates
the process of training and evaluating ARIMA models on the different combinations of
model hyperparameters by keeping the track of the lowest error score observed and the
configuration that caused it as each time step of the test set is iterated.

Cross-validation is one of the most widely used methods to evaluate a model perfor-
mance, as it is very important to prevent model overfitting. However, cross-validation is
trivial in the case of time series [37]. There is a temporal dependency between observations
that must be preserved during testing. To cross-validate the ARIMA model, we used a
walk-forward validation that uses a rolling forecast technique that uses a small subset of
data for training purpose, predicts the later data points and then checks the accuracy of
the predicted data points. A new ARIMA model was recreated after each new observation
was received, using the same predicted data points as part of the next training dataset, and
subsequent data points were predicted. We manually kept track of all observations in a list
called history that was seeded with the training data and to which new observations were
appended after each iteration.

2.4. Machine Learning Techniques

The machine learning models learn the association function between pairs of input and
output sequences known as input and output variables, denoted by (X) and (y), respectively,
to make predictions. Therefore, to make predictions from the univariant HR time-series
datasets, we reframed the time-series into a supervised learning problem by converting the
sequenced HR time-series observation window (X) and target window (y). We configured
this by using the observation from the last time step (t−1) as the input and the observation
at the current time step (t) as the output.

2.4.1. Linear Regression

Linear regression is probably one of the most important and widely used regression
techniques. It is among the simplest regression methods. One of its main advantages is
the ease of interpreting results [38]. Linear regression fits a linear model with coefficients
w = (w1, . . . , wp) to minimize the residual sum of squares between the observed targets
in the dataset and the targets predicted by the linear approximation [39]. We trained and
fit the linear regression model with different data sizes according to the sliding window
duration, predicted future HRs and calculated the error scores for each experiment.

2.4.2. Support Vector Regression (SVR)

Support vector regression is a type of support vector machine that supports linear and
non-linear regression. It is used to predict discrete values. However, the basic idea behind
SVR is to find the best fit line, i.e., to make sure that the errors do not exceed the threshold.
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To achieve this in our experiment, we fine-tuned the SVR kernel and regularization
parameter C hyperparameters to linear and 1, respectively. The model was trained with
different training data sizes according to the sliding window duration and was fit to make
predictions in each experiment.

2.4.3. K-Nearest Neighbor (KNN) Regressor

The K nearest neighbor is a simple algorithm that stores all available cases and predicts
the numerical target based on a similarity measure (e.g., distance functions). A simple
implementation of KNN regression is to calculate the average of the numerical target of the
K nearest neighbors. However, the KNN regressor algorithm performs best when we have
a minimized error, i.e., error calculation for our training and validation sets. This is highly
determined by the optimum value of k.

To determine the optimum value of k, we applied the GridSearch algorithm to the
KNN regressor algorithm. The GridSearch algorithm automatically helps to find the best
value of K after running a certain number of iterations on the KNN regressor’s model.
We configured the GridSearch algorithm to evaluate the KNN regressor, setting the KNN
regressor’s n_neighbor parameter between the range of 1–9 for 10 iterations. We obtained
the best n_ neighbor value and used it to configure the KNN regressor model for each
sliding window duration experiment.

2.4.4. Decision Tree Regressor

A decision tree is a supervised learning algorithm that has a graphical representation
of all the possible solutions. It starts from the root node and branches to find the solution
based on some conditions. A decision tree model is also a good model for both regression
and classification problems that uses a binary rule to learn the relationship between the data
and the target variable and for prediction. It normally uses the mean squared error (MSE)
to decide to split a node in two or more sub-nodes. Often, the model may be underfitted or
overfitted to the data, which in most cases is detrimental to the model’s performance when
new data are introduced.

Thus, to prevent our decision tree regressor model from being underfitted or overfitted
when training, we set constraints on tree size by fine-tuning hyperparameters. We iterated
the depth with a range of 2–10. For each depth step, we set the decision tree regressor
model max_depth hyperparameter value to the current depth step, fit the model with
our training data and calculated the error score. We kept track of the lowest error score
observed and the depth that caused it.

2.4.5. Random Forest Regressor

The random forest regressor is also a supervised learning algorithm with a collection
of decision trees, which are less prone to overfitting and perform better than a single
optimized tree [40]. It runs predictions on each individual tree and then averages their
predictions to create the final prediction, thus making it quite slow to create predictions
once trained, but it can be fast to train. However, the random forest regressor model may
be overfitted, which makes it performs well for the training set but poorly for the test set,
which may make it not applicable to new problems.

To overcome the overfitting problem, we also employed the GridSearch algorithm
to fine-tune the hyperparameters. The approach allowed us to explicitly specify the com-
bination of parameters to be tested. We set the estimator, param_grid, cv, n_jobs and
verbose to randomforestregressor (), {’bootstrap’: [True], ’max_depth’: [80,90,100,110],
’max_features’: [2,3],’min_samples_leaf’: [3–5], ’min_samples_split’: [8,10,12], ’n_estimators’:
[100,200,300,1000]}, 3, −1 and 2, respectively. The best_param from the GridSearch algo-
rithm result was used to fit our random forest regressor model, and we evaluated the
model.
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2.4.6. LSTM Deep Learning Model

Recently, deep learning models have become a promising tool for time series fore-
casting because of their strength in the automatic learning of temporal dependence and
the automatic handling of temporal structures such as trends and seasonality as well as
their ability to automatically learn arbitrary complex mappings from inputs to outputs
and to support multiple inputs and outputs [41]. However, there is a deep learning model
termed a convolutional neural network (CNN). CNNs are neural networks and deep learn-
ing models that have the capability to learn and automatically extract features from raw
input data and can be applied to time series forecasting problems but were designed to
efficiently handle image data. Long short-term memory networks (LSTMs) are recurrent
neural networks (RNNs) and deep learning models that add the explicit handling of order
between observations when learning a mapping function from inputs to outputs, which
is not offered by CNNs. It has capability to add support for input sequence data as well
learned temporal dependence, i.e., learns mapping from inputs to outputs and learns what
context from the input sequence is useful for the mapping and can dynamically change this
context as needed.

To make the experiment fair, LSTM models usually work with a scaled coefficient
(min. and max.) value within their activation function ranges; the output values range
between −1 and 1. We normalized the dataset to the range [−1, 1] using the Python library
function MinMaxScaler class, i.e., MinMaxScaler (feature_range = (−1, 1)) [42]. To evaluate
the model, the predictions were transformed back to the original scale so that the result
could be interpreted and a comparable error score could be calculated. To invert scaling,
that is, reverse the scaled data back to the original values, we also used another function
from the Python library. The LSTM model consists of input sequences in terms of numbers
of lags, hidden layer(s) and an output layer including a dense layer that produces the
output. Since our HR time-series is a univariate series, the number of features is one, for
one variable. Our LSTM networks was stacked with two hidden layers and an output layer
using memory between batches, which allowed us to make predictions for different sliding
window sizes. The model was fit using the Adam optimizer [43] and was optimized using
the mean squared error, or ‘mse‘ loss function.

2.5. Data Splitting

The Actigraph HR time-series data were split into 67% as a training set and 33% as a
testing set for each sliding window, following recent works of [44] and [45]. All models
were trained and optimized by the training set and evaluated by the testing test.

2.6. Model Evaluation

To evaluate the models, the 22 participants’ Actigraph datasets were used; 30 s, 1 min,
5 min, 10 min, 15 min, 30 min and 1 h sliding window data were extracted for each partici-
pant and split using the proportion mentioned above for training and testing sets. Precision
and recall have been the standard metrics for evaluating time series classification algo-
rithms [46], which are also alternatives to calculate the classification model accuracy [47].
Since our study focused on time-series regression problems, our model performance was
measured using various time-series regression model metrics as used by [4] and suggested
by [48]. The models were trained and used to make predictions for each sliding window,
and the average values of the mean average error, mean square error and root mean square
error were calculated.

Since the root mean square error (RMSE) value is directly proportional to the unit of
the predicted values, it has to be understood that we have to take a look at the importance of
the RMSE in comparison with the predicted values. To know if it is good or bad, the scatter
index (SI), which is simply the RMSE divided by the average value of the observed value,
was computed. SI = (RMSE/average observed value) * 100%. If SI < 10% is a good model, SI
< 5% is a very good model. Conversely, a model of prediction has to have a high R2 (closer
to 1), which shows that the regression line fits the data well and the model performance is
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good, and SI less than 30% if we consider annual data and 10% if we consider hourly or
monthly data [49]. Each model’s performance was evaluated using RMSE and SI:

RMSE =

√(
1
n

) n

∑
i = 1

(
yobs

i − ypred
i

)2
(2)

SI =

(
RMSE −

(
1
n

) n

∑
i = 1

yobs
i

)
× 100 (3)

3. Results

Our study used the autoregressive integrated moving average (ARIMA) model, linear
regression, support vector regression (SVR), k-nearest neighbor (KNN) regressor, decision
tree regressor, random forest regressor and long short-term memory (LSTM) recurrent
neural network algorithm to predict future HR from a univariant HR time-series data
obtained from an Actigraph dataset of 22 healthy subjects. Each model was evaluated using
RMSE and SI of different sliding windows (30 secs, 1 min, 3 min, 5 min, 10 min, 15 min,
30 min and 1 h), and the average RMSE and SI for all subjects were computed for each
sliding window.

We experimentally demonstrate the model performance using a sliding window of
30 min for prediction. The ARIMA and SVR models had the best SI scores of 0.00% and
0.29%, respectively, while the KNN regressor and LSTM performed the worst, with SI
scores of 41.36% and 34.15%, respectively, as shown in Table 1.

Table 1. The results of the models for the 30 s sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

30 s

ARIMA 0 0 0 0
Linear Regression 3.12 9.75 3.12 1.76

SVR 0.51 0.26 0.51 0.29
KNN 73.2 5358.24 73.2 41.36

Decision Tree 16 256 16 9.04
Random Forest 38.5 1482.1 38.5 21.75

LSTM 60.45 3653.93 60.45 34.15

In the 1 min sliding window experiment, the ARIMA and SVR models had the best
SI scores of 0.00% and 0.29%, respectively, while the KNN regressor and LSTM models
performed the worst, with SI scores of 41.36% and 34.15%, respectively, as shown in Table 2
below.

Table 2. The results of the models for the 1 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

1 min

ARIMA 0 0 0 0
Linear Regression 3.12 9.75 3.12 1.76

SVR 0.51 0.26 0.51 0.29
KNN 73.2 5358.24 73.2 41.36

Decision Tree 16 256 16 9.04
Random Forest 38.5 1482.1 38.5 21.75

LSTM 60.45 3653.93 60.45 34.15

The ARIMA model and linear regression models performed best for the 3 min sliding
window, with SI scores of 1.38% and 1.76%, respectively. KNN and LSTM showed fair
performance with SI scores of 3.62% and 3.31%, respectively, as shown in Table 3 below.
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Table 3. The results of the models for the 3 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

3 min

ARIMA 0.9 1.63 1.28 1.38
Linear Regression 1.41 2.7 1.64 1.76

SVR 2.58 8.93 2.99 3.2
KNN 3.07 11.38 3.37 3.62

Decision Tree 2.52 7.86 2.8 3
Random Forest 2.67 8.69 2.95 3.16

LSTM 2.35 9.52 3.08 3.31

Evaluation of the models for the 5 min sliding window showed that the ARIMA model
and linear regression model had the best performance, with SI scores of 1.57% and 1.80%,
respectively, and the models with a fair performance were the LSTM and SVR models, with
SI scores of 3.27% and 3.21%, respectively, as shown in Table 4.

Table 4. The results of the models for the 5 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

5 min

ARIMA 0.87 2.08 1.44 1.57
Linear Regression 1.18 2.74 1.65 1.8

SVR 2.66 8.74 2.96 3.21
KNN 2.17 7.7 2.78 3.01

Decision Tree 1.76 5.07 2.25 2.45
Random Forest 1.79 5.52 2.35 2.55

LSTM 2.54 9.05 3.01 3.27

In the 10 min sliding window experiment, the ARIMA model and the linear regression
model again performed the best, with SI values of 1.36% and 1.38%, and the SVR and LSTM
models had a fair performance, with SI values of 2.68% and 2.36%, respectively, as shown
in Table 5 below.

Table 5. The results of the models for the 10 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

10 min

ARIMA 0.82 1.48 1.22 1.36
Linear Regression 0.93 1.5 1.23 1.38

SVR 2.08 5.7 2.39 2.68
KNN 1.42 3.11 1.76 1.98

Decision Tree 1.04 1.72 1.31 1.47
Random Forest 0.98 1.61 1.27 1.42

LSTM 1.75 4.42 2.1 2.36

For the 15 min sliding window experiment, the ARIMA model and the linear regression
showed the best performance, with SI values of 1.33% and 1.44%, while the KNN and
random forest model performed poorly, with SI values of 5.87% and 5.25%, respectively, as
shown in Table 6.
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Table 6. The results of the models for the 15 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

15 min

ARIMA 0.72 1.19 1.09 1.33
Linear Regression 0.93 1.4 1.18 1.44

SVR 1.44 2.99 1.73 2.1
KNN 3.86 23.32 4.83 5.87

Decision Tree 2.69 12.22 3.5 4.25
Random Forest 3.36 18.63 4.32 5.25

LSTM 2.74 9.56 3.09 3.76

When the experiment was carried out on a 30 min sliding windows, the results showed
that the ARIMA model and the linear regression also performed the best, with SI values of
1.64% and 1.67%, and the LSTM and SVR models had a fair performance, with SI values of
2.33% and 2.17%, respectively, as shown in Table 7 below.

Table 7. The results of the models for the 30 min sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

30 min

ARIMA 0.88 1.97 1.4 1.64
Linear Regression 0.99 2.05 1.43 1.67

SVR 1.44 3.48 1.87 2.17
KNN 1.3 3.11 1.76 2.05

Decision Tree 1.03 2.07 1.44 1.67
Random Forest 1.03 2 1.42 1.65

LSTM 1.63 4.01 2 2.33

Finally, the models were also evaluated for the 1 h HR recording sliding windows.
The logistic regression and the ARIMA models also had the best performances, with SI
scores of 1.63% and 1.17%, respectively while the LSTM and the KNN models had a fair
performance, with SI scores of 3.04% and 2.10%, respectively, as shown in Table 8.

Table 8. The results of the models for the 1 h sliding window.

Model Mean Average
Error

Mean
Square Error

Root Mean
Square Error

Scattered
Index

1 h

ARIMA 0.93 2.34 1.53 1.71
Linear Regression 0.97 2.13 1.46 1.63

SVR 1.37 3.53 1.88 2.1
KNN 1.42 3.99 2 2.23

Decision Tree 1.1 2.64 1.63 1.82
Random Forest 1.07 2.5 1.58 1.77

LSTM 2.15 7.38 2.72 3.04

4. Discussion

In our study, we used the 24 h accelerometer-generated HR time-series research
data provided by [14] for prediction. This may not be an efficient way to capture HR
data [50], compared to more accurate HR data recorded by an electrocardiogram, which
are not applicable and suitable for everyday use [31]. However, the research dataset also
captured the IBI recordings that we reconstructed to filter out ectopic heart beats from the
accelerometer data, thus producing more reliable and accurate data.

The results of the study showed a very close evaluation score for the 30 s and 1 min
sliding windows, which indicated very few HR fluctuations within the duration of 30 s;
therefore, using 30 s of HR recording is not sufficient to make predictions in the case where
a high degree of fluctuations in the HR is expected to occur in the future.
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Model performance with SI scores less than 5% is considered to be a very good model
to make predictions for our second-to-second HR time-series data, i.e., the closer the model
performance is to 0%, the closer the performance is to 100%. To visualize this, we computed
each model’s performance on a scale of 100% against each sliding window as shown in
Figure 1 below. It was observed that some model performances were on the negative scale,
which indicates how far their SI values are from 0%.
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Further, the study also showed that the ARIMA and linear regression models per-
formed the best in all experiments, and the KNN, LSTM and random forest regressor
models performed very poorly; the decision tree regressor model had average performance
for the 30 s and 1 min windows. The SVR model also performed better in the first two
experiments, i.e., the 30 s and 1-min windows; however, similar to the other models such
as KNN, decision tree regressor, random forest regressor and the LSTM, the performance
for other experimental sliding windows was relatively better but unstable. However, our
results also indicated that the RMSE and SI were the best in ultra-short (i.e., between 30 s
and 4 min) sliding window durations. This is due the fact that there is a decrease in bias
towards the HR as a result of limited HR fluctuations, which is also a good parameter to
measure the heart rate variability (HRV) [51].

A comparison of the results of each sliding window in this study to the results of
the corresponding sliding window obtained in recent studies by [4] and [30] shows that
some of the techniques we explored performed better than the techniques used in their
approaches.

5. Conclusions

This study has addressed the use of machine learning to predict HR using 24 h uni-
variant HR time-series data generated by an accelerometer, which can be used to detect
early HR risks and to monitor patients with heart disease. We used the autoregressive inte-
grated moving average (ARIMA) model, linear regression, support vector regression (SVR),
k-nearest neighbor (KNN) regressor, decision tree regressor, random forest regressor and
long short-term memory (LSTM) recurrent neural network algorithm to make predictions
from the HR time-series. Each model was evaluated using RMSE and SI against different
sliding windows of 30 s, 1 min, 3 min, 5 min, 10 min, 15 min, 30 min and 1 h. Our results
showed that the ARIMA model with a walk-forward validation and linear regression was
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the best to make future HR predictions to track HR-related risks over time with any given
HR recording durations. The KNN, LSTM and random forest regressor models are not
good models for prediction from an HR recording duration of 1 min or shorter, and the
KNN, LSTM and random forest regressor models and other models such as decision tree
regressor and SVR can also be used to make better HR predictions from longer recording
windows.

The results of this study show that the research data provided by [14] are sufficient,
reliable and can be explored using several data analytics techniques to predict future HR
using an accelerometer.
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