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Abstract
Chain conditions are one of the major tools used in the theory of forcing. We say that
a partial order has the countable chain condition if every antichain (in the sense of
forcing) is countable. Without the axiom of choice antichains tend to be of little use,
for various reasons, and in this short note we study a number of conditions which in
ZFC are equivalent to the countable chain condition.

Keywords Axiom of choice · Countable chain condition · Forcing · Symmetric
extensions

Mathematics Subject Classification 03E25 · 03E35

1 Introduction

Paul Cohen developed the method of forcing to prove that the Continuum Hypothesis
is not provable from ZFC. He did so by showing that one can add ℵ2 new real numbers
to a model of ZFC, but in order to conclude that indeed the Continuum Hypothesis is
false in the resulting model, Cohen needed to show that the ordinal which was ω1 in
the ground model did not become countable when we added those new real numbers.
In [4] Cohen shows that any set of pairwise incompatible conditions (or antichain) is
countable, and then uses this lemma to conclude that if α and β are two ordinals that
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are in bijection in the generic extension, then they must be in bijection in the ground
model as well.

This property, now known as the countable chain condition, was generalised in
several ways (both κ-c.c. as well as Axiom A and properness are, in some sense,
generalisations). The preservation of cardinals and cofinalities is so deeply ingrained
into the study of forcing that any new definition of a forcingwill comewith the study of
its chain conditions, either directly by proving that no antichain can be of a certain size,
or by showing that certain cardinals or cofinalities change in the generic extensions,
and thus putting an upper bound on the chain condition of the forcing.

If we choose to study forcing over models of ZF, however, this changes drastically.
Despite the basic machinery of generic extensions remaining the same, antichains and
closure conditions play a very different role. For one, “every partial order contains a
maximal antichain” is itself equivalent to the axiom of choice over ZF.1 But antichains
in partial orders are not the same as antichains in forcing, since “incomparable” and
“incompatible” are very different notions in general. Arnold Miller, in his note [13,
p. 2], remarks that while a certain partial order does not have maximal antichains, it
is trivial from a forcing perspective. In the proof that “every partial order contains a
maximal antichain” implies the axiom of choice, one resorts to fairly trivial partial
orders as well, as far as forcing is concerned. These are forcings that when considering
their separative quotients are just atomic forcings.

In this paper we study the notion of chain conditions in ZF in somewhat less trivial
way. We focus on the countable chain condition in particular, since it is by far the
most useful one. We consider three different versions, ranging from “every maximal
antichain is countable” to “every predense set contains a countable predense subset”,
and we show that ZF+ DC will not prove any of the non-trivial implications between
these versions. We also use two external definitions of the countable chain condition,2

and we compare them against our three proposed ones.
We use this to argue that the strongest definition is the one that should be used,

at least in the context of partial orders, as it is consistent with ZF + DC that a partial
order satisfies that every antichain is countable, but it collapses ω1. If we are willing
to give up on DC and relax the version of countable chain condition we can also add
σ -closure. In contrast, ZFC proves that a forcing which is both κ-c.c. and κ-closed
is atomic. On the other hand, the strongest version of the countable chain condition
cannot change cofinalities or collapse cardinals above ω1.

We also include yet another transfer theorem that allows us to “clone” a structure in
the ground model in a way that allows us to control the subsets of the cloned version
in a very precise manner. These sort of theorems are used often to prove theorems in
ZF.

At the end of this paper we include a list of open questions which we think are
crucial for pushing further the study of forcing over models of ZF, putting us one
step closer to the goal of understanding how forcing changes the cardinal structure of
models of ZF.

1 This equivalence, unlike “every partial order contains a maximal chain”, requires the axiom of regularity.
See [7, Chapter 9] for details.
2 External in the sense that they require more than just the subsets of the forcing.
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2 Preliminaries

Suppose that X and Y are two sets, we want to look at permutations of X ×Y which
preserve X -sections. In other words, we want to consider permutations π of X ×Y ,
such that whenever y, z ∈ Y , then π(x, y) and π(x, z) will appear in the same X
section, that is, if π(x, y) = 〈x0, y′〉 and π(x, z) = 〈x1, z′〉, then x0 = x1. In this
case, π defines a permutation of X by its action on the X section, which we denote
by π∗, and for every x ∈ X , πx is the permutation of Y defined by πx (y) = z if and
only if π(x, y) = 〈x ′, z〉 for some x ′ ∈ X . This leads us to the wreath product. Let
G ⊆ sym(X) and H ⊆ sym(Y ) be two groups. The wreath product of G and H ,
denoted by G 	 H , is the set of all permutations π of X ×Y which preserve X -section
such that π∗ ∈ G and for all x ∈ X , πx ∈ H .

We say that a set iswell-orderable if it can bewell-ordered, inwhich case its cardinal
is the least ordinal which is in bijection with the set. The cardinals of infinite well-
orderable sets are the ℵ numbers. If X is not well-orderable, we define its cardinal,
denoted by |X |, to be its Scott cardinal, namely the set

{Y ∈ Vα | ∃ f : X → Y a bijection},

where α is the least ordinal for which the set is non-empty. We will use Greek letters
such as κ, λ and μ to denote ℵ numbers exclusively.

The only weak versions of the axiom of choice which we will use in this work are
variants of the Principle of Dependent Choice. For an ℵ number λ we define DCλ to
be the statement “Every λ-closed tree has a maximal element or a chain of type λ”,
and we define DC<κ to mean ∀λ < κ,DCλ. If λ = ω, then DCλ is written simply as
DC.

2.1 Forcing and antichains

We say that P is a notion of forcing, or simply a forcing, if it is a preordered set with
a maximum, 1P. Throughout the paper it will often be beneficial to consider forcing
notions with 1 removed from the partial order, but this will always be a temporary
measure.

If p, q ∈ P, we say that q extends p, or that it is a stronger condition if q �P p.
Two conditions p and q are compatible (abbreviated as p ‖ q) if they have a common
extension, and otherwise they are incompatible (written as p ⊥ q).

We say that a subset A ⊆ P is an antichain if any two distinct conditions in P are
incompatible. Finally, we say that D ⊆ P is predense if for any p ∈ P there is some
q ∈ D which is compatible with p. We note that an antichain is predense if and only
if it is a maximal antichain.

For a subset A of P, we denote by A⊥ the set {p ∈ P | ∀q ∈ A, p ⊥ q}. Easily,
A ∪ A⊥ is predense for any set A, and A is predense if and only if A⊥ = ∅.

We say that a forcing P satisfies the κ-chain condition (or κ-c.c.), at least in the
standard context of ZFC, if given any subset of P of size κ , at least two of its members
are compatible. If κ = ℵ1 we refer to it as the countable chain condition, or c.c.c. If
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P is a c.c.c. forcing, then it does not change cofinalities, and in particular does not
collapse cardinals.3

If {ẋi | i ∈ I } is a family of P-names, usually a set, we want to make it into a name
that is interpreted as the set of the interpretations. If 1P is present, this is easily done by
defining {ẋi | i ∈ I }• = {〈1P, ẋi 〉 | i ∈ I }. This notation extends naturally to ordered
pairs, functions, sequences, etc. We also note that the usual naming scheme for ground
model sets can be made more compact using this notation since x̌ = {y̌ | y ∈ x}•.

Finally, given a family of forcing notions, {Pi | i ∈ I }, we define the lottery sum⊕
i∈I Pi as the forcing {1} ∪ {{i}×Pi } with the order given by 〈 j, q〉 � 〈i, p〉 if and

only if i = j and q �i p, and of course 1 is the maximum. This can be viewed as an
iteration of first choosing i ∈ I with an atomic forcing, then forcing with that Pi . The
idea is to let the generic filter choose which forcing we are using.

2.2 Symmetric extensions

Forcing is generally done in the context of ZFC, in part because of the usefulness of
antichains, and since forcing cannot violate the axiom of choice, this method alone is
not all that useful when trying to prove consistency results between ZF and ZFC. We
can extend this method to accommodate the failure of the axiom of choice in a rather
controlled manner by introducing additional structure to the forcing. The additional
structure allows us to identify a class of names which defines a model of ZF between
the ground model and the generic extension.

Let P be a notion of forcing. If π is an automorphism of P, then π acts on the
P-names in the following recursive manner:

π ẋ = {〈π p, π ẏ〉 | 〈p, ẏ〉 ∈ ẋ}.
The forcing relation, which is defined from the order of P is also respected by this
action as shown by the Symmetry Lemma.

Lemma 2.1 Suppose that p ∈ P, ẋ is a P-name, and π ∈ Aut(P), then

p � ϕ(ẋ) ⇐⇒ π p � ϕ(π ẋ). ��
Let G be a fixed subgroup of Aut(P). We say that F is a filter of subgroups on G if it

is a filter on the lattice of subgroups. Namely, it is a non-empty collection of subgroups
of G which is closed under supergroups and finite intersections. We will also assume
that the trivial group is not in F. We say that F is a normal filter of subgroups if
whenever H ∈ F and π ∈ G, then π Hπ−1 ∈ F as well. We say that 〈P,G,F〉 is a
symmetric system if P is a notion of forcing, G is a group of automorphisms of P, and
F is a normal filter of subgroups on G.

We denote by symG(ẋ) the subgroup {π ∈ G | π ẋ = ẋ}, and we say that ẋ is
an F-symmetric name when symG(ẋ) ∈ F. If this notion holds hereditarily for all
names which appear in the transitive closure of ẋ , then we say that ẋ is a hereditarily
F-symmetric name.Wedenote byHSF the class of all hereditarilyF-symmetric names.

3 This easily follows from Corollary 5.5 in the context of ZFC.
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Theorem ([8, Lemma 15.51]) Suppose that 〈P,G,F〉 is a symmetric system, and let
G ⊆ P be a V -generic filter. The class HSG

F = {ẋG | ẋ ∈ HSF} is a transitive class
model of ZF which lies between V and V [G].
The class HSG

F in the theorem is also known as a symmetric extension. To learn more
about symmetric extensions in general, as well as their iterations we direct the reader
to [5], and more recent papers such as [18] and [9].

3 Subset control

We ultimately want to construct models of ZF where a certain partial order will fail to
satisfy some definition of c.c.c.

Definition 3.1 Suppose that M is a structure in some first-order language L and V ⊆
W ⊆ V [G] is a symmetric extension of V . A symmetric copy of M is a structure
N ∈ W such that V [G] |� M ∼=L N .4

Our goal, therefore, is to define a partial order in the ground model, with a suitable
group of automorphisms, and use these to define a symmetric extension in which there
is a symmetric copy of our partial order whose subsets are exactly those that are fixed
pointwise by a large group of automorphisms (with the appropriate definition of large,
usually meaning “fixing pointwise a small number of points”).

These sort of considerations are not new. Plotkin [15], Hodges [6], and others
already proved theorems of this sort before including many ad hoc versions, and if we
want to be strict, we may also include results involving permutations models of ZFA
along with the Jech–Sochor transfer theorem (see [7, Chapter 6] for details). The first
author has proved a similar theorem as well, in a more general setting that allows the
preservation of DC<κ under suitable conditions [10]. For these reasons we will only
outline the proof of the theorem.

Let L be a first-order language and let M be an L-structure. Given a group G ⊆
Aut(M) and an ideal of subsets of M , I, we say that a subgroup of G is large if it
contains fix(A) = {π ∈ G | π�A = id} for some A ∈ I. We fix such L, M,G and I.
We will say that a X ⊆ M is stable under an automorphism π , if π“X = X , and we
say it is stable under a group H if it is stable under every π ∈ H .

Theorem 3.2 Let L, M,G, I be as above. There is a symmetric extension of the uni-
verse in which there is a symmetric copy of M, N, such that every subset of N k in the
symmetric extension is a symmetric copy of a subset of Mk that is stable under a large
group of automorphisms.

Moreover, if I is κ-complete, then we can assume that DC<κ holds in the extension.
We can also require that M does not have any new subsets, although that is not relevant
to the proof.

Outline of Proof We will only outline the case for the case of k = 1. Let λ � ω be
your favourite regular cardinal (e.g., ω if we do not wish to collapse cardinals without

4 The definition in fact captures general logics, but we will only need it for first-order logic in this paper.
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additional assumptions such asGCH; or |M |+ if we wish to not add new subsets of M),
and consider the forcing P = Add(λ, M ×λ) whose conditions are partial functions
p : M ×λ×λ → 2 such that |p| < λ.

We let G 	sym(λ) act on P in the natural way: π p(π(m, α), β) = p(m, α, β), and
let F be the filter of subgroups {fix(A× B) | A ∈ I, B ∈ [λ]<λ}.

For m ∈ M, α < λ let

(1) ẋm,α = {〈p, β̌〉 | p(m, α, β) = 1},
(2) ȧm = {ẋm,α | α < λ}•, and
(3) Ṅ = {ȧm | m ∈ M}•, we define similar names the interpretation of L. E.g., if L

has a partial order symbol �, then we define �̇ = {〈am, an〉• | m � n}•.
It is easy to see that this is indeed defining a symmetric copy of M . We say that a
subset of N is stable under π if in the full generic extension, where we have the natural
identification m �→ xm , it is stable under the transport of π to N . In other words, if
p � Ẋ ⊆ Ṅ , then p forces that Ẋ is stable under π if p � ȧm ∈ Ẋ ↔ ȧπ∗m ∈ Ẋ for
all m ∈ M .5 So in the generic extension, we can transfer the notion of “stable” to N ,
and so X is stable under a large group of automorphisms if there is some A ∈ I such
that X is stable under fix(A).

The following lemma is the key technical part of the proof:

Lemma 3.3 Given any two conditions p, q there is a permutation π such that π∗ = id
and π p is compatible with q.

Proof of Lemma 3.3 Let A ⊆ M be the set of m ∈ M such that p(m, α, β) �=
q(m, α, β) for some α, β < λ.

Then for eachm ∈ A we have that |{α < λ | ∃ β 〈m, α, β〉 ∈ dom p∪dom q}| < λ.
Therefore there is a permutation of λ, πm such that

{πmα | ∃ β 〈m, α, β〉 ∈ dom p} ∩ {α | ∃ β 〈m, α, β〉 ∈ dom q} = ∅.

We can now take π to be π∗ = id and πm to be our chosen permutation as needed,
then dom π p ∩ dom q = ∅. This construction can be modified to simply move the
coordinates which are in disagreement, or to preserve any small subset of the domain
if necessary. �

Suppose now that Ẋ ∈ HS and p � Ẋ ⊆ Ṅ , and let A× B be such that fix(A× B)

⊆ sym(Ẋ). By the homogeneity lemma above, we may assume that dom p ⊆
A× B ×λ, since we are only interested in statements of the form ȧm ∈ Ẋ and their
negation. Suppose now that q � p and q � ȧm ∈ Ẋ , if we show that for every
π ∈ fix(A× B), q � π ȧm ∈ Ẋ , then we are done since π ȧm = ȧπ∗m , and that would
mean that p forces that Ẋ is stable under fix(A).

Let π ∈ fix(A× B), then πq � π ȧm ∈π Ẋ , and since π Ẋ = Ẋ we can omit it
from that part. Moreover, by the lemma above we can find τ ∈ fix(A× B) such that
τ ∗ = id and τπq is compatible with q. But now τπq � τπ ȧm ∈ Ẋ , and since τπ ȧm =
5 Recall that π∗ is the projection of π to G.
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ȧτ∗π∗m = ȧπ∗m = π ȧm we get that τπq � π ȧm ∈ Ẋ . Since q was an arbitrary
extension of p, this holds for every extension of q itself. Therefore no extension of q
can force π ȧm /∈ Ẋ , so q � π ȧm ∈ Ẋ as wanted.

Finally, if I is κ-closed, then by choosing λ � κ we have that F is κ-complete and
P is κ-closed and therefore by [10] we preserve DC<κ .6 And indeed, if we wish for
M to not have new subsets we only need to take λ = |M |+. ��
Remark 3.4 The proof above raises the obvious question: if X ⊆ N is in the generic
extension and it is stable under a large group of automorphisms, is it in the symmetric
extension? In the case where X is a copy of a subset of M in the ground model the
answer is easily positive: {ȧm | m ∈ X∗}•, where X∗ ⊆ M is the relevant subset, is a
symmetric name if and only if X∗ is stable under a large group of automorphisms.

Therefore, in the case where no new subsets of M are added this question receives
a very easy positive answer. In the case where new subsets of M are added we run
into the problem that if Ẋ is a name for a subset of N , then π Ẋ is not necessarily the
same as π“X (understood as the transport of π in the generic extension). The proof
requires us to define a name in HS and show that it is forced to be equal to Ẋ , but in
order to do so we need either equality between π Ẋ and π“X , or at the very least that
Ẋ is symmetric to begin with, in which case there is nothing to do anyway.

Under additional assumptions of homogeneity on M we can indeed get these sort of
equivalences but finding the exact condition seems like a result beyond the scope that
is necessary here. And so we decide to add one more piece of wood into the roaring
fire of ad-hoc folklore theorems instead.

4 What do youmean by “a chain condition”?

Definition 4.1 Let P be a notion of forcing. We define the following properties:

CCC1: Every maximal antichain in P is countable.
CCC2: Every antichain in P is countable.7

CCC3: Every predense subset of P contains a countable predense subset.

When we write CCCi → CCC j , we mean that for every notion of forcing P, if
CCCi (P) holds, then CCC j (P) holds. Likewise, CCCi � CCC j means that there
exists a notion of forcing for which the implication does not hold.

Assuming ZFC, all the variants mentioned above are equivalent and the “standard
definition” is CCC2.

Proposition 4.2 The following implications are provable in ZF:

CCC3 → CCC2 → CCC1.

6 We can be more careful in our construction to even allow λ = ω while still preserving DC<κ . But since
we will not need that much sophistication in our use of this theorem it is easier to make the assumption that
λ � κ .
7 Equivalently, every uncountable subset of P contains two compatible conditions.
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Proof CCC3 →CCC2: Let A be an antichain, and let D = A ∪ A⊥. Since D is
predense, it has a countable predense subset, D′. Because every condition in D is
either incompatible with all conditions in A or it belongs to A, it must be that A ⊆ D′.
Therefore A is countable. CCC2 → CCC1 is trivial. ��
Proposition 4.3 If DCω1 holds, then CCC2 → CCC3.

Proof Suppose that P is a CCC2 forcing notion and D is a predense set, we will find
a countable D0 ⊆ D which is also predense. We will begin with the case that D is
in fact a dense open set. In this case, we recursively construct an increasing sequence
of antichains, Aα . Taking A0 = ∅ and Aα = ⋃

β<α Aβ when α is a limit ordinal.

In the successor case, simply choose a point p ∈ D ∩ A⊥
α if such p exists and let

Aα+1 = Aα ∪ {p}. If no such p exists, then Aα is a maximal antichain, since D was
dense, and we simply let Aα+1 = Aα .

Using DCω1 , the process can continue to define Aα for α < ω1 and so A =⋃
α<ω1

Aα is an antichain in P which is contained in D. But since P was CCC2, it
must be that A is countable, so the process must have stabilised at some stage and
therefore A is maximal and is predense.

Assume now that D is not a dense open set. We can repeat the same process for its
downwards closure, that is {q ∈ P | ∃ p ∈ D : q � p} to find a countable and maximal
antichain A. Now, using DCω1 we can choose for each q ∈ A some pq ∈ D such that
q � pq , and such pq exists by the fact we took A out of the downwards closure of D.
Indeed, we may take up to countably many points for any such q ∈ A. Let D0 be the
countable set {pq | q ∈ A}, then given any p ∈ P, there is some q ∈ A such that q and
p are compatible, and therefore pq is compatible with p as well, so D0 is predense as
wanted. ��
Main Theorem No implication in Proposition 4.2 is reversible in ZF + DC.

Each of these reverse implications requires a separate consideration. We will there-
fore prove them separately in the remainder of this section. We will rely, heavily, on
Theorem 3.2 and so it is enough to describe a separative partial order, a group of
automorphisms, and an ideal of sets.

Proposition 4.4 CCC1 � CCC2.

Proof Let Q denote the Boolean completion of the Cohen forcing with its maximum
element removed, and letP be

⊕
α<ω2

Qα withQα = Q. Note thatP is a homogeneous
forcing, given two conditions we can first permute ω2 to make sure that they come
from the same index, and then apply the necessary automorphism of Q making the
two conditions compatible within that copy.

To applyTheorem3.2we considerPwith its full automorphismgroup andpointwise
stabilisers of sets of size ℵ1. If A is a maximal antichain in P, then A must be of size
ℵ2 or trivial, since if 1P /∈ A, then A must meet each Qα , and therefore it has size ℵ2.
On the other hand, if an antichain has size ℵ2, then it is not stable under any fix(E)

for some E of size ℵ1. Let A be such antichain, then since no Qα has a maximum
element of its own, there is some large enough α such that Qα ∩ A is non-empty
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and Qα ∩ E = ∅. In that case, simply apply some automorphism which moves an
element of A ∩ Qα to an element of Qα\ A, and such automorphism exists since Q is
homogeneous.

Therefore the symmetric copy of P is such where the only maximal antichain is
trivial, but antichains of size ℵ1 exist. And so we have a forcing that is CCC1 but not
CCC2. ��
Proposition 4.5 CCC2 � CCC3

Proof Let Q denote a homogeneous c.c.c. partial order with its maximum element
removed, and consider the lottery sum P = ⊕

α<ω1
Qα , where Qα = Q for all α. We

then consider the automorphism group given by the full support product of Aut(Q),
acting on the summands pointwise. Finally, we let I denote the ideal of countable
subsets. Using Theorem 3.2 we get a symmetric version of this partial order such that
any symmetric subset, A, {α | A ∩ Qα is non-trivial} is co-countable. Here a subset is
non-trivial if it is not the union of orbits. By homogeneity no trivial subset can be an
antichain.

Now we only need to find a predense set that cannot be reduced to a countable
predense set, for example

⋃
α<ω1

Qα = P\{1P}. It is indeed predense, but it does
not contain any countable predense set, since any countable subset is contained in a
countable part of the sum and is therefore not predense. ��

The constructions in all three cases satisfy the condition that the ideal of sets is
countably closed and therefore DC holds. We can also, for the sake of clarity, assume
that whatever partial orders we used in the ground model do not have any new subsets
added, so they certainly preserve their c.c.c.

5 External definitions and additional results

5.1 Mekler’s c.c.c.: generic conditions for elementary submodels

One of the most important concepts in forcing is that of properness, which is a gen-
eralisation of c.c.c. We say that a forcing P is proper if for all sufficiently large κ ,
whenever M ≺ Hκ is a countable elementary submodel such that P ∈ M , every
p ∈ P ∩ M has an extension, q, in P which is M-generic. That is to say, if D ∈ M is
a predense subset of P, then D ∩ M is predense below q.

Mekler showed in [12] that the statement “P satisfies the countable chain condition”
is equivalent to requiring that not only P is proper, but in fact every condition is M-
generic in the definition of properness,8 and we can now take this requirement of
M-genericity as another definition of c.c.c., instead of talking about antichains and
predense subsets. This, of course, reinforces the idea that properness is a generalisation
of c.c.c.

If we want to study this definition in ZFwe have to add the assumption of DC, since
the existence of countable elementary submodels is equivalent to DC itself. The first

8 Equivalently, 1P is M-generic.
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author and David Asperó studied properness in ZF in [1] and argued that at least in the
presence of ZF+DC, Mekler’s definition is a good way to approach c.c.c. We support
this, as shown in the following proposition.

Proposition 5.1 ZF + DC proves that CCC3 is equivalent to Mekler’s definition.

Proof Suppose thatP is CCC3, and let M be a countable elementary submodel of some
Hκ .9 Then, for every predense D ∈ M , there is some countable predense D0 ⊆ D,
and by elementarity we have such D0 ∈ M as well. Moreover, by countability and the
fact that ω ∈ M , we have that D0 ⊆ M and so D0 ∩ M = D0. Therefore D ∩ M is
predense in P, so 1P is M-generic.

In the other direction, suppose that P is c.c.c. by Mekler’s definition, and let D
be a predense set. Let M be a countable elementary submodel of some Hκ such that
P, D ∈ M . Then D ∩ M is predense below 1P, as per the definition of M-genericity,
and therefore D ∩ M is a countable predense subset of D. ��

5.2 Bukovský’s c.c.c.: every new function is a choice function

Bukovský proved the following theorem characterising when a model of ZFC, W , is a
κ-.c.c. extension of another model of ZFC, V .

Theorem (Bukovský, [2], also [3]) Suppose that V ⊆ W are models of ZFC. Then
W is a generic extension of V by a κ-c.c. forcing if and only if for every x ∈ V and
f : x → V in W , there is some g : x → V in V such that:

(1) V |� |g(u)| <κ for all u ∈ x, and
(2) W |� f (u)∈ g(u) for all u ∈ x.

This definition is often translated to a covering and approximation properties used
extensively in the study of set theoretic geology, as they play a significant role in the
ground model definability theorem (see [11, Theorem 3]).

Proposition 5.2 ZF proves that if P is CCC3 then for every V -generic filter G,
Bukovský’s condition holds for V ⊆ V [G] with κ = ℵ1.

Proof Suppose that P is CCC3 and let f : x → y be some function in V [G] with
x, y ∈ V . Let ḟ be a name such that ḟ G = f , and let p ∈ G be a condition forcing
that ḟ : x̌ → y̌ is a function. For each u ∈ x let Du be the set of conditions which
decide the value of ḟ (ǔ) and let Eu = {w ∈ y | ∃ p ∈ Du, p � ḟ (ǔ) = w̌}. Since
Du is a dense open set and P is CCC3, it contains a countable predense subset, and
therefore Eu must be a countable set for all u ∈ x . Thus, setting g(u) = Eu shows
that Bukovský’s condition holds. ��

It is not immediately clear that the other direction holds as well, i.e. Bukovský’s
definition is equivalent to CCC3, and we suspect that a positive answer can be found
by an enthusiastic graduate student interested in forcing over models of ZF. We will

9 In ZF we define Hκ as the set of those x whose transitive closure does not map onto κ . See [1] for more
details.
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direct this student to Bukovský’s paper, noting that the proof of [3, Theorem 3], which
is used to show that W is indeed a generic extension of V, actually holds in ZF. We do
have an important corollary of the above proposition.

Corollary 5.3 If P satisfies Bukovský’s condition with κ = ℵ1, then P does not change
cofinalities at all and does not collapse any κ > ω1.10 In particular, if ω1 is regular,
then it is not collapsed.

To prove this, we need a small combinatorial lemma.

Lemma 5.4 If μ � ω1 and {Aα | α < μ} is a family of countable sets of ordinals, then∣
∣⋃ {Aα | α < μ}∣∣ � μ. Moreover, if ω1 is regular, this holds for μ = ω as well.

Proof of Corollary 5.3 This is, in a nutshell the usual proof in ZFC that a c.c.c. forcing
preserves cofinalities, but with a small twist at the end. Let P be a CCC3 forcing, and
let G ⊆ P be a V -generic filter.

If f : μ → κ is any function in V [G], then by Bukovský’s condition there exists
some F : μ → [κ]<ω1 in V such that f (ξ) ∈ F(ξ) for all ξ < μ. If f was a bijection
in V [G], then ⋃ {F(ξ) | ξ < μ} must cover κ , but by the lemma it has size μ, so
μ = κ . If f were cofinal, then we may assume that κ is regular, otherwise it defines
a cofinal function in cf(κ) instead,11 in this case ξ �→ sup F(ξ) is a cofinal function
in κ , so again μ = κ . ��
Proof of Lemma 5.4 Since {Aα | α < μ} are all sets of ordinals, the union can be
enumerated as {aξ | ξ < λ} for some λ. We define an injection from λ into μ×ω1:
ξ �→ 〈α, β〉 if and only if α is the least such that aξ ∈ Aα , and β is the position of aξ

in Aα when considering the canonical enumeration of Aα .
It is easy to see that this function is injective, but sinceμ ·ℵ1 = μwe get that λ � μ

as wanted. If ω1 is regular, then this holds also for the case that μ = ω since it implies
that the range of the above function is bounded in ω1. ��
Corollary 5.5 If κ > ω1, then aCCC3 forcing cannot or change cofinalities or collapse
any κ > ω1, and if ω1 is regular then a CCC3 forcing does not change cofinalities or
collapse cardinals at all. ��

5.3 Instances where Main Theorem fails in ZF

Our counterexamples in the previous section can be seen as somewhat ridiculous.
Indeed, every counterexample was CCC1/CCC2 for some silly reason, like the lack
of uncountable antichains altogether. But forcing works in a way that allows us to
replace any preordered set by a unique complete Boolean algebra through a sequence
of steps: quotient to get a partial order, quotient again to get a separative order, then
take the Boolean completion. All of these steps are very explicit and so can be done
without utilising the axiom of choice at all.

10 We note that preserving cofinalities might be distinct from preserving cardinals in ZF. For example, it
is consistent that cf(κ) = cf(κ+) = κ , in that case forcing with Col(κ, κ+) will collapse cardinals but not
change cofinalities.
11 Unless cf(κ) = ω, in which case we cannot change the cofinality of κ by adding new sets to the universe.
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Proposition 5.6 If P is a complete Boolean algebra, then CCC1(P) → CCC2(P).

Proof Given an antichain A in any complete Boolean algebra, P, A ∪ {sup A⊥} is a
maximal antichain, so by CCC1(P) it is also countable, and so must A be countable
as well. ��
Nevertheless, the counterexample in Theorem 4.5 still works, since it requires shrink-
ing a given predense set, and it is not clear if CCC3 follows from CCC2 + “P is a
complete Boolean algebra”. So even in the Boolean completion of that partial order
we can take the same predense set and use it as a counterexample. This once again
reinforces the observation that CCC3 is somehow “the correct way” of thinking about
c.c.c. in ZF.

Proposition 5.7 Suppose that P is a CCC1 complete Boolean algebra. Then P satisfies
Bukovský’s condition with κ = ℵ1.

Proof Suppose that G ⊆ P is a V -generic filter and f ∈ V [G], f : ω → V , and let ḟ
be a name for f . For each n < ω and x ∈ V , let Dn,x = {p ∈ P | p � ḟ (ň) = x̌}. Since
P is a complete Boolean algebra, there is a condition pn,x = sup Dn,x in P. Moreover,
An = {pn,x | x ∈ V } is a maximal antichain in P and therefore it is countable. We
simply define F(n) = {x | pn,x ∈ An}, and then F witnesses that Bukovský’s condition
holds as wanted. ��

Finally, many times our forcing has a natural tree structure (when reversing the
order), we say that a forcing P is co-well founded it is well-founded in the reverse
order.

Proposition 5.8 If P is co-well founded and CCC1, then it is CCC3.

Proof Let r be a rank function on P with the reverse order, and let D be a predense
set. Then the set of rank-minimal members of D is an antichain and it is predense,
therefore it is a maximal antichain, so by CCC1 it is countable. ��
This means that in many natural examples we can think of c.c.c. just as we did in ZFC,
as many of the instances of forcing notions we care about have a natural rank function.
For example, X<ω, ordered by ⊇, for any set X .

Both of these conditions lend themselves to the following corollary.

Corollary 5.9 If P is a CCC1 complete Boolean algebra or is co-well founded, then
the conclusion of Corollary 5.5 holds for P. ��

5.4 Preservation of dependent choice principles

Theorem 5.10 Suppose that ZF + DCκ holds and that P is a CCC3 forcing, then
�P DCκ .

Proof For κ = ω, the work of Asperó and the first author in [1] showed that proper
forcingmust preserveDC, and by Proposition 5.1 we get that CCC3 forcing notions are
proper, assuming ZF + DC. So the conclusion holds. It is therefore enough to assume
that κ is uncountable.
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Lemma 5.11 Assuming DCω1 , if P is a CCC3 forcing, then every dense open set con-
tains a maximal antichain.

Proof of Lemma 5.11 This is similar to the proof of Proposition 4.3. We recursively
construct an antichain inside the dense open set, and the process must stabilise at a
countable stage, and the antichain must therefore be maximal. �

Let P be a CCC3 forcing and let Ṫ be a P-name such that 1P � “Ṫ is κ̌-closed
without maximal nodes”. We will construct a name for a sequence of length κ by
recursion. Suppose that for all β < α, ṫβ was defined and 1P � “〈ṫβ | β < α〉• is an
increasing sequence in Ṫ ”.

Consider the set D = {p | ∃ ṫ p � ∀β < α : ṫβ <T ṫ}, by the fact that Ṫ is forced
to be κ-closed and α < κ , D is in fact dense and open. By Lemma 5.11, D contains
a maximal antichain D0. For each p ∈ D0, let ṡ p be a name witnessing that p ∈ D.
Note that since we assume DCκ , we can certainly make these countably many choices.
Let ṫα be a name such that p � ṫα = ṡ p for all p ∈ D0. By the maximality of D0 we
get that 1P � ṫβ <T ṫα for all β < α.

Finally, by assuming DCκ holds in the ground model, this construction generates a
sequence of length κ as wanted. ��

We note here that for κ > ω, we know that CCC2 is equivalent to CCC3, so it
follows that CCC2 will also preserve DCκ in that case.

Proposition 5.12 It is consistent that a CCC2 forcing can violate DC.

Proof Aswewill see in Theorem 6.4, it is consistent with ZF+DC that a CCC2 forcing
can collapse ω1. We can force, while adding such a collapsing counterexample, and
also add a family of sets A = {Aα | α < ω1} which does not admit a choice function,
and will not have one added once we collapse ω1.

Once ω1 is collapsed, the family A will become countable and will witness that
DC, and in fact countable choice, fails. ��

6 Collapsing cardinals with ccc forcings

Theorem 6.1 (Folklore) DC ⇐⇒ No σ -closed forcing collapses ω1.

Proof If DC holds, then a σ -closed forcing does not add new reals, in particular it
cannot collapse ω1.12

Suppose DC fails, and let T witness this. Namely, T is a tree of height ω without
maximal nodes and without infinite branches.

Define the forcing {〈 f , t〉 | f ∈Col(ω, ω1), t ∈ T , dom t = dom f } with the order
〈 f , t〉 � 〈 f ′, t ′〉 if and only if f ′ ⊆ f and t extends t ′ in T . Here Col(ω, X) is the set
of all partial functions from ω to X , ordered by ⊇, and its generic defines a surjection
from ω onto X .

12 This is a folklore result that DC is equivalent to the statement “Every σ -closed forcing does not add
ω-sequences of ground model elements”, see [10, Theorem 2.1]. One can also use properness, under DC,
by simply generalising the proof of [1, Proposition 4.2] and applying Proposition 4.4.
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Easily, this forcing collapses ω1: if G is V -generic,
⋃ { f | ∃ t, 〈 f , t〉 ∈ G} is a

generic for Col(ω, ω1). On the other hand, if 〈 fn, tn〉 is a decreasing sequence, then
there is some n such that tm = tn for all large enough m, otherwise we have a branch
in T . Therefore dom fm = dom tm = dom tn , but then it is necessarily the case that
fn = fm for all large enough m as well. ��
Proposition 6.2 Suppose that there is a forcing C without maximal antichains (so it is
necessarily CCC1, but quite possibly CCC2), then for every forcing Q there is a CCC1
forcing which adds a V -generic filter for Q.

Proof Consider the forcing P given by {〈q, c〉 | q ∈ Q, c ∈ C\{1C}} with the order
given by 〈q, c〉 � 〈q ′, c′〉 if and only if q � q ′ and c � c′ in the respective forcings. If
A is an antichain in P, then for every q ∈ Q, Aq = {c | 〈q, c〉 ∈ A} is an antichain in
C. Since C does not have any maximal antichains, there is some c′ such that Aq ∪ {c′}
is still an antichain in C. But easily, A ∪ {〈q, c′〉} is an antichain, and therefore A was
not maximal to begin with. ��
Corollary 6.3 If there is a forcing without maximal antichains, then there is a CCC1
forcing which collapses ω1. It is also consistent that this forcing is also σ -closed.

Proof The first part is an immediate corollary of Proposition 6.2. The second part
follows by considering the proof of Theorem 4.4 defining C as the symmetric copy
using finite supports and noting that no infinite decreasing sequence is symmetric. The
same argument as Theorem 6.1 works to show that there are no decreasing sequences
in P as defined in Proposition 6.2. ��

Arguably, CCC1 is not a reasonable definition for the countable chain condition
anyway, rendering the above not much more than a curiosity. However, we can get a
significantly more interesting result: it is consistent with ZF+DC that a CCC2 forcing
collapses ω1.

Theorem 6.4 It is consistent with ZF + DC that there exists a CCC2 forcing which
collapses cardinals.

Proof Starting from a model of ZFC, let B be an uncountable, productively c.c.c. forc-
ingwhich is homogeneous and does not have amaximum, e.g. the Boolean completion
of Add(ω, ω1) with its maximum removed.

Consider the lottery sum
⊕

〈n,α〉∈ω×ω1
Bn,α , where Bn,α = B for all 〈n, α〉. We

take the automorphism group which acts on each summand individually, and with the
ideal of subsets given by unions over countably many summands at a time. Applying
Theorem 3.2 we get a symmetric copy of this partial order that has the property that the
index of the summation is still ω×ω1, since we are not allowed to move the indices.
This means that we can still discuss Bn,α as the 〈n, α〉th summand in the symmetric
copy as well.

By homogeneity, any subset A of the symmetric copy which meets uncountably
many summands simultaneously will have at most countably many non-trivial inter-
sections. This is similar to the construction in Theorem 4.5.

In addition we may assume that DC holds in the symmetric extension, since the
ideal of subsets is certainly countably closed. We may also assume that B itself does
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not have any new subsets as well. Working in this symmetric extension consider the
partial order P given by pairs 〈t,b〉 such that:

(1) t ∈ ω<ω
1 and dom t = n.

(2) �b = 〈b0, . . . , bn−1〉 and bi ∈ Bi,t(i).

We define the order on P as follows: 〈t, �b〉 � 〈t ′, �b′〉 if and only if all the following
conditions hold:

(1) t ′ = t� dom t ′, i.e. t extends t ′ in the forcing given by ω<ω
1 .

(2) For all i < dom t ′, bi �n,α b′
i .

In other words, we are describing an iteration: first add a surjection from ω onto ω1
using finite conditions, f , then consider the product

∏
〈n,α〉 Bn,α .

If G ⊆ P is a generic filter, then
⋃

〈t,�b〉∈G t is the surjection f we mention. It
remains to prove that every antichain in P is countable.

We denote by πn,α the projection of P to Bn,α and by π1 the projection to ω<ω
1 .

Suppose that D is an uncountable subset of P, we now consider two cases.

Case 1: There is some t ∈ ω<ω
1 such that π−1

1 (t) ∩ D is uncountable.
In this case we may assume that D = π−1

1 (t) ∩ D. Therefore, as a partial order, D
is a subset of {t}×∏

i∈dom t Bi,t(i) ∼= ∏
i∈dom t B. Since B was productively c.c.c. D

must contain two compatible elements.

Case 2: There is no such t . In this case π1(D) is an uncountable subset of ω<ω
1 ,

so there is some n + 1 such that π1(D) ∩ ωn+1
1 is uncountable. We may assume

that π−1
1 (ωn+1

1 ) ∩ D = D in this case, so if 〈t, �b〉 ∈ D, then dom t = n + 1. We
consider now πn,t(n)(D) for all t ∈ π1(D). This is an uncountable family, so it must
be that co-countably many of these are unions of orbits, and in particular these orbits
must be uncountable. But this is impossible, since that means that if 〈t, �b〉 ∈ D is
such condition, then π−1

1 (t) ∩ D is uncountable, and we assume there is no such t .
Therefore Case 2 is impossible.

This shows that P is CCC2, as wanted. ��
We combine the above with Corollary 5.9 to obtain the following conclusion.

Corollary 6.5 ZF + DC cannot prove that a CCC2 partial order will have a CCC2
Boolean completion. ��

7 Remarks on higher chain conditions

As we suggest in the introduction, we chose to focus on c.c.c. as that is the most
commonly used chain condition. Unlike c.c.c., general κ-c.c. forcings do not have a
nice iteration theorem, so analogues of Martin’s Axiom are either provably false or
must be restricted to fairly weak families of forcings.13 Nevertheless, κ-c.c. forcings
still commonly pop up throughout set theory.

13 That is not to say that there is no interest in higher forcing axioms. It is just that they cannot be based
on chain conditions alone.
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All the constructions that we have done in and around the various CCCi definitions
can be donewith κ-c.c. for any regular κ . If we also addDC<κ , whichwemost certainly
can as suggested in Theorem 3.2, then our forcings at least somewhat well-behaved.

However, in general forcing over models of ZF tends to wreak havoc, or perhaps
bring order, to the cardinal structure in somewhat unintended ways. For example,
forcing with ω

<ω2
2 is a forcing that will add no new subsets of ω when starting with a

model of ZFC, but if we force with this forcing over a model whereP(ω) is a countable
union of countable sets, then we will invariably add many reals and collapse ω1, since
we will necessarily add a well-ordering of the ground model’s P(ω).

SinceDC<κ is equivalent to the statement “κ-closed forcing is κ-distributive”,14 we
know that if we limit ourselves to κ-closed and κ-c.c. forcings, then statements related
to sets of ordinals (e.g., collapsing κ+) will be have reasonable proofs. Because every
forcing is at least ω-closed by definition and DC<ω is a theorem of ZF, this is one more
reason to focus on the case of κ = ℵ1.

8 Conclusions and open questions

We hope that we managed to convince the reader at this point that the “correct”
definition of the countable chain condition in ZF is CCC3. Both due to its power in
preserving cofinalities under relatively mild assumptions, and the failure to do that
very same thing for other definitions of c.c.c. For example, in [1] the subject of proper
forcing is studied in ZF + DC. One of the observations there is that a proper forcing
does not collapse ω1.15

Corollary 8.1 ZF + DC does not prove that a CCC2 forcing is proper.

In contrast, as the proof in Proposition 5.1 shows, ZF+DC readily shows that a CCC3
forcing is proper.

We conclude our paper with a few open questions and conjectures which we hope
will motivate researchers, young and old, to expand our knowledge about the mecha-
nism of forcing in ZF.

Question 8.2 Is it consistent with ZF that a CCC3 forcing can collapse ω1?

Question 8.3 Does complete Boolean algebra + CCC1 imply CCC3 in ZF? In ZF+DC?

Since completeBoolean algebraswhich areCCC1 satisfyBukovský’s condition, the
above would admit a positive answer if the following question is answered positively.

Question 8.4 Is Bukovský’s condition with κ = ℵ1 equivalent to CCC3 in ZF?

Question 8.5 What can we say about the preservation of non-ℵ cardinals when forcing
with a CCC3 forcing?

14 This is a folklore theorem; a simple proof can be found in [10].
15 This is embedded in the proof of Proposition 4.2 there.
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The last question is of particular importance, since we know very little about how
the non-ℵ cardinals behave in generic extensions, and since a forcing can add new
cardinals to models of ZF, this opens the door to even more questions.16

Question 8.6 What can be said about Martin’s Axiom of the various versions of c.c.c.
that were presented here, even in the case where we only require meeting countably
many dense open sets? Clearly Martin’s Axiom for CCC1 implies Martin’s Axiom
for CCC3. But do the reverse implications hold, or perhaps like Proposition 5.6 the
version for CCC3 is separate from the others?

Question 8.7 Forcing axioms can be seen, in general, as stating that a certain class
of forcings has an iteration theorem. In the case of Martin’s Axiom this means finite
support iteration. Does any of the versions of c.c.c. presented here have such a nice
iteration theorem in ZF or even ZF + DC?

We note that Martin’s Axiom was studied in ZF, to some extent, by Shannon in [16]
and later by Tachtsis in [17]. These papers concentrated on what we call CCC2, which
we see is quite weak, making Martin’s Axiom perhaps a bit too strong. But as we
point out, it is very unclear what happens when we harness the full power of Martin’s
axiom, even in the study of CCC3.

We can define another version of c.c.c. by stating “Every antichain extends to a
maximal countable antichain”. This readily implies CCC2 and for a complete Boolean
algebra the proof of Proposition 5.6 shows that the two are equivalent. We can modify
the proofs of Theorems 4.4 and 4.5 to show that this principle is indeed stronger than
CCC2 and that it does not imply CCC3 in ZF + DC.

Question 8.8 Where does this principle sit in the hierarchy of countable chain condi-
tions? Canwe have a forcing that satisfies this version of c.c.c. and collapses cardinals?
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