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Abstract (150 – 200 words) 

 

This work develops a dynamic analysis procedure for hinge-controlled masonry arches 

subjected to horizontal acceleration profiles. Constructed from the principles of energy 

conservation, the establishment of equivalent systems, and the path independence of 

conservative work, a time incremental analysis structure is established for kinematic 

propagation. Equivalent systems are defined through combining kinematic equilibrium 

with static deformations of the single degree of freedom mechanism through parametric 

plotting. This generates the minimum work required to propagate the arch towards 

collapse. For a constant acceleration above the static limit, energy conservation requires 

excess work’s transformation into kinetic energy. The path independence of work creates 

a spatial kinetic energy equation which is used to establish the time-domain of the 

system. Knowing the initial position and kinetic energy thus allows the final position and 

kinetic energy to be determined for the time increment. A new constant acceleration and 

time step then propagates the behaviour through the acceleration profile. 

 

Keywords chosen from ICE Publishing list 
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List of notations 

vi is the vertical reaction of the ith hinge 

hi is the horizontal reaction of the ith hinge 

αi is the rotation angle of the ith hinge 

γ23 is the polar rotation deformation of Element 2 

θij is the undeformed polar angle between hinges I and j 

θij’ is the deformed polar angle between hinges I and j 

lij is the rigid length between hinges I and j 

BC is the balance matrix for the equilibrium equation set 

r is the reaction vector for the equilibrium equation set 

q is the constants vector for the equilibrium equation set 

λa is the acceleration collapse multiplier for kinematic equilibrium 

λapp is the applied acceleration multiplier 

Hi is the ith hinge 

Wapp is the applied work 

Wmin is the minimum work 

Wreq is the required work 

τEi is the centroid point torque from the ith element 

fgi is the gravitational force of the ith element 
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Fapp is the single point applied acceleration force equivalent 

Fmin is the single point minimum acceleration force equivalent 

Aj is the polynomial constants for centre mass translation equation 

Bj is the polynomial constants for centre mass lever arm rotation equations 

Cj is the polynomial constants for minimum work path equation 

Dj is the polynomial constants for time domain equation 

mT is the total mass of the arch 

mEi is the total mass of the ith element 

ΔPE is the change in gravitational potential energy 

KE1 is the initial kinetic energy 

KEf is the final kinetic energy 

lEj is the lever arm length between the full arch centroid and the jth element’s centroid 

v is the translational velocity vector 

ω  is angular velocity 

I is the moment of inertia 

t is time



 
 

Introduction 1 

Efficiency of structural design and analysis is paramount for the successful implementation of 2 

any structural system and is further exacerbated for the introduction of novel systems. The 3 

masonry arch has the potential to be an advantageous structural system for modern 4 

constructions through the technique termed Reinforced Stability Based Design (RSBD) 5 

(Stockdale, 2016). This technique defines failure as the loss of stability and introduces safety 6 

through the application of reinforcement designed to resist the kinematic motion of the failed 7 

arch. This allows the material strengths to become a secondary consideration, establishes the 8 

ability to create generalized structural health monitoring systems with minimal calibration time, 9 

and provides the potential to significantly extend the serviceable lifespan through the proven 10 

longevity of structural masonry (Stockdale, 2012; Angelillo, 2014; Tralli, Alessandri and Milani, 11 

2014). The challenge is that masonry arch analysis does not fit into the linear elastic model and 12 

its successful inclusion as a viable design strategy depends upon the development of an 13 

efficient and accessible analysis model for both static and dynamic conditions. 14 

 15 

Kinematic equilibrium is the evaluation of an equilibrium condition for a defined mechanical 16 

state. It is derived from the upper bound theorem of limit analysis (LA), but it differs from the 17 

standard application of virtual conditions by directly examining the static condition requirements 18 

for a defined mechanical state. Kinematic equilibrium has been introduced through the 19 

development of a first-order assessment strategy (Stockdale and Milani, 2019) and the 20 

Kinematic Collapse Load Calculator (KCLC) (Stockdale et al., 2018). This approach has proven 21 

to be versatile and adaptable: incorporating generic arch geometries (Stockdale and Milani, 22 

2018); addressing non-traditional mechanisms, adapting the analysis model to match 23 

experimentation, and obtaining reinforcement capacity requirements for the defined state 24 

(Stockdale, Sarhosis and Milani, 2019c);  and evaluating static deformations of kinematic 25 

conditions (Stockdale, Sarhosis and Milani, 2019b). What is missing in this analysis structure is 26 

dynamic modelling. 27 

 28 

Existing dynamic analysis methods include both analytical and numerical approaches. The 29 

numerical approaches include non-linear finite element modelling (FEM), and the distinct (or 30 
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discrete) element method (DEM). These approaches have been successful at modelling the 31 

dynamic conditions of masonry (Fanning et al., 2005; De Lorenzis, DeJong and Ochsendorf, 32 

2007; DeJong, 2009; Pelà, Aprile and Benedetti, 2009, 2013; Dimitri, De Lorenzis and Zavarise, 33 

2011; DeJong and Dimitrakopoulos, 2014; Dimitri and Tornabene, 2015; Sarhosis, Santis and 34 

de Felice, 2016; Gaetani et al., 2017), but they both require a high level of expertise and 35 

computational costs. The analytical methods are derived from the upper and lower bound 36 

theorems of LA. The lower bound theorem, derived from Hooke’s hanging chain analogy and 37 

solidified by Heyman’s safe theorem (Heyman, 1969), has been utilized for static horizontal 38 

testing (Huerta, 2005; DeJong, 2009) but its structure binds it to the stable state. The upper 39 

bound theorem of LA applies equivalent horizontal accelerations with an iterative approach to 40 

the principles of virtual work and virtual powers for static analyses and dynamic modelling 41 

respectively (Oppenheim, 1992; Gilbert and Melbourne, 1994; Clemente, 1998). Additionally, 42 

the upper bound has been validated numerically and experimentally for lateral loading 43 

(Ochsendorf, 2002; De Luca, Giordano and Mele, 2004; Alexakis and Makris, 2014; Dimitri and 44 

Tornabene, 2015; Stockdale, Sarhosis and Milani, 2019c). 45 

 46 

The kinematic theorem is structured around the kinematic condition. In fact, the four-hinged arch 47 

is by definition a single degree of freedom (SDOF) system. Beginning with the four-hinged 48 

mechanism, Oppenheim (Oppenheim, 1992) was able to formulate the exact equations of 49 

motion for this condition and use them to study the overturning of an arch during the first half 50 

cycle of motion due to a step impulse. This model was expanded (De Lorenzis, DeJong and 51 

Ochsendorf, 2007) through the introduction of the assumptions of impact for single rocking 52 

blocks (Housner, 1963) to the four-hinged arch model. Applying the same step impulse 53 

(Oppenheim, 1992), the second boundary associated with the collapse of the second half cycle 54 

was identified as the governing condition (De Lorenzis, DeJong and Ochsendorf, 2007). This 55 

model was further expanded (Kollár and Ther, 2019) by removing the four-hinge limitation and 56 

evaluating the multi-degree of freedom motions that can exist in systems without hinge control. 57 

While the exact solution to motion exists for the SDOF arch structure, its application requires a 58 

high level of expertise and has focused on the assessment of the minimum condition. 59 

 60 
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The objective of this work is to develop a simplified time incremental analysis procedure for the 61 

dynamic propagation of a hinge-controlled masonry arche subjected to an overloading 62 

horizontal acceleration. First the kinematic equilibrium evaluation of mechanically deformed 63 

conditions is utilized to establish the time domain for an overloading acceleration through the 64 

development of required work-paths from parametric plotting. The time-incremental analysis 65 

procedure is then described in detail. Lastly, the half-cycle failure domain benchmark evaluation 66 

established by Oppenheim (Oppenheim, 1992) and a conservation of energy test are employed 67 

to validate the approach before concluding this work. 68 

 69 

2. Establishing the Time Domain 70 

Beginning with the kinematic equilibrium evaluation and SDOF deformations, this section 71 

develops the time-displacement relationship through the path independence of conservative 72 

work. 73 

2.1 Kinematic Equilibrium and the KCLC 74 

As stated in the Introduction, the KCLC is an analysis tool designed from and for hinge-75 

controlled masonry arches (Stockdale et al., 2018). It takes the user defined boundary and 76 

loading conditions, solves the equilibrium equation set, and checks the results for admissibility. 77 

In matrix format, the equilibrium equation set is 78 

          (1) 79 

where BC is the balance matrix, r is the reaction vector, and q is the constants vector. The 80 

solution to the reactions and collapse multiplier are 81 

         (2) 82 

 83 

Figure 1 shows the kinematic equilibrium condition for a constant horizontal acceleration with 84 

collapse multiplier λa. The definition of rigid elements between hinges allows the force 85 

equivalence representation of the accelerations at the centroid of the elements. Taking the sum 86 

of the moments about hinges H1, H2 and H3 for elements one through three respectively 87 

generates 88 
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 (3) 89 

and 90 

  (4) 91 

for the reaction vector 92 

     (5) 93 

 94 

For Eqns. 3 and 4, fgj is the gravitational force of the jth element, and the subscripts of the 95 

horizontal lever arms, Δx, and the vertical lever arms, Δy, denote the hinges or center of mass 96 

locations used (i.e. Δy2,1 is (y2 – y1) and Δx1,CM1 is (x1 – xCM1), ect.).  In Eqn. 5, vi and hi are the 97 

vertical and horizontal and reactions at the ith hinge respectively. For details on the conditions of 98 

admissibility please refer to existing literature (Stockdale et al., 2018; Stockdale, Sarhosis and 99 

Milani, 2019c). 100 

 101 

2.2 SDOF Deformation 102 

The structure of the equation sets reduces the required information necessary to solve the 103 

system to the location of the hinges and the centroid of the elements. This allows the remaining 104 

boundary conditions and the rules of motion to be evaluated independent of the equilibrium 105 

condition.  106 

 107 

Starting from the definition of rigid kinematic motion of pin-connected elements allows the arch-108 

hinge configuration to be represented by three fixed lengths connected by four pins as seen in 109 

Figure 2. The motion of the system is bound horizontally and thus allows the rotation at H4 to be 110 

expressed as 111 

     (6) 112 
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for a given α1 at H1 (see Figure 2 for identifying lengths and angles). From this rotation pair the 113 

polar change, γ23, of length l23 is 114 

         (7) 115 

and the rotations of the intermittent hinges H2 and H3 become 116 

          (8) 117 

and 118 

          (9) 119 

respectively. 120 

 121 

2.3 Kinematic Equilibrium of Static Deformations 122 

Figure 3 shows a custom and simplified KCLC constructed for the evaluation of static 123 

deformations. Equations 6 through 9 were incorporated into the KCLC and the hinge motion 124 

panel was established for the SDOF deformations. Also note that the centroid position 125 

information of the whole arch is displayed with both the center of mass (CM) and the center of 126 

area (CA) provided. This is to account for non-uniform block masses. Each block is assumed to 127 

have a uniform density, but that assumption is not held for the full arch. 128 

 129 

User defined deformations are imposed through the hinge motion slider which defines the α1 130 

rotation and imposes the deformation. When the slider is adjusted, the rigid body rotations are 131 

applied about the points H1 and H4 for the block elements associated with the respective lengths 132 

l12 and l34. Then the hinge point H2 translation is applied to the blocks associated with l23 and 133 

followed by the calculated rotation α2. After the deformations are applied, the boundary points 134 

and block centroids are updated, and the equilibrium calculation and admissibility check are 135 

performed. Figure 4 shows the KCLC and arch-hinge condition of Figure 3 with imposed α1 136 

rotations of 4°, 8° and 12°. From the deformation sequence an admissible kinematic equilibrium 137 

condition through 11° of rotation at H1 is observed. Also note the capacity reduction of the 138 

collapse multiplier and the deformation path of the centroid of the full arch. 139 

 140 

2.4 Equivalent Systems 141 
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By recording the centroid position of the full arch for imposed α1 rotations, the position (x,y) and 142 

increment (dx,dy) link is established between the element deformations and a single point 143 

system. Imposing the total mass to the centroid point and defining energy conservation 144 

generates equivalent systems bound by α1. Figure 5 shows the centroid deformation path for 145 

the same arch-hinge configuration as Figures 2 and 3 for α1 between 0° and 12° with constant 146 

Δα1 of 0.1°. A polynomial fit of the deformation path reveals that the path is reasonably 147 

represented by 148 

         (10) 149 

and the slope equation by 150 

          (11) 151 

where the constants Ai are shown in Figure 5. 152 

 153 

The deformation of the arch involves both translations and rotations of the elements. In order to 154 

account for the element rotations, zero mass lever arms are defined between the centroid of the 155 

full arch and the centroid of each element. Since conservation of mass holds for the system, 156 

these lever arm lengths are fixed and result in rotational changes about the centroid of the arch. 157 

Figure 5 also shows the lever arm rotation angles versus horizontal CM displacement for each 158 

element of the arch-hinge configuration under the same deformation sequence as the CM 159 

translation. A polynomial fit of the lever arm rotation paths reveals that they are reasonably 160 

represented by 161 

         (12) 162 

and the slope equation by 163 

          (13) 164 

 165 

2.5 Work Path and Potential Energy 166 

Work is path independent for conservative systems. Therefore, the required work to deform the 167 

arch can be represented by the work required for the equivalent centroid deformations and lever 168 

arm rotations bound by α1 and Δα1. Converting the collapse multiplier into an equivalent force 169 

applied at the centroid generates the force-displacement plot shown in Figure 6. Converting the 170 
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collapse multiplier into equivalent forces at each element’s centroid allows the torque-rotation 171 

plots to be established as well (see Figure 6). 172 

 173 

Work can be expressed as the sum of translational and rotational components  174 

     (14) 175 

and thus integrating the force-displacement plot and torque rotation plots generates the work 176 

path (see Figure 7). Also shown in Figure 7 is the potential energy, PE, curve established from 177 

          (15) 178 

Note that the work required to carry the arch to collapse is greater than the change in potential 179 

energy. The reason for this difference is that the formation of the mechanism requires a 180 

deformation of the internal thrust prior to and during the progression towards collapse, and it 181 

also requires the element rotations.  Applying a polynomial fit evaluation to the plotted work path 182 

reveals that it is reasonably represented by 183 

      (16) 184 

where the constants Ci are shown in Figure 7. 185 

 186 

2.6 Kinetic Energy 187 

The work path shown in Figure 7 represents the work required to maintain kinematic equilibrium 188 

along the path to collapse. If an applied acceleration force, Fapp, exceeds the limit, Fmin, 189 

established from the collapse multiplier, then the system transitions from stable to mechanical. 190 

Assigning rigid elements and ideal hinges therefore requires that the excess energy added to 191 

the system be in the form of work, Wapp, and any of this applied work in excess of the required 192 

minimum must be transformed into kinetic energy 193 

          (17) 194 

The required work, Wreq, to travel from the initial position x1 to a final position x is 195 

        (18) 196 

Combining Eqns. 14, 17 and 18 with the constant horizontal acceleration condition produces a 197 

final kinetic energy 198 

     (19)   199 
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where KE1 if the initial kinetic energy. 200 

 201 

2.7 Time Domain 202 

Equation 19 establishes a displacement-domain equation of kinetic energy. Kinetic energy can 203 

also be expressed as 204 

     (20) 205 

where v is the velocity vector, and IEj and ωEj are the moment of inertia and lever arm angular 206 

velocity for the jth element respectively. The velocity vector can be expressed as 207 

         (21) 208 

and the angular velocities as  209 

           (22) 210 

Utilizing Eqns. 11, 13, and 19 through 22 generates 211 

  (23) 212 

where mEi and lEi are the ith elements mass and lever arm and the constants B1,Ei and B2,Ei are 213 

obtained from Eqn. 13 and Figure 5. Since the developed kinetic energy equation (Eqn. 19) is 214 

only dependent on position, the relationship between time and displacement is established by 215 

the integral 216 

         (24) 217 

where 218 

     (25) 219 

Figure 8 shows a plot of H(x) and the area representation of the numeric evaluation of Eqn. 24 220 

with an applied acceleration of 1.14λa. Note that the initial time and kinetic energy are both set a 221 

zero. Figure 8 also shows the solution to Eqn. 24 which directly defines the relationship between 222 

time and horizontal position. Applying a polynomial fit evaluation to the curve reveals 223 

      (26) 224 
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where the values of constants Di are shown in the Figure 8. Therefore, given the initial position, 225 

kinetic energy and the acceleration’s magnitude the displacement can be described as a 226 

function of time. Once the displacement is known, the final energies can be obtained. 227 

 228 

3. Dynamic Analysis Procedure 229 

Consider an undeformed arch at rest and subjected to a horizontal acceleration that exceeds 230 

the stable limit at time t1. At time t2 the acceleration magnitude changes. Applying Δt to Eqn. 26 231 

establishes the displacement x2 at t2. Then the kinetic energy at time t2 is obtained from x2 and 232 

Eqn. 23. The displaced position and kinetic energy at time t2 becomes the initial conditions for 233 

the next acceleration value, and thus the arch can be dynamically propagated forward in time. 234 

 235 

If at time t2 the displacement of the arch does not exceed the admissible limit defined by 236 

kinematic equilibrium, then the arch has not collapsed, but it is in a kinematic state. In this state 237 

the effects of the second acceleration value depend on the equilibrium limit of the deformed 238 

condition. Either the acceleration vector exceeds the limit and additional kinetic energy 239 

accumulates, or in the accumulated energy will be spent to propagate the arch. 240 

 241 

For continued acceleration changes and time steps, the arch will propagate along the 242 

deformation path until collapse or zero kinetic energy is reached. If zero kinetic energy is 243 

reached the motion will switch directions. This motion reversal results in a negative final kinetic 244 

energy for the next time step if the acceleration remains below the equilibrium limit. Equation 25 245 

requires positive kinetic energy in order to establish the time domain and thus motion must be 246 

forward facing. 247 

 248 

The reversed motion from insufficient acceleration to cause collapse drives the arch back to the 249 

undeformed condition. Upon reaching that condition, the elements will experience an impact at 250 

the mechanical joints and the hinges will switch joint limits. The impact will result in a dissipation 251 

of energy over a finite period of time. The standard parameter to define energy loss during 252 

impact is the Coefficient of Restitution (COR), and it is typically determined through one of three 253 
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models: kinematic, kinetic and energetic (Ahmad, Ismail and Mat, 2016). The kinematic model 254 

developed by Newton 255 

          (26) 256 

is the model considered. The time-incremental analysis structure means the impact can be 257 

isolated by timesteps and the COR can be applied to the calculation of kinetic energy during 258 

transition between the two hinge sets that define motion. 259 

 260 

The hinge position switch reverses the mechanism. The equilibrium limit and deformation path 261 

are switched to the new mechanism. The reduced kinetic energy and new constant acceleration 262 

are set, and the evaluation continues. 263 

 264 

Figure 9 shows the flowchart representation of the dynamic analysis procedure developed 265 

through combining the described dynamic conditions. For each time step in the defined 266 

acceleration sequence the equilibrium limit is established and used to evaluate the work 267 

condition. That condition with the previous kinetic energy and position generate a final position 268 

and kinetic energy. If kinetic energy reverses, the motion switches. If the arch returns to the 269 

original configuration then the COR is applied, and the hinge set is switched. This process is 270 

repeated until the end of the acceleration sequence or collapse. 271 

 272 

4. Validations of the Work-Path Approach 273 

The developed dynamic analysis procedure was constructed from the principles of energy 274 

conservation, the establishment of equivalent systems, and the path independence of 275 

conservative work. The equivalent systems were directly defined through the fixed rotations of 276 

hinge H1 and utilized to establish deformation and work paths. The final step is the validations 277 

for the analysis structure through Oppenheim’s half-cycle collapse line benchmark and the 278 

conservation of energy (Oppenheim, 1992).  279 

 280 
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The Oppenheim arch geometry and the reverse hinge set shown in Figure 10 (Oppenheim, 281 

1992). Note that the hinges switch joint limits, but the mechanical joints are fixed. Examining the 282 

deformation sequence of the two configurations establishes the dynamic model for the arch. 283 

 284 

4.1 Half Cycle Collapse 285 

In order to evaluate the half-cycle collapse, the system is defined as perfectly plastic upon 286 

impact (i.e. COR = 0), and the Oppenheim two-step pulse is applied (Oppenheim, 1992). For 287 

each acceleration amplitude, the pulse time was continually increased by 0.02 seconds until a 288 

collapse. Figure 11 shows the resulting half-cycle failure domain developed from the described 289 

work-path approach as well as Oppenheim’s original results. From Figure 11 it can be seen that 290 

the increase in static capacity from the upper bound limit is coupled with a small decrease in the 291 

recoverable impulse duration. Nonetheless, the behaviour of the arche’s half-cycle failure is 292 

captured by the work-path approach. 293 

 294 

4.2 Conservation of Energy 295 

For the conservation of energy check, the system is defined as perfectly elastic (i.e. COR = 1) 296 

and a horizontal acceleration pulse with magnitude of 0.55g is applied for a duration of 0.5 297 

seconds. After the application of the pulse, the analysis continues for 20 seconds at 0.02 298 

second intervals. The horizontal CM displacement and kinetic energy are recorded at each time 299 

increment (see Figure 12). A total of 14 full cycles were observed over the 20 seconds with a 300 

net energy loss of approximately 0.4 % per cycle. It is postulated that this energy loss occurs 301 

from the calculation of the pivot points associated with zero kinetic energy. The establishment of 302 

the time domain requires positive kinetic energy and thus reduces the number of available data 303 

points for curve fitting in the vicinity of the motion switch. Regardless, the energy has been 304 

reasonably conserved under the ideal conditions of elastic impact and perfect hinges. Also note 305 

that the hinge configurations are not symmetric. This establishes different work paths and thus 306 

different amplitudes and frequencies for the two half-cycles of motion (see Figure 12). 307 

 308 

5. Conclusions 309 
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Efficiency is of the upmost importance for the success of any structural system and is 310 

paramount for the introduction of new structural systems that deviate from modern standards. 311 

The argument has been made that the masonry arch has the potential to be an advantageous 312 

structural system for modern structural design and construction, but an accessible and efficient 313 

analysis platform must be established (Stockdale, 2016). The kinematic equilibrium approach to 314 

LA has shown great potential in establishing this efficient and accessible analysis structure for 315 

hinge-controlled arches. It has been used to develop a simple and adaptable static analysis 316 

software (Stockdale et al., 2018; Stockdale, Sarhosis and Milani, 2019c), allows the 317 

incorporation of generic arch geometries (Stockdale and Milani, 2018), analyse the capacity of 318 

deformed conditions (Stockdale, Sarhosis and Milani, 2019a), and has been used to formulate 319 

first-order assessment strategies (Stockdale and Milani, 2019). Therefore, the final component 320 

in the development of this comprehensive analysis structure is the inclusion of the dynamic 321 

behaviour. 322 

 323 

The focus of this work was to develop and validate this dynamic analysis component for hinge-324 

controlled masonry arches. The developed structure is constructed from the same kinematic 325 

equilibrium approach to LA as used for the static conditions. This was achieved through the 326 

direct evaluation of work. Utilizing ideal conditions, the work path and ultimately the time domain 327 

were established for applied horizontal accelerations and used to formulate the dynamic time 328 

incremental analysis structure based upon the assumption of constant acceleration for each 329 

time step. 330 

 331 

With the inclusion of the dynamic condition, the foundation for a complete and comprehensive 332 

analysis structure is established for hinge-controlled masonry arches and brings the utilization of 333 

structural masonry one step closer to reality. Now the focus must turn to experimental testing, 334 

the incorporation of non-ideal conditions. 335 

 336 
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Figure captions 426 

Figure 1. Kinematic equilibrium condition for horizontal acceleration condition. 427 

Figure 2. Rigid pin-connected length equivalent of the four-hinged arch mechanism in the (a) 428 

original state and (b) after a deformation. 429 
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Figure 3. Custom KCLC with added hinge motion panel and centroid data display. 430 

Figure 4. (a) 4°, (b) 8° and (c) 12° α1 rotations applied to the arch-hinge condition. 431 

Figure 5. Parametric plots and polynomial fitting of (a) the CM deformation path and (b) the 432 

lever arm rotation angles. 433 

Figure 6. Parametric plots and polynomial fits for (a) the required force versus horizontal CM 434 

displacement and (b) the required torques versus lever arm rotation angle.  435 

Figure 7. Parametric plot of minimum work and potential energy versus horizontal CM 436 

displacement with a polynomial fit. 437 

Figure 8. Plots of (a) H(x) versus horizontal CM displacement with highlighted integration area, 438 

and (b) horizontal position versus time with a polynomial fit. 439 

Figure 9. Flowchart of the dynamic analysis procedure. 440 

Figure 10. Oppenheim arch geometry with the (a) original hinge configuration and (b) the hinge 441 

reversal from defined joints. 442 

Figure 11. Half-cycle failure domain comparison for the two-step pulse analysis of the 443 

Oppenheim arch (Oppenheim, 1992). 444 

Figure 12. Horizontal CM displacement and kinetic energy versus time for applied acceleration 445 

pulse. 446 


