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Abstract
A simple approximate theory of snow machining is applied to modelling successive wedge turns of alpine skiing. The model 
involves predefined control functions describing skier’s control over the turns via angle of attack, edge angle and loading 
of the skis. To demonstrate the model’s potential, reasonable control functions with a small number of free parameters are 
designed and used in attempt to reproduce the data obtained in a previous field study by other researches. The results are 
in semi-quantitative agreement with the data. In particular, the model explains the nature of the abnormally high values for 
the “coefficient of friction” deduced in that study. Future field studies of wedge turns should aim at measuring the angle of 
attack, edge angle and loading of the skis. This will allow to determine the control functions from the experimental data and 
hence to conduct a more stringent verification of the model.

Keywords Alpine skiing · Modelling · Balance/stability · Performance

1 Introduction

A wedge turn is the first type of turns introduced to students 
in most schools of alpine skiing. In this turn, skis form a 
wedge pointing in the direction of motion (see Fig. 1). This 
increases the braking power of skis and hence allows to keep 
the speed of descent as low as needed for the students to feel 
safe and able to focus on improving their technique. The 
turning action is achieved by preferential loading one of the 
skis, which leads to turning in the opposite direction. For 
example, if the skier needs to turn right, then the left ski has 
to be loaded more than the right ski.

During a wedge turn, both skis are set at an angle to the 
direction of motion (the angle of attack). As a result, the 
motion of each ski is a combination of motions along the 
ski longitudinal axis and perpendicular to it. Moreover, the 
skis bases are set at an angle to the local slope surface (the 
edge angle) and the perpendicular motion involves removal 
of a top layer of snow.1 Overall, the ski motion becomes very 
different from simple gliding over the snow surface.

This snow-removal action is similar to the removal of 
material in the manufacturing process of machining. In this 

process, the cutting tool is subject to a reaction force from 
the machined material, which can be considered as a com-
bination of friction and pressure. The pressure force arises 
mostly at the rake face of the tool, where it pushes the chip 
out. Its component tangent to the machined surface is called 
the cutting force. In skiing, the role of the rake face is played 
by the ski base and hence the cutting force is perpendicular 
to the ski. It has a component which is opposed to the direc-
tion of motion and hence promotes braking. Moreover, it 
has a component which is perpendicular to the direction of 
motion, and this component is the reason behind the turning 
action of skis set at non-vanishing angle of attack.

The machining of snow and ice has been studied in labo-
ratory [1–5]. These authors also derived empirical expres-
sions for the snow reaction force and used them to model 
skidded ski turns. Moreover, Brown [6] applied to skiing 
the theory of metal cutting developed in [7] for the case of 
continuous (type-2) chips. However, snow and ice are highly 
brittle materials and instead of continuous chip their machin-
ing normally results in a spray of ice particles.

Recently, the work of Brown [6] was extended by Komis-
sarov [8], where a simpler theory of snow machining was 
developed. The main assumptions of this theory are (1) the 
ski edge is perfectly sharp and (2) the Coulomb friction 
between the ski and the cut snow is negligibly small. The 
main advantage is the very simple analytical expressions 
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for the turning and braking components of the cutting force, 
which in turn allow for rather simple mathematical models 
of ski manoeuvres involving side-slipping (skidding). In [9], 
this theory was applied to the side-slipping down the fall 
line, hockey stop and skidded traversing. The results agreed 
with skiing practice. Moreover, they allowed to explain 
the earlier results of the experimental study of traversing 
by Kaps et al. [10] without invoking of abnormally high, 
when compared to gliding, values of the kinetic coefficient 
of friction.

Even higher values for the coefficient of Coulomb friction 
were obtained by Sahashi and Ichino [11] in their investi-
gation of skidded ski turns. Among several different types 
of such turns, they explored the wedge turn. This seems to 
be the only study of wedge turns published so far. Here we 
apply the theory of snow machining developed in [8] to 
wedge turns. Our main aim is to investigate whether this 
model can explain the data by Sahashi and Ichino [11] with-
out resorting to abnormally strong Coulomb’s friction.

2  Methods

2.1  Basic equations

The key forces acting on a skier during a ski run are the 
gravity force, the snow friction, the snow reaction force, 
and the aerodynamic drag force. The snow friction is usu-
ally low, thanks to the slippery nature of ice, meltwater 
lubrication, and waxes. Hence, we will assume that the 
braking action due to the snow cutting component of the 
snow reaction force is much more important and will 
ignore the usual friction altogether. The aerodynamic drag 

force is also low because wedge turns are executed only at 
rather low speeds. Hence we will ignore the aerodynamic 
drag as well. As the result of these simplifications, the 
equation of motion reduces to

where M is the skier mass, v is the skiers velocity, g is the 
gravitational acceleration vector, and F r is the snow reac-
tion force due to its machining by skis. Accounting for the 
contributions from both skis, we write

where “(l)” and “(r)” stand for the left and the right skis 
respectively. According to our theory of snow machining,

where N(i) = N(i)k̂ is the normal component of the snow 
reaction force, k̂ is the outgoing unit vector normal to the 
plane of the ski slope, n̂(i)

s
 is the unit vector in the plane of 

the slope which is normal to the edge of the i-th ski and 
points to the side opposite to the direction of side-slipping, 
and Ψ(i) is the edge angle of ith ski [8]. For simplicity, we 
assume that both the skis and the skier centre of mass (CM) 
move with the same velocity and denote as m̂ the unit vector 
in the direction of motion. Hence

where ŝ(i) is the unit vector aligned with the i-th ski. Using 
Cartesian coordinates with the basis vectors k̂ (normal to the 
ski slope), î (parallel to the fall line), and ĵ (perpendicular to 
the other two), we can write

where � is the slope inclination angle, � is the angle of trav-
erse, and � is the angle of attack. Here we assume that both 
� and � are measured in the counter-clockwise direction as 
seen from above the slope (see Fig. 2). The reference direc-
tion for � is î and the reference direction for � is m̂ . Hence 
sgn � (r) = +1 and sgn � (l) = −1 (see Fig. 2).

If we ignore the up-and-down motion of skier’s CM, 
then k̂ ⋅ dv∕dt = 0 , and projecting Eq. (1) on the direction 
of k̂ we find

(1)M
dv

dt
= Mg + Fr,

(2)Fr = F(l)
r
+ F(r)

r
,

(3)F(i)
r
= N(i) tanΨ(i) n̂(i)

s
+ N(i),

(4)n̂(i)
s
=

(m̂×ŝ(i)) × ŝ(i)

|m̂×ŝ(i)| ,

(5)

g = g sin 𝛼î − g cos 𝛼k̂

m̂ = cos 𝛽 î + sin 𝛽 ĵ

ŝ(i) = cos
(
𝛽 + 𝛾 (i)

)
î + sin

(
𝛽 + 𝛾 (i)

)
ĵ

n̂(i)
s
= sign 𝛾 (i)

(
− sin(𝛽 + 𝛾 (i))î + cos(𝛽 + 𝛾 (i))ĵ

)
,

Fig. 1  Skier executing left wedge turn. The red line indicates the tra-
jectory of motion (Image courtesy of Canadian Ski Instructors’ Alli-
ance)
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where N is the total normal to the slope component of the 
snow reaction force, or the total load of the skis. Introduc-
ing A(i)

N
= N(i)∕N , the load distribution factor of the i-th ski, 

we can write

By this definition, 0 ≤ A
(i)

N
≤ 1 and

Projecting Eq. (1) onto the slope plane, we obtain

Scalar multiplication of this equation with m̂ yields the evo-
lution equation for the skier speed

One can also use Eq. (1) to find the evolution equation for 
the angle of traverse. To this end, we first note that because 
v = Vm̂

Substituting into this equation the above expressions for 
dv∕dt and dV∕dt and projecting the result onto the direction 
of î we obtain

(6)N = N(l) + N(r) = Mg cos �,

(7)N(i) = A
(i)

N
Mg cos �.

(8)A
(l)

N
+ A

(r)

N
= 1.

(9)
1

g

dv

dt
= sin 𝛼î + cos 𝛼

∑
i=l,r

A
(i)

N
tanΨ(i) n̂(i)

s
.

(10)
1

g

dV

dt
= sin � cos � − cos �

∑
i=l,r

A
(i)

N
| sin � (i)| tanΨ(i).

(11)V
dm̂

dt
=

dv

dt
− m̂

dV

dt
.

The skier trajectory is governed by the equations

and

So far, we have four scalar equations (10, 12, 13, and 14) 
determining the evolution of four dynamic variables: V(t), 
�(t) , x(t), and y(t). However, in addition to these variables, 
the equations involve six more parameters, A(i)

N
 , � (i) , and Ψ(i) , 

which also vary during ski runs. Their evolution is deter-
mined not so much by the laws of mechanics but rather by 
conscious actions of skiers, and for this reason they can be 
called control variables.

In the experiments run by Sahashi and Ichino [11], the 
skier was given a task of executing repetitive and symmetric 
turns. To achieve such turns, a skier has to aim at synchro-
nising their actions with the variation of � in general, and at 
terminating turns at some chosen extreme values of the angle 
of traverse ±� m in particular. Hence the control variables can 
be defined as functions of � . It also is important to differenti-
ate between left and right turns. For example, when turning, 
a skier puts more weight on their outside ski, which is the left 
ski for a right turn and the right ski for a left turn. Hence, at 
the same angle of the traverse, A(l)

N
(𝛽) > A

(r)

N
(𝛽) for right turns 

and A(l)

N
(𝛽) < A

(r)

N
(𝛽) for left turns. Hence, there should be two 

sets of control functions, one per each turn direction.
This analysis invites to consider using � as an independent 

variable, instead of t, because this simplifies the procedure 
of switching between the two sets of control functions. The 
required substitution can be done using Eq. (12) and it yields 
the equations,

(12)

V

g

d�

dt
= − sin � sin �

+ cos �
∑
i=l,r

A
(i)

N
sgn � (i) cos � (i) tanΨ(i).

(13)
dx

dt
= V cos �,

(14)
dy

dt
= V sin �.

(15)
dV

d�
= V

G

F
,

(16)
dt

d�
=

V

g

1

F
,

(17)
dx

d�
=

V2

g

cos �

F
,

(18)
dy

d�
=

V2

g

sin �

F
,

Fig. 2  Key unit vectors and angles in the plane of the ski slope. î  
points in the direction of the fall line and the x axis, ĵ is perpendicu-
lar to î  and points in the direction of the y axis, m̂ points in the direc-
tion of motion and hence the skier velocity v . � is the angle between 
the fall line and the direction of motion, the angle of the traverse. ŝ(l) 
and ŝ(r) point along the edges of the left and right skis respectively, 
and � (l) , � (r) are their angles of attack. n̂(l)

s
 is normal to ŝ(l) and points 

to the side opposite to the direction of side-slipping of this ski
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where

and

During a left turn, these equations are integrated into the 
positive direction of � (towards the transition point +� m ) 
using the control functions for left turns. At the transition 
point, the direction of integration is reversed, and the control 
functions are replaced with those for right turns. The values 
of V, t, x, and y found at the end of the previous turn become 
the initial conditions for the next turn. Hence the integration 
continues towards the transition at −� m , where the direction 
of integration and the control functions are swapped again, 
and so on until the desired number of turns is completed.

At the transition between turns, the ski/skier trajectory 
exhibits a smooth inflection [11]. Accordingly, we adopt the 
condition d�∕dt = 0 at � = ±� m and hence

This implies a singularity in Eqs. (15–18) at � = ±� m . Pro-
vided ±� m is not a stationary (equilibrium) point and can be 
reached in finite time (which can be considered as a condi-
tion imposed on the control functions), this is only a minor 
technical disadvantage. The singularity can be avoided by 
starting and terminating the integration slightly off these 
extreme values of �.

2.2  Control functions

As we have already discussed, the control functions close 
the dynamical equations of wedge turns by introducing the 
conscious actions of skiers aimed at controlling their descent 
down the ski slope. Hence they cannot be specified uniquely 
based on some general principles and may vary a lot from 
run to run and even during individual runs. Comprehensive 
experimental studies can establish these functions for the 
specific runs under investigation, and thereafter they can 
be entered into the model to see how well it captures these 
runs. In the absence of such data, which is the case here, we 
are forced to invent them. In this process, we are guided by 
the well established elements of the wedge turn technique.

According to Eq. (12), the turning action of ith ski is 
proportional to

(19)G = sin � cos � − cos �
∑
i=l,r

A
(i)

N
| sin � (i)| tanΨ(i),

(20)
F = − sin � sin �+

+ cos �
∑
i=l,r

A
(i)

N
sgn � (i) cos � (i) tanΨ(i).

(21)F(±� m ) = 0.

A
(i)

N
sign � (i) cos � (i) tanΨ(i).

Hence, it increases with the load of the ski A(i)

N
 , its angle of 

attack � (i) , and its edge angle Ψ(i) . For the left ski, 𝛾 (i) < 0 
and hence it promotes turning to the right (to position with 
smaller � ). On the contrary, for the right ski 𝛾 (i) > 0 and 
hence it promotes turning to the left. This conflict between 
the turning actions of left and right skis is the main dif-
ficulty of wedge turns, which has to be mitigated for better 
performance. The only way to do this is via reduction of the 
turning action of the inside ski (obstructing the currently 
executed turn), which can be done by reducing its load, angle 
of attack, and edge angle. Indeed, this seems to be a com-
mon feature of the wedge-turn technique as supported by 
openly available on YouTube video lessons by qualified ski 
instructors. Moreover, students are explicitly instructed to 
keep more weight on the outside ski. The lower angle of 
attack of the inside ski is also manifest in the data of Sahashi 
and Ichino [11]. These observations will be used below for 
designing suitable control functions.

2.2.1  Angle of attack

Throughout the wedge turn, the wedge angle between the skis, 
� w = � (r) − � (l) , is usually kept approximately the same [e.g. 
11]. Hence, it makes sense to put

where the functions A(l) and A(r) satisfy the constraint

According to the study of Sahashi and Ichino [11], the angle 
of attack of the inside ski is close to zero (in agreement with 
the analyses above) and hence the angle of attack of the 
outside ski is close to ±� w , with the sign + for the right ski, 
and the sign − for the left ski. Moreover, the transition phase 
between turns is rather quick. Based on these observations, 
we adopt the following simple model:

for left turns, and

for right turns. One can see that � (l) = � (r) = � w ∕2 for 
� = ±� m , and hence at the transition point the ski wedge 
is symmetric with respect to their direction of motion. The 
graph of A(l)

�
(�) is shown in the left panel of Fig. 3.

(22)� (l) = −A(l)
�
(�)� w , � (r) = A(r)

�
(�)� w ,

(23)A(r)
�
(�) + A(l)

�
(�) = 1.

(24)A(l)
�
(�) =

1

2
−

1

2

(
1 −

(
�

� m

)2
)1∕2

(25)A(l)
�
(�) =

1

2
+

1

2

(
1 −

(
�

� m

)2
)1∕2
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2.2.2  Edge angle

In wedge turns, the angle between skier’s legs, Ψ m , is 
more or less constant. The basic geometrical consid-
eration shows that, for straight legs, flat ski slope, and 
small wedge angle, Ψ m ≈ Ψ(l) + Ψ(r) (see the left panel 
of Fig. 4). Hence we may adopt the following model for 
the ski edging

where

Unfortunately, Sahashi and Ichino [11] did not provide any 
information on the ski edging that could be used to specify 

(26)Ψ(l) = A
(l)

Ψ
(�)Ψ m , Ψ(r) = A

(r)

Ψ
(�)Ψ m ,

(27)A
(r)

Ψ
(�) + A

(l)

Ψ
(�) = 1.

Fig. 3  Left panel: The angle of attack function A(l)
�
(�) (left ski) as 

determined by Eqs. (24, 25). The arrows indicate the direction of evo-
lution through turns. Right panel: Example of the load distribution 

functions A(l)

N
 (solid line) and A(r)

N
 (dash line) as determined by Eqs. 

(33, 34). The arrows show the direction of evolution through turns. In 
right turns � decreases and in left turns it increases.

Fig. 4  In these plots, the yellow bars depict skier’s legs and the red 
pointed planks depict the skis, and the ski slope is coloured in blue. 
Left panel: View from the front when the wedge angle vanishes. The 
dashed line is a normal to the ski slope and the ski bases are nor-
mal to the corresponding legs. In this case, the angle between the legs 
Ψ

m
 equals the sum of the edge angles Ψ(l) + Ψ(i) . Middle panel: View 

from above when the ski tips touch each other. From the equilateral 
triangle ABC, the distance |BC| between the ski mounting points B 
and C equals to 2a sin(�

w
∕2) . Right panel: View from the front when 

the ski tips touch each other. From the equilateral triangle BCD, the 
distance |BC| between the ski mounting points B and C equals to 
2a sin(Ψ

m
∕2) , provided the leg length equals to a.
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the edging functions A(i)

Ψ
(�) . However, our analysis of the 

conflict between the turning actions of the inside and outside 
skis and the ways of its mitigation shows that the mitigation 
is most efficient when the attack and edge angles vary in 
unison. Hence we simply put

In this model, (1) Ψ(l) = Ψ(r) = Ψ m ∕2 at the transition point 
between turns (at � = ±� m ), and (2) in the middle of the 
turn (at � = 0 ) Ψ = Ψ m for the outside ski and Ψ = 0 for 
the inside ski.

To determine a reasonable range for Ψ m , let us suppose 
that ski’s head section (from the boot mounting point to the 
tip) is of the same length as skier’s leg. In the experiments 
by Sahashi and Ichino [11], the skis were 180 cm long, and 
the photograph of the skier shown in Figure 1 suggests that 
this assumption is quite reasonable. If we further assume 
that the ski tips touch each other, then the geometry of the 
problem implies Ψ m ≃ � w (see the middle and right panels 
of Fig. 4). In reality, the tips are usually kept somewhat apart 
(see Fig. 1 in [11]), resulting in a larger Ψ m compared to � w . 
Hence one can use as a guide

where 𝜅 ≳ 1.

2.2.3  Loading factor

Unfortunately, Sahashi and Ichino [11] did not provide any 
information on the ski loading too. When searching for suit-
able load distribution functions, one has to take into account 
that at the transition between turns ( � = ±� m ), the angle 
of traverse function �(t) takes extreme values and hence 
d�∕dt = 0 . Combining this condition with equations (8, 
12), one finds

where

These two equations are constraints of the load distribution 
function. More constraints appear if we want to control the 
load distribution elsewhere in the turn. For example, one 
can chose it to be the relative loading of the outside ski at 
� = 0 , the point where the skier moves in the direction of 
the fall line

(28)A
(i)

Ψ
(�) = A(i)

�
(�).

(29)Ψ m = �� w ,

(30)A
(l)

N
=

{
Am for � = �m
1 − Am for � = −�m,

,

(31)Am =
1

2

⎛⎜⎜⎜⎝
1 −

tan � sin �m

cos
� w

2
tan

Ψm

2

⎞⎟⎟⎟⎠
.

In general, three constraints allow to fully specify func-
tions with three parameters, which suggest to approxi-
mate the loading function using quadratic polynomials, 
A
(l)

N
(�) = a�2 + b� + c . After solving the constraint equa-

tions for the coefficients of such polynomial, one finds

for left turns, and

for right turns. This function was used in the simulations 
described in the next section. It is illustrated in the right 
panel of Fig. 3.

2.2.4  Suitability of control functions

In principle, a skier may decide to stop turning and con-
tinue their motion with a straight traverse. During such a 
traverse, the angle of traverse is constant and hence all its 
time derivatives vanish. Hence it is possible to choose such 
control functions that � = � m is a stationary solution. In this 
case, other solutions will be able to reach � m only asymptoti-
cally as t → ∞.

The evolution equation for �(t) (Eq. 12) has the form

where K(�) = gF(�)∕V(�) and hence vanishes at � m . If K(�) 
was infinitely differentiable at � m then all the higher order 
derivatives would vanish as well, implying that � = � m is a 
stationary solution. For example,

if K�(� m ) is finite. Hence for � = � m to be a point of transi-
tion between turns, K(�) must not be infinitely differentiable 
at this point (The same applies to � = −� m.). In fact, such 
non-differentiability of K(�) is ensured by our choice of the 
control functions for the angle of attack (Eqs. 24 and 25, and 
the left panel of Fig. 3). It is easy to see that their derivative 
diverges at ±� m.

(32)A
(l)

N
(0) = A0.

(33)
A
(l)

N
(�) =

(
A0 −

1

2

)(
�

�m

)2

+
(
Am −

1

2

)(
�

�m

)
+ 1 − A0,

(34)
A
(l)

N
(�) = −

(
A0 −

1

2

)(
�

�m

)2

+
(
Am −

1

2

)(
�

�m

)
+ A0

(35)
d�

dt
= K(�),

(36)
d2�

dt2

|||||�=� m

= K�(� m )K(� m ) = 0
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Expanding K(�) in the vicinity of � m in powers of 
� = 1 − �2∕�2

m
 leads to

where A ≠ 0 is a constant. Integrating this equation with 
the initial condition �(t m ) = � m , one finds the asymptotic 
solution

which confirms that �m is indeed not a stationary point and 
can be reached in finite time.

3  Results

In this section, it is investigated how well the above model 
of wedge turns can reproduce the results of the field study 
by Sahashi and Ichino [11]. Their experimental data are pre-
sented in the form of plots which show the trajectory of skis 
and the variation of some key parameters with the distance 
down the fall line—the angle of traverse for the midpoint of 
the ski wedge, the angles of attack for both the left and the 
right skis, the speed of the midpoint, “the curvature radius 
of ski track”, and the effective coefficient of snow friction. 
These data describe two consecutive turns of a single run.

The effective coefficient of friction was obtained on the 
basis of the observed acceleration of the midpoint and the 
model where it is attributed to the competition between the 
component of the gravity force along the direction of motion 
and the Coulomb friction. The way the radius of curvature is 
calculated is not described. Given the fact that in the wedge 
turn, skis leave a rather wide trail, this introduces a signifi-
cant degree of uncertainty about this parameter.

The ski slope used in the study had the inclination 
� = 7◦ . Based on the plots, the maximum angle of traverse 
� m = 40◦ , the wedge angle � w = 20◦ and the skier speed 
V ≈ 3m/s.

Given our selection of � as an independent variable, the 
computations of the whole ski run split into computations 
of individual turns. During left turns, � increases from −� m 
to +� m and during the right turns it decreases from +� m to 
−� m . Because F(±� m ) = 0 , the integrated Eqs. (15)–(18) 
are singular at the turning points. To avoid the singularity, 
the numerical integrations of these equations begins and 
terminates at � = ±0.9999� m . The parameters found at the 
end of the previous turn determine the initial conditions for 
the next turn. The initial conditions for the whole run are 
� = −0.9999� m , V = V0 = 3m/s, x = 0 , and y = 0.

With � m , � w , and V0 immediately determined by the 
experimental data, the only other two model parameters 
which remain free are the relative loading of the outside 

d�

dt
= K(�) ≃ A�1∕2,

� = �m sin(A(t − t m ) + �∕2) ,

ski at the fall line A0 and the maximum edge angle as rep-
resented by the factor � in Eq. (29). The realistic ranges 
for this parameters are A0 ∈ (0.5, 1) and � ∈ (1, 2) . Hence 
we explored this region of the parameter space, looking 
for a close similarity between the model and the experi-
mental data.

As a first step, the loading parameter was set to 
A0 = 0.8 , and � was varied until there was no strong sys-
tematic variation of the skier speed V with x, like seen 
in the experimental data (after the short initial phase of 
skiing down the fall line during which the speed was grow-
ing). At the same point, the distance between two points 
corresponding to the same turn phase reached approxi-
mately the same value as in the experimental data, ≈ 4.5 
meters. This is rather surprising because, one would not 
expect a model to fit two independent sets of data by 
adjusting only one free model parameter. The obtained 
� = 1.67 corresponds to the reasonable ski edge angle 
Ψ m = 34◦.

Figure  5 shows the variation of several kinematic 
parameters with the distance down the fall line obtained 
in the model with A0 = 0.8 and � = 1.67 . All these param-
eters were measured in the experiment and their actual 
variation is shown in Figure 3 of [11].

In the context of this study, the most important of these 
parameters is the effective coefficient of friction, defined 
as

Using this definition, one can write Eq. (10) as

which looks exactly the same as in the model where the 
snow reaction force is replaced with Coulomb’s friction with 
the coefficient � eff . Like in the experimental plots, � eff var-
ies between 0.05 and 0.2. In the model, � eff increases on 
approach to the fall line ( � = 0◦ ) and decreases after passing 
it. However, in the experimental data the peak is reached 
after the fall line.

The variation of the angle of traverse � is similar to 
what is seen for the first turn in [11] but the transition 
between the first and the second turn of the experimental 
run is noticeably sharper. The speed plot shows qualita-
tively the same evolution as in the experiment, with max-
ima just before the fall line around the phase where the 
effective coefficient of friction is about half way between 
its extreme values. However, the amplitude of the speed 
variation is about half of that in the experimental data.

The largest difference between the model and the data 
is in the values of the curvature radius of the trajectory

(37)� eff =
∑
i=l,r

A
(i)

N
| sin � (i)| tanΨ(i).

(38)
dV

dt
= g(sin � cos � − � eff cos �),
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Fig. 5  Variation of the key parameters throughout consecutive wedge turns in the model with A
0
= 0.8 and � = 1.67
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where l is the distance along the trajectory. While the shape 
and position of the theoretical curve are very similar to what 
is seen in the experimental curve, we find twice as lower 
radii at the minima. This is somewhat in conflict with the 
apparent similarity between our trajectory of the CM and the 
ski trajectories presented in [11]. To illustrate this point, we 
scanned their plot and superimposed it on our trajectory plot. 
The result is shown in Fig. 6. One can see that theoretical 
and the experimental trajectories agree. In fact, the theoreti-
cal curve traces the inside ski, as indeed is expected in the 
case where it runs flat, and hence the CM is located right 
above it (with the respect to the normal of the ski slope). 
Presumably, the explanation of the apparent conflict between 
the computed and measured curvature radii lies in the differ-
ence between their definitions. Unfortunately, Sahashi and 
Ichino [11] do not describe their procedure for measuring R.

Overall, the computed run is similar to the ski run 
presented in [11]. Without tabulated data, we cannot do 
a proper fitting of the theoretical model. Moreover, the 
experimental data describe only two turns, which are not 
identical, and hence the outcome of such a fitting would 
not provide any useful statistical information. Hence we 
opted not to proceed in this direction. Instead, we simply 
repeated our procedure with somewhat different values 
of A0 to see if this would lead to a noticeably different 
outcome. This way we have found that for a higher A0 
a similar outcome can be obtained with lower value of 
� , and the other way around. For example, the solutions 
corresponding to A0 = 0.7 and � = 1.78 , and A0 = 0.9 and 
� = 1.57 are not much different from the reference solution 
described above.

We finish this section, by considering a simpler 
manoeuvre involving wedged skis that can also be used 
for experimental verification of our model. Namely we 
analyse the motion down the fall line. In this case, � = 0 , 
A
(l)

N
= A

(r)

N
= 1∕2 , � (l) = � (r) = � w ∕2 , Ψ(l) = Ψ(r) = Ψ m ∕2 , 

and Eq. (10) reads

(39)R =
||||
d�

dl

||||
−1

= V
||||
d�

dt

||||
−1

,

For travelling with constant speed, this equation implies

For a larger wedge angle, the skier will decelerate and even-
tually stop. For smaller angles they will speed up. Figure 7 
shows how the critical wedge angle depends on the slope 
inclination � when Ψ m = � w . One can see that it grows rap-
idly at small � and reaches the appreciable value of � w = 33◦ 
already for slopes with � = 5◦ . The even larger values of 
the wedge angle predicted for steeper slopes, with 𝛼 > 20◦ , 
require rather short skis in order to avoid their crossing.

(40)
1

g

dV

dt
= sin � − cos � sin

(� w

2

)
tan

(
Ψ m

2

)
.

(41)tan � = sin
(� w

2

)
tan

(
Ψ m

2

)
.

Fig. 6  Superposition of the CM 
trajectory in the model with 
A
0
= 0.8 and � = 1.67 , and the 

skis trajectories from [11]

Fig. 7  Critical wedge angle, above which wedge skidding down the 
fall line comes to a stop, as a function of the slope angle
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4  Discussion

The complex movements of skier’s body performed during 
skiing are designed mostly to achieve the desired interaction 
between their skis and snow. This interaction allows skiers 
to make turns and control speed. Hence, a clear understand-
ing of the ski-snow interaction is a primary objective for the 
theory of skiing. Here I focused on the case when skis are set 
on edge and sideslip during their motion on hard snow. This 
results in the removal of the top layer of snow, which makes 
the ski-snow interaction similar to the process of machining 
in manufacturing. The key force in this process is the snow 
reaction force normal to the ski base, which has both the 
braking and turning components2.

In the theory of snow machining, the key parameters 
determining the turning and braking forces acting on the 
skis are their loading, angle of attack, and edge angle. How 
exactly skiers control these parameters is a topic of sports 
biomechanics and it is not addressed in this paper. Instead, 
these parameters are simply described as functions of the 
turn phase (the angle of traverse). This choice is convenient 
for modelling of repetitive ski runs (periodic or quasi-peri-
odic solutions), which simplify studying the turn dynamics.

The theory requires proper verification via comparing 
its predictions with skiing practice. The main aim of this 
paper was to build a model that could be used in experi-
mental studies of wedge turns. I used as a guide the study by 
Sahashi and Ichino [11], the only field study of wedge turns 
so far. Moreover, I wanted to explore if the strong braking 
force reported in this study could be attributed not to the 
abnormally high and variable coefficient of Coulomb fric-
tion, as done in [11], but to the cutting force of machining.

Unfortunately, the study gives no information on the ski 
loading and edging, and only rather limited graphic data on 
the angle of attack. Hence, I specified the control functions 
using as a guide the video recordings of wedge turns avail-
able on YouTube and my personal skiing experience. Admit-
tedly, the videos reveal significant stylistic variety and hence 
the choice of control functions is far from unique.

To simplify the comparison between the model and the 
experiment, the control functions had only two free parame-
ters, one adjusting the loading of the outside ski and another 
adjusting its edging. Although this reduced the flexibility 
of the model, it still succeeded in reproducing quite closely 
the wedge turns studied in [11], including the wedge angle, 
skier’s trajectory, and speed. Finally, the evolution of the 
effective coefficient of snow friction with the turn phase 

was also very similar to the one observed in the experiment, 
including the abnormally high values near the peak.

Unfortunately, Sahashi and Ichino [11] did not provide 
any information of the load distribution between the inside 
and outside skis and the skis edge angles. So, there remains 
a possibility of disagreement between the theory and experi-
ment with regard to these parameters. Future experiments 
should aim at measuring them as well. In relation to this, 
the modelling has revealed a degeneracy in the plane of 
the parameters used to adjust the loading and edging func-
tions—models with higher loading and lower edge angle of 
the outside ski yield similar results to models with lower 
loading and higher edge angle.

One small problem with experiments focused on repeti-
tive ski runs is that in reality every individual turn is still 
somewhat different from other turns. Human errors and vari-
ations of terrain contribute to the inconsistency. However, 
the results of such imperfect runs can be analysed using a 
statistical approach.

The simpler is a ski manoeuvre, the easier it is to model 
and to analyse, and the more reliable can be conclusions 
on the ski-snow interaction. In this regard, skiing down the 
fall line in symmetric wedge configuration can be worthy 
of attention. In the theory, this motion is described by just 
one simple differential equation (40), which can be inte-
grated analytically. In experiment, the skier is not required to 
repeat their movements turn after turn, but only to keep the 
position of their body and skis unchanged. Although such 
experiment cannot be used for studying the turning action 
of skidded skis, it is very suitable for investigation of their 
braking action.

The simplified theory of snow machining used in this 
study treats skis as flat plank with straight edge. In real-
ity, most modern skis are shaped and do not have straight 
edge anyway. Moreover, due to their finite longitudinal and 
torsional stiffness, skis will bend and twist when interact-
ing with snow [e.g. 2, 12]. As a result, the angle of attack 
becomes a function of the position along the ski edge [e.g. 
2, 13]. For turns with large mean angle of attack, like the 
wedge turn, this is likely to be a secondary effect. However, 
for the aim of experimental verification of the basic machin-
ing theory, it is still preferable to use stiff skis with large 
sidecut radius.

For turns with small angle of attack, approaching pure 
carving, the bending and twisting of skis may become cru-
cial for determining their braking power. Even a relatively 
small angle of attack at the skidding front section of the ski 
may be sufficient for the snow cutting force originated at this 
section to dominate Coulomb’s friction. Further investiga-
tion involving more complex models and computer simula-
tions is needed to clarify this effect.

2 The normal reaction force can be crucial under a variety of snow 
conditions, even when the ski-snow interaction can no longer be 
described as snow-machining. For example, soft snow can be simply 
compacted by skis.
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5  Conclusion

This paper described the first attempt to model consecutive 
wedge turns using a simplified theory of snow machining. 
The results are at least in a semi-quantitative agreement 
with previously published experimental data and are hence 
encouraging. In particular, the snow machining mechanism 
allows to explain the abnormally high and dependent on the 
turn phase values of the friction coefficient found in that 
field study. However, additional experiments, providing sta-
tistically sufficient information for a larger set of parameters, 
are required to make further advances in this area.
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