
Automation in Construction 140 (2022) 104389

Available online 2 June 2022
0926-5805/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Automatic image-based brick segmentation and crack detection of masonry
walls using machine learning

Dimitrios Loverdos, Vasilis Sarhosis *

School of Civil Engineering, University of Leeds, LS2 9JT, Leeds, UK

A R T I C L E I N F O

Keywords:
Masonry
Image processing
Documentation
Watershed
Segmentation
Deep learning
CNN

A B S T R A C T

This paper aims to improve automation in brick segmentation and crack detection of masonry walls through
image-based techniques and machine learning. Initially, a large dataset of hand-labelled images of different in
colour, texture, and size of brickwork masonry walls has been developed. Then, different deep learning networks
(U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM), and FPN (SM)) were utilised and their quality was assessed.
Furthermore, the ability to generate geometric models of masonry structures and the evaluation of the geometric
properties of detected cracks was also investigated. Additional metrics were also developed to compare the CNN
output with other image-processing algorithms. From the analysis of results it was shown that the use of machine
learning, for brick segmentation, provides better outcome than typical image-processing applications. This
implementation of deep-learning for crack detection and localisation of bricks in masonry walls highlights the
great potential of new technologies for documentation of masonry fabric.

1. Introduction

Masonry is one of the oldest building materials. It is composed of
individual masonry units (bricks, blocks, ashlars, irregular stones, etc.)
jointed together with or without mortar. Masonry structures represent
the highest building stock worldwide. A large portion of masonry
structures are “Listed Buildings” and form part of our “Cultural Heri-
tage” [34]. According to UN Sustainable Development Goal 11, Target
11.4, there is a need to “repair and maintenance” rather than “demolish
and rebuild” our structures. Currently, for the inspection of existing
masonry structures, damage pathologies (i.e., cracking, spalling etc) are
captured with traditional techniques (e.g., visual inspection and manual
surveying methods [18]), which are labour intensive, subjective, and
error prone [37,40]. Additionally, for the documentation of masonry
structures, the size and location of masonry units and mortar is of
particular interest for the engineers and architects, since such informa-
tion can be used for the development of high-fidelity computational
models for their structural analysis and assessment [17,26,30,31].

In the last ten years, advances in laser scanning and photogrammetry
have started to drastically change the building industry since such
techniques are able to capture rapidly and remotely digital objects and
features in images and points' cloud format. Past research demonstrated
that computer-vision and image-processing can be used to create

detailed digital records of masonry structures [25] using feature detec-
tion [4,7,10,33] and segmentation algorithms [4,6,27]. Applications of
Image-processing can be used to quantify deformations on masonry (i.e.,
when coupled with the installation of simple markers on the structure on
key-locations to identify their position [5,42]). Furthermore, feature-
extraction has the potential to generate the “as is” numerical model of
masonry for detailed analysis [26,32,43,44]. Those applications of
image-processing offer a low-cost and reliable alternative to more
traditional methods. Although, feature detection and segmentation has
already been applied to identify the shape and location of masonry units
from images [8,15,36,39,46], their application proves challenging due
to digital noise produced by the change in brightness, colour, and
texture presented within the digital images.

An alternative approach for image segmentation of masonry units
and mortar is with the use of ML (Machine-Learning), such as Deep-
Learning (DL; subset of M.L.) [20,41]. Some typical examples of DL
include:

• Classic-Networks: Multilayer architecture of fully-connected-layers of
neurons, which are typically used in data classification and
predictions.

• Convolutional-Neural-Networks (CNN): Typically used for image
classification and segmentation.

* Corresponding author at: School of Civil Engineering, University of Leeds, LS2 9JT Leeds, UK.
E-mail address: v.sarhosis@leeds.ac.uk (V. Sarhosis).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2022.104389
Received 8 March 2022; Received in revised form 3 May 2022; Accepted 26 May 2022

Automation in Construction 140 (2022) 104389

2

• Fully-Connected-Networks (FCN): Typically used for image-
segmentation, often combined with a CNN backbone.

The most efficient image-segmentation architectures consider the
use of FCN [12–14,28,29,38], since they allow any image resolution as
input by replacing the final fully-connected-layers of a CNN with
convolution layers [29]. CNN and FCN architectures require a large
labelled or annotated dataset, trained in representative sample to pro-
vide adequate results. However, they have the potential to detect com-
plex features by training the model to a large variety of different cases.
Furthermore, for smaller datasets, DL approaches can use a technique
called Transfer-Learning which involves pre-training a CNN model on a
different and larger dataset with the purpose to learn to detect complex
features. This has been shown to provide a reduction to the required
computational effort and a boost to overall performance of the model for
smaller datasets [21]. Transfer learning can be applied to any CNN and
FCN (Fully Convolutional Networks) architecture. Multiple architec-
tures have been used to demonstrate the ability of DL in the semantic
segmentation of images.

There are different architectures that could be used for the seg-
mentation of masonry units. U-Net is a FCN architecture that was
developed initially for biomedical image-segmentation [38]. It is based
on a contracting followed by an expansive path, which initially de-
creases and then increases the input-size. Due to its performance, U-Net
is considered the benchmark in image-segmentation and has been used
extensively especially in relatively small datasets. DeepLabV3+ is
another state-of-the-art FCN architecture for general use semantic seg-
mentation [13,14]. Additional features on DeepLabV3+ compared to
previous iterations and simpler architectures aim to deliver a faster and
more accurate network. FPN (Feature-Pyramid-Network) is an FCN
network for object detection [28]. It is a feature extractor that follows a
bottom-up followed by a top-down path with the addition of lateral
connections between the two to merge feature maps of equal spatial size.
LinkNet is a light FCN network developed for pixel-wise segmentation
optimized for efficiency [12]. LinkNet is a lightweight and fast FCN
architecture able to be used for real time applications (i.e., video
streaming).

ML applications have already seen use in structural engineering due
to their immerse potential to assist with visual inspection and moni-
toring applications [41]. In cases of damage detection, ML provides the
means to identify, locate, and asses detected deterioration on structural
elements. Valero et al. [47] extracted statistical data from a 3D point-
cloud and used them to train a ML algorithm for the detection and
classification of chromatic (i.e., discoloration) and geometric defects on
ashlar masonry (using logistic regression with multi-class classification).
However, most typical applications of defect detection include the use of
DL due to its architecture, which allows the detection of complex fea-
tures on unstructured data. [11], investigated the use of patch classifi-
cation using CNN algorithm coupled with a classifier to identify small
patches that contained damaged location of historical structures. Their
work was continued by Ali [2], where Faster-R-CNN was used for the
detection of bounding-boxes that contain locations of damaged bricks on
masonry structures. The same year, Wang et al. [48] used a Faster-R-
CNN model based on ResNet101 for the real time detection and classi-
fication of bounding-boxes that include defected areas on historic ma-
sonry buildings. A workflow that utilises mobile-phones for the direct
capture and processing of image-data was also proposed by them.
Brackenbury et al. [9] discussed the use of GoogleNet-Inception-V3 al-
gorithm and the use of transfer learning for the classification and seg-
mentation of mortar and defects in masonry components. Each defect (i.
e., cracking, spalling, or vegetation) was classified separately. Kalfarisi
et al. [24] used Mask-RCNN and FRCNN-FED to detect bounding boxes
that contain cracks on structures and performed pixel-wise segmenta-
tion within the detected areas. Furthermore, they transferred the
segmented locations to a 3D reality-mesh object, generated using
photogrammetry. Recently, Dais et al. [16] tested different CNN

algorithms for the detection of cracks on masonry images. Both patch-
classification (with 95.3% accuracy) and semantic-segmentation (with
79.6% F1-score) on pre-trained networks were investigated.

Past research demonstrated that the use of CNN algorithms for the
detection of masonry units and mortar is also necessary to provide a
complete visualization of the detailed geometry of masonry structures.
Ibrahim et al. [23] proposed the use of U-Net for the segmentation of
mortar in masonry structures with different bonding pattern (i.e.,
including rubble). Additionally, they used watershed-transform for the
segmentation of each brick unit. Ergün Hatir and İnce [19] proposed the
use of Mask-R-CNN for the classification and segmentation of masonry
units in historic stone masonry buildings. Each stone detected was
classified to a different lithology based on their detected features (i.e.,
colour, texture, etc).

From the above, although some work has been done in the seg-
mentation of cracks and mortar, there is still no research on coupling
brick segmentation with crack detection in masonry structures. The aim
of this research is to couple brick segmentation and defect detection
techniques and automatically provide holistic and real time information
for the documentation, visual inspection, and evaluation of existing
masonry structures. In this research, brick segmentation and defect
detection (i.e. cracks) were acquired using different state-of-the-art FCN
architectures including U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM),
and FPN (SM). The work presented here provides algorithms necessary
for the automatic documentation and structural inspection of masonry
structures from digital images.

2. Development of the database for training and evaluation

Initially, a database was created that includes various images of brick
masonry walls of regular pattern (ignoring rubble masonry). Some im-
ages were obtained from the internet while others were captured using
different sources (i.e., DSLR camera, smartphones) of varied resolution.
To improve generalisation, the dataset included masonry walls with
cracks, with windows and doors, with varied in colour masonry units as
well as with varied illumination and capture-angle. A sample of the raw
database used for training and evaluation is shown in Fig. 1.

In total 107 images of masonry structures were fully annotated,
including multi-class annotations of masonry blocks, openings, lintels,
other/random objects, and background (Fig. 2). Each class was anno-
tated to a different binarized image where black was the background
and white was the annotated element. The software used for annotation
was the “SuperAnnotate V.1.1.0”. This specific software was selected
since it allowed vector annotations, which permits a simplified anno-
tation of each block, ignoring unnecessary details. It was found that
simpler shapes could allow easier transferability to CAD environment,
and this will also be represented to the output from the CNN model.

Each image resolution was normalised based on the resolution of the
image-slice passed through the network. This was to allow each slice to
contain several blocks, but not allow the average block-size to be larger
than the image-slice. Doing so, the accuracy of the model has increased,
since each image-slice had similar-sized blocks that improved the
detection rate. The normalised resolution of each image was evaluated
and compared with the normalised resolution of the image-slice (image-
part passed through the network). Thus, the image was allowed a spe-
cific range of resolution. Although, using a specific resolution of block
elements (i.e., pixels contained within a block; by capturing pictures
with specific resolution, angle, and distance), would potentially increase
the accuracy. However, that would reduce generalisation of the final
model and complicate its use (i.e., would require the user to capture
images from specific distance/angle). Eqs. (1) to (5) were used to adjust
each image. If the image was within the limits of Eq. (3), it retained its
resolution. However, if the image was outside the limits of Eq. (3), it was
adjusted based on Eq. (5).

ImDim =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ximage*yimage

√
(1)

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

3

OutDim =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
xslice*yslice

√
(2)

MaxLimit = OutDim*MaxRatio&MinLimit = OutDim*MinRatio (3)

Scale = Limit/ImDim (4)

(
xfinal, yfinal

)
=

(
ximage, yimage

)
*Scale (5)

where, ImDim is the average image-resolution, OutDim is the average
image-slice resolution, MaxLimit/MinLimit is the maximum over the
minimum limit that is allowed to disregard further adjustments, and
xfinal/yfinal is the final resolution per image-axis.

Furthermore, the only variables provided were the MaxRatio/Min-
Ratio that are the Maximum over the Minimum preferred ratio to adjust
the images based on the size of the image-slices. Those values were
adjusted manually until all the image slices contained a satisfactory
number of block elements for the specific database. For the current
database, the values used were the following:

MinRatio = 2, and MaxRatio = 4 (6)

The size of each image slice was equal to 224 × 224 × 3 (i.e., OutDim
= 224). Each image was padded to adjust its resolution to multiples of
the slice-resolution per axis (i.e., 224 pixels) to retain the original
aspect-ratio when the image is sliced to smaller parts. The padding value
was equal to 255, which created a white border around most of the
edges. Then, the white padding was used as filtered locations of post-
processed images (i.e., images were background and openings have
been replaced with white) and would be instantly disregarded from the
CNN output. This provided a total of 2814 image-slices which were used
as training and validation (i.e., approx. 25% of them were used for

validation), see (Fig. 3). Other slice-resolutions were also tested. The
smaller resolutions provided more accurate models. This was due to the
increased number of training and validation data.

3. Convolutional neural networks

In this research, the networks evaluated were the U-Net, Deep-
LabV3+ (Fig. 4), U-Net (SM), LinkNet (SM), and FPN (SM). The latter
three (i.e., the SM's) were generated through the python package called
“Segmentation Models”, which includes: ready-to-use semantic-segmen-
tation models, multiple backbones of renown architectures, and pre-
trained models for transfer learning. The training procedure involved
only the use of the brick class since the dataset of other classes was not
considered to be large enough.

Multiple tests were conducted to identify the best combination of
backbone, pretrained dataset, loss function, optimiser, and parameters
(see Table 1), that would provide the most efficient model. The first test
included a combination of different parameters except loss, optimiser,
and activation function (Table 1). Every architecture was tested with the
“Adam” optimiser and “Weighted-Cross-Entropy” loss function. The
learning-rate of the first test-sequence was equal to 5E-4 with a decay of
5E-6 over 100 epochs.

All architectures provided similar results (between 95.98% to
96.27% validation-accuracy), with DeepLabV3+ (#3) having the high-
est accuracy (96.27%). For each architecture, the parameters used for
the optimal model were:

a) U-Net (#6): Optimized using 64 output filters, 0.0005 L2-Regulari-
zation, 0.25 dropout, Batch-Normalization, and “glorot-uniform”
initializer.

Fig. 1. Sample of the raw database used for training-evaluation.

Fig. 2. Annotation of ground-truth data; a) Original image; b) SuperAnnotate vector classification; c) Bricks; d) Openings; e) Structural; f) Background.

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

4

b) U-Net-SM (#10): 0.0005 L2-Regularization, “MobileNet” backbone,
“ImageNet” Encoder-Weights, “Sigmoid” activation function, and
(256, 128, 64, 32, 16) decoder filters.

c) U-Net-SM (#11) is like U-Net-SM (#10) except that (512, 256, 128,
64, 32) decoder filters were used.

Fig. 3. Sample of the slices used to train and evaluate the model; Top: Original image slice; Bottom: Annotated blocks.

Fig. 4. Architecture of the highest performance model [14]; a) DeepLabV3+ architecture; b) Modified XCEPTION backbone.

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

5

d) LinkNet-SM (#1): 0.0005 L2-Regularization, “MobileNet” backbone,
“ImageNet” Encoder-Weights, “Sigmoid” activation function, and
(1024, 512, 256, 128, 64) decoder filters.

e) FPN-SM (#3): 0.0005 L2-Regularization, “MobileNet” backbone,
“ImageNet” Encoder-Weights, “Sigmoid” activation function, 512 fil-
ters and 0.25 dropout.

f) DeepLabV3+ (#3): 16 OS (feature-extractor output ratio), “Xception”
backbone, “Pascal-Voc” pretrained weights, and “Sigmoid” activation.

4. Loss function

The loss function was used to minimise the error during training and
define the weights to reduce the loss during the next evaluation.

Table 1
Testing different parameters for each provided architecture (bold indicates best of each section).

Architecture Model Backbone Val. Val. Val. Val. Val.

Acc. F1 Precision Recall Loss

– – – % % % % –

U-Net #1 – 95.62 95 0.92 98.26 0.37
U-Net #2 – 95.4 94.71 92.35 97.45 0.54
U-Net #3 – 95.51 94.76 92.18 97.8 0.42
U-Net #4 – 95.86 95.19 93.01 97.68 0.48
U-Net #5 – 93.39 92.37 88.03 97.51 0.58
U-Net #6 – 96.02 95.4 93.05 97.99 0.41
U-Net #7 – 95.88 95.21 93.77 96.86 0.63
U-Net (SM) #1 VGG16 95.1 94.3 92.1 96.78 0.65
U-Net (SM) #2 VGG19 95.17 94.32 91.96 97.01 0.59
U-Net (SM) #3 InceptionV3 95.37 94.6 94.06 95.38 0.97
U-Net (SM) #4 Inception-ResNetV2 89.07 72.46 72.9 75.83 1.23
U-Net (SM) #5 MobileNet 95.83 95.19 93.79 96.78 0.69
U-Net (SM) #6 ResNet50 94.65 93.88 91.06 97.09 0.59
U-Net (SM) #7 SeresNet101 95.13 94.4 92.45 96.61 4.58
U-Net (SM) #8 SeresNet152 94.77 94.09 90.69 97.96 4.21
U-Net (SM) #9 ResNet152 94.74 93.85 91.2 96.96 0.64
U-Net (SM) #10 MobileNet 95.98 95.24 93.64 97.02 0.61
U-Net (SM) #11 MobileNet 95.94 95.26 93.41 97.31 0.56
U-Net (SM) #12 MobileNet 95.77 95.09 93.13 97.25 0.59
LinkNet (SM) #1 MobileNet 96.13 95.52 94.26 96.92 0.64
LinkNet (SM) #2 MobileNet 95.91 95.31 93.4 97.41 0.55
LinkNet (SM) #3 MobileNet 95.92 95.35 93.3 97.59 0.54
FPN (SM) #1 MobileNet 95.99 95.42 93.32 97.71 0.59
FPN (SM) #2 MobileNet 95.89 95.3 92.9 97.93 0.48
FPN (SM) #3 MobileNet 96.07 95.53 93.45 97.77 0.53
FPN (SM) #4 MobileNet 95.99 95.39 93.61 97.35 0.58
DLV3+ #1 Xception 93.12 87.02 91.47 85.33 4.51
DLV3+ #2 Xception 96.26 95.6 95.12 96.24 0.81
DLV3þ #3 Xception 96.27 95.66 94.81 96.66 0.75
DLV3+ #4 MobileNetV2 95.85 95.26 93.45 97.22 0.5
DLV3+ #5 Xception 95.4 94.71 92.35 97.45 0.54

Table 2
Test of loss functions (bold indicates best model of each section).

Best of three of each model/loss combination

Architecture Model Loss Epoch Val Val Val Val Val

Accuracy F1 Precision Recall Loss

– – – – % % % % –

U-Net #6 FL 98 96.18 95.3 97.12 93.72 3241.99
U-Net #6 WCE 78 95.44 94.69 92.77 96.86 0.66
U-Net #6 F1L 97 96.09 95.22 95.6 95.09 0.05
U-Net #6 BCE 92 96.27 95.57 96.12 95.14 0.13
U-Net (SM) #10 FL 89 96.41 95.52 96.82 94.5 6022.23
U-Net (SM) #10 WCE 74 95.99 95.28 94.36 96.35 0.97
U-Net (SM) #10 F1L 74 96.08 95.32 95.98 94.81 0.1
U-Net (SM) #10 BCE 99 96.52 95.79 96.5 95.21 0.18
LinkNet (SM) #1 FL 99 96.06 95.11 97.17 93.29 4998.93
LinkNet (SM) #1 WCE 80 96.07 95.25 94.3 96.41 0.92
LinkNet (SM) #1 F1L 87 96.49 95.8 96.15 95.56 0.08
LinkNet (SM) #1 BCE 95 96.54 95.83 96.24 95.49 0.17
FPN (SM) #3 FL 93 96.36 95.55 96.74 94.53 5473.35
FPN (SM) #3 WCE 87 96.21 95.5 93.95 97.2 0.78
FPN (SM) #3 F1L 100 96.52 95.8 96.78 94.92 0.08
FPN (SM) #3 BCE 85 96.58 95.88 96.36 95.49 0.19
DLV3+ #3 FL 59 96.31 95.55 97.08 94.17 3632.67
DLV3+ #3 WCE 83 96.09 95.47 93.94 97.15 0.57
DLV3+ #3 F1L 69 96.45 95.77 96.53 95.13 0.04
DLV3þ #3 BCE 97 96.65 96.03 96.53 95.62 0.15

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

6

Multiple loss-functions were tested to identify the most optimal for the
current use-case. The loss functions tested were Focal-Loss (FL),
Weighted-Cross-Entropy (WCE), F1-Loss (F1L), and Binary-Cross-
Entropy (BCE). All cases used the “Adam” optimizer with learning-rate
of 1E-4 and decay equal to 1E-6.

Table 2 presents the best of three of each architecture/loss combi-
nations. After evaluating all cases, the most efficient loss-function
(highest validation-accuracy) was the BCE. However, it has been
noticed that the highest validation-precision was typically acquired
when using FL and the highest validation-recall when using WCE.
Nonetheless, the target metric was the validation-accuracy. Thus, the
optimal loss function was taken equal to the BCE. Furthermore, to
exclude any error in the evaluation procedure of the loss-functions, a
combination of different optimisers per loss-function was tested. How-
ever, the evaluation of the optimiser was only undertaken for the
DeepLabV3+ architecture since it had the highest validation-accuracy
for both tests. The remaining parameters were equal between the sec-
ond and third tests. The two optimisers used herein were: a) Adam,
Stochastic Gradient Descent (SGD); and b) RMSprop (RMSP).

In Table 3 each optimiser provided the most efficient model with
different loss function. So, the use of BCE as the optimal loss function
was not universal. Using the SGD optimiser, the most efficient loss
function was WCE (86.14% validation accuracy). With RMSP, the
optimal loss function was F1L (96.72% validation accuracy). Using
Adam, the highest score was obtained through BCE (96.65% validation
accuracy). Also, from Table 3, it is concluded that the combinations
(Optimiser/Loss) with the highest accuracy were the Adam-BCE and
RMSP-F1L and had very similar accuracy. So, both have been considered
for the development of the final model. In contrast, the SGD optimiser
was disregarded due to the low accuracy score along all loss functions.

5. Final model

The optimal learning-rate used to adjust the final model and decide
on the utilisation of F1L and BCE loss functions. RMSP was selected as
the target optimiser, since it obtained the highest score, see Table 3.
Different learning-rate values were tested over 200 epochs. The decay

used was equal to the Learning-Rate over the Max-Epoch. All models
used the DLV3+ architecture with the Xception backbone, pretrained to
the Pascal-VOC dataset, see Table 4.

The highest score using F1L loss function was obtained with 2E-4
learning rate with validation accuracy equal to 96.86% (Table 4). The
highest score using BCE loss function was obtained with 1E-4 learning
rate with validation accuracy equal to 96.87% (Table 4). The validation
accuracy of both models was very similar. Thus, the selection of the final
model considered the progression of the loss on the accuracy/loss graphs
(Fig. 5) and the visual representation of the validation set (Fig. 6 and
Fig. 7).

The output graph of the BCE model shows moderate overfitting to the
dataset provided (Increasing validation-accuracy and validation-loss),
which reveals that the BCE model may not be generalising as well as
the model with F1L. Moreover, from the samples provided, the model
with F1L has reduced noise on complex locations (i.e., images 1–3 in
Fig. 6 and Fig. 7). Although using BCE the validation score was slightly
higher in the model, the reduction of noise assisted with the detection of
individual blocks on more complex images. Also, both models provided
very accurate results for images with adequate resolution per block.
Moreover, both were able to recognise openings and backgrounds
exceptionally well, even for bricks with varied colour (i.e., images 4 and
8 in Fig. 6 and Fig. 7). So, the model with F1L loss function was
considered as the best model and adopted here. In more detail, the
specified model has a classification error equal to 1.24% for the back-
ground and 1.52% for the blocks class (Fig. 8). Additionally, the model is
aimed to be used for images that are simpler than the trained dataset.
Thus, in practice, the CNN-output is expected to provide improved
results.

6. Crack detection algorithm

As mentioned before, the crack detection algorithm adopted in this
study used the most efficient model presented in Dais et al. [16]. Both
patch classification and pixel wise segmentation was tested. However,
for the purposes of this study, only the models for pixel wise segmen-
tation were considered (Table 5). The architectures tested were: a)

Table 3
Test of optimiser/loss combination (Bold indicates best of each section).

Best of three of each optimiser/loss combination

Architecture Optimizer Loss Epoch Val Val Val Val Val

Accuracy F1 Precision Recall Loss

– – – – % % % % –

DLV3+ SGD** FL 62 56.72 0 0 0 350,036.3
DLV3+ SGD FL 62 56.72 0 0 0 350,036.3
DLV3þ SGD** WCE 72 86.14 84.6 79.51 92.45 1.95
DLV3+ SGD WCE 96 75.16 73.23 66.15 84.95 4.75
DLV3+ SGD** F1L 96 76.52 74.38 68.73 84.36 0.26
DLV3+ SGD F1L 100 72.47 67.84 63.72 74.88 0.33
DLV3+ SGD** BCE 25 83.59 79.86 81.19 81.05 6.08
DLV3+ SGD BCE 100 73.65 67.11 67.45 70.25 4.58
DLV3+ RMSP* FL 55 94.93 93.75 96.22 91.67 5921.18
DLV3+ RMSP FL 44 96.4 95.75 96.51 95.1 7827.02
DLV3+ RMSP* WCE 46 94.09 93.1 92.58 94 1.48
DLV3+ RMSP WCE 88 96.2 95.5 94.75 96.39 1.2
DLV3+ RMSP* F1L 91 95.87 94.92 95.49 94.72 0.05
DLV3þ RMSP F1L 56 96.72 96.09 96.81 95.47 0.04
DLV3+ RMSP* BCE 76 95.84 94.9 95.36 94.79 0.26
DLV3+ RMSP BCE 96 96.57 95.92 96.19 95.75 0.23
DLV3+ Adam FL 59 96.31 95.55 97.08 94.17 3632.67
DLV3+ Adam WCE 83 96.09 95.47 93.94 97.15 0.57
DLV3+ Adam F1L 69 96.45 95.77 96.53 95.13 0.04
DLV3þ Adam BCE 97 96.65 96.03 96.53 95.62 0.15

Default (No Stars): Momentum = 0, Nesterov = False.
* Momentum = 0.9.
** Momentum = 0.9, Nesterov = True.

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

7

DeepCrack; b) DeepLabV3+; c) FCN based on VGG16; d) U-Net; and e)
FPN. The backbones tested were: VGG16, ResNet (multiple), DenseNet
(multiple), Inception, MobileNet, and MobileNetV2. Also, multiple loss
functions were tested to identify their optimal parameters. The loss
functions used were: a) Weighted-Cross-Entropy (WCE), b) Cross-
Entropy (CE), c) F1-Score-Loss (F1), and d) Focal-Loss (FL). All models
included the use of the Adam optimiser since it provided the highest F1-
Score. Transfer learning was also utilised to improve the accuracy of the
detection using the ImageNet dataset.

The architecture selected was the U-net-MobileNet with Adam

optimiser and WCE loss function. The specified model achieved a vali-
dation F1-score equal to 79.6%, validation recall equal to 79.9%, and
validation precision equal to 81.4%. The existing CNN-model was used
to acquire the damage during the geometrical-model generation.
Moreover, the dataset of the damage-detection model is similar to the
block-detection model. Thus, it can be used directly to combine the re-
sults of both models (blocks and cracks) efficiently. The sample of the
validation set used in the evaluation of the model is shown in Fig. 9.

Table 4
Testing different learning-rate values for the selection of the final model (bold indicates best of each section).

Best of three (DLV3+)

Optimizer Loss Learning Epoch Val Val Val Val Val

Rate Accuracy F1 Precision Recall Loss

– – – – % % % % –

RMSP F1L 1.00E-04 79 96.73 96.16 96.54 95.82 0.04
RMSP F1L 2.00E-04 117 96.86 96.29 96.68 95.94 0.04
RMSP F1L 5.00E-05 67 96.57 95.96 96.32 95.65 0.04
RMSP F1L 0.0005 179 96.62 96.03 96.16 95.93 0.04
RMSP BCE 1.00E-04 127 96.87 96.3 96.46 96.16 0.23
RMSP BCE 2.00E-04 131 96.85 96.28 96.64 95.94 0.37
RMSP BCE 5.00E-05 165 96.48 95.85 96.17 95.59 0.26
RMSP BCE 0.0005 88 96.46 95.84 96.01 95.7 0.24

Fig. 5. Graphs of best models; a) DLV3+ model with F1L loss function and learning rate of 2E-4; b) DLV3+ model with BCE loss function and learning rate of 1E-4.

Fig. 6. Evaluation sample from the F1L model; a) Original image-slice; b) Ground truth; c) CNN Output (AC: Accuracy; F1: F1-Score; R: Recall; PR: Precision).

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

8

7. Coupling brick segmentation with crack detection

To acquire the final output, image processing of the original image
was undertaken. Initially the image was re-sized using the same meth-
odology described in the Development of the database section (Eq. (5)).
By combining the image slices directly to the image, distortion effects
near the edges of the image-slice (Fig. 10: b) were observed. So, each
slice assigned an overlap value. The best results were acquired using an
overlap value of 50 pixels for an image slice of 224 × 224. The image
was divided into sections of 124 × 124 pixels (224 − 2 × 50) and
included a white padding of 100 pixels (2 × 50). This effectively
retained only the central section of each slice for use and improved the
overall quality of the final output (Fig. 10: c). Furthermore, the use of the
models to acquire the location of cracks and masonry elements shown
satisfactory results. Fig. 11 presents outputs from both models CNN
(blocks and cracks) that were used for verification purposes i.e., not used
during the training/evaluation phase.

8. Usage of the developed model

One important use of the damage detection model proposed here is to
assist engineers with the inspection and documentation of masonry
structures in their care. Using image processing, each individual crack

was identified and measured. The isolation of white elements from the
CNN output was succeeded by using watershed segmentation to assign a
unique label to each crack (Fig. 12: b). Using the individual labels of the
segmentation, it was possible to acquire the area of each label by
counting the total number of pixels. Each segmentation provided the
linearization of its area (Fig. 12: c), which can be used to evaluate the
length of the crack. Finally, the results obtained can be scaled to the real
dimensions and provide realistic measurements of the crack properties
by providing a scale factor (Table 6). The approximate-length (Skeleton
(mm)) was acquired under the assumption that the length of each pixel
is the average between its horizontal and diagonal distance.

The main use of the feature detection was aimed for the automatic
development of geometrical models for documentation and numerical
models for analysing the structural capacity of masonry structures. The
methodology to convert binary images of masonry blocks and cracks is
further explained in Loverdos et al. [32].

The algorithms described in the previous study used binary images
acquired using simple photogrammetric applications (i.e., image blur-
ring, image thresholding, edge detection). However, the use of simple
image processing applications found to be not reliable and, in some
cases, unusable (i.e., for large variations on illumination and/or colour
(Fig. 13: c, e, and g)). Furthermore, the process requires to adjust the
parameters of each image-processing function manually. The use of
CNN, for the feature detection of masonry micro-geometry (i.e., geom-
etry of individual masonry units and mortar), improves the results of the
feature extraction by providing a better binarized output and auto-
mating the procedure (Fig. 13: d, f, and h).

For both applications (measurement of cracks and generation of
geometrical model) the image is required to be either an orthorectified
photo or an image captured vertically compared to the masonry
element. This will ensure that the detected elements (i.e., blocks, cracks,
openings) will have the same scale along the image used.

Moreover, the simplified shapes acquired, using the binarized output
from the trained models, demonstrated great improvement when
compared to binarized images acquired using image-processing. The
blocks were more evenly shaped and better aligned to the actual ma-
sonry bricks (Fig. 14). This did not only improve the reliability of the
numerical analysis, but also the geometric representation of the struc-
ture when used for representation in CAD environments. It should be
noted that the original image used in Fig. 13 and Fig. 14 was the same
used for the generation of the numerical model in the previous study for
comparison purposes. Additionally, the use of simple image-processing
applications, for the feature detection, favours the specified image
since the contrast between mortar and bricks is highly visible, without
large changes to illumination/colour. For general use, the difference
between the resultant output is expected to be larger.

Fig. 7. Evaluation sample from the BCE model; a) Original image-slice; b) Ground truth; c) CNN Output (Metrics: AC: Accuracy, F1: F1-Score, R: Recall,
PR: Precision).

Fig. 8. Confusion matrix; TN: True Negatives; FN: False Negatives; FP: False
Positives; TP: True Positives (Model: DLV3+ with RMSP-F1L).

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

9

Table 5
Architectures tested for defect detection of masonry structures (bold indicates best models).

Validation Scores

Network Pretrained Loss Parameters Model Size Analysis Time Best Epoch F1 Score Recall Precision

– [ImageNet] – [Millions] [MB] [Hours] – % % %

DeepCrack No WCE 29.5 115.5 5.2 28 74 80.1 71.6
DeepLabv3+ No WCE 41.3 162.2 5.6 26 74.9 79 73.8
FCN-VGG16 No WCE 27.8 108.8 2.5 95 75.6 76.6 76.9
U-net No WCE 34.5 135.1 5.8 75 75.7 78.9 75.7
U-net-VGG16 Yes WCE 46.1 180.2 6 37 77.2 81.2 76.2
U-net-ResNet34 Yes WCE 48 188.1 4.9 61 77.6 78.3 79.5
U-net-ResNet50 Yes WCE 73.7 288.5 6.8 45 76.3 80.9 74.8
U-net-Densenet121 Yes WCE 41.6 163.5 6.2 55 78.1 80.7 78.1
U-net-Densenet169 Yes WCE 54.3 213.4 7.1 63 78.5 83.5 76.2
U-net-InceptionV3 Yes WCE 68.5 268.1 6.8 31 77.7 79.2 78.9
U-net-MobileNet Yes WCE 37.8 147.9 4.8 45 79.6 79.9 81.4
U-net-MobileNet No WCE 37.8 147.9 4.8 36 75.4 80.7 73.4
U-net-MobileNet Yes CE 37.8 147.9 4.8 36 76.6 73 83
U-net-MobileNet Yes F1 37.8 147.9 4.8 29 78.2 77.1 82
U-net-MobileNet Yes FL 37.8 147.9 4.8 85 71.2 61.1 89.4
U-net-MobileNetV2 Yes WCE 39.5 154.9 5.3 58 77.7 76.6 81.9
FPN-VGG16 Yes WCE 32.2 125.8 5.6 79 77.9 82 76.2
FPN-ResNet34 Yes WCE 38.3 150.2 5.2 36 78 81.5 77.2
FPN-ResNet50 Yes WCE 42.1 164.8 5.8 27 77.2 81.4 75.8
FPN-Densenet121 Yes WCE 24.6 97 6.1 31 79 83.6 77.2
FPN-Densenet169 Yes WCE 30.6 120.8 6.6 59 78.6 80 79.5
FPN-InceptionV3 Yes WCE 40 157.2 5.7 34 79.6 81.3 80.1
FPN-MobileNet Yes WCE 20.8 81.4 4.6 40 79.5 79.5 81.7
FPN-MobileNetV2 Yes WCE 19.9 78.3 4.8 49 78.5 76.7 82.7

Fig. 9. Sample images from the crack detection model from [16]; a) Original image-slice; b) Ground truth; c) CNN Output (Metrics: F1: F1-Score, RE: Recall, PR: Precision).

Fig. 10. Effect of using overlap while connecting output-slices; a) Original image; b) Direct connection of 224 × 224 pixel slices; c) Overlap of 50 pixels on 224 × 224
pixel slices.

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

10

9. Shape quality

The quality of the segmentation was evaluated to quantify the
change between the ground truth and the output from either the CNN
model or simple image-processing applications. The simple metrics
included the accuracy, recall, precision, and F1-Score, as seen in the use

of the CNN model.
However, those metrics tend to check the overall quality of the

output. Since the model was aimed to be used for the generation of
geometrical models and documentation, additional metrics were
included to quantify the quality of the block-shapes. The shape quality
was estimated by calculating the coverage, error of area, and quantity of

Fig. 11. Combined output of block and crack detection models; a) Original image; b) Block detection; c) Crack detection; d) Marked perimeter of detected elements.

Fig. 12. Evaluation of damage; a) Marked cracks; b) Watershed segmentation; c) Linearization (skeleton).

Table 6
Crack properties acquired using image-processing.

Label Loc Min Loc Max Loc Mid Area Skeleton Area Skeleton

(xmin,ymin) (xmax,ymax) (x,y) (pixels) (pixels) (mm2) (mm)

1 [1908, 0] [2249, 189] [2079, 170] 13,474 472 5072 350
2 [923, 155] [1872, 817] [1397, 427] 37,425 1482 14,088 1065
3 [753, 804] [913, 945] [775, 874] 5537 247 2084 178
4 [568, 936] [739, 1072] [595, 993] 5675 272 2136 196
5 [402, 1069] [428, 1220] [414, 1144] 3076 137 1158 98
6 [302, 1215] [397, 1448] [343, 1325] 3971 229 1495 165
7 [237, 1323] [289, 1448] [270, 1390] 2217 121 835 87
8 [1843, 1348] [1869, 1448] [1856, 1398] 2190 79 824 57

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

11

Fig. 13. Comparison of Thresholding and CNN output; a) Blurred/grey image for thresholding; b) Original image for CNN; c) Detected blocks using thresholding; d)
Detected blocks using CNN; e) Detected cracks using thresholding; f) Detected cracks using CNN; g) Perimeter of detected elements using thresholding; h) Perimeter
of detected elements using CNN.

Fig. 14. Extracted blocks using the methodology described in Loverdos et al. [32]; a) Block-detection using image-thresholding; b) Block-detection using CNN.

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

12

undefined blocks (Fig. 15). Each segmentation of the ground-truth was
compared with the output of either CNN or image-processing to identify
the same object in both images. The first step was to calculate the
common area between the two objects (Eq. (7)). The coverage (Eq. (8))
was calculated by comparing the common-area between both objects
(ground-truth and output) while the Area-Error was calculated by
comparing the area between both objects (Eq. (9)). The quantity of
undefined objects was the number of objects that didn't match with a
segmentation from the ground truth following certain conditions (i.e.,
the coverage must be similar to the area of the segmentation). The
equations of the additional metrics are provided below:

Common = Object1i ∩ Object2i (7)

Coverage1 = Common/Area1

Coverage2 = Common/Area2 (8)

Area Error = Area2/Area1 − 1 (9)

Missing Error = Missing/AllObjects (10)

where Object1i denotes any segmentation on ground truth, Object2i any
segmentation on the output (CNN or Image-processing), Area1 the total
area of the Object1 in pixels, and Area2 the total area of Object2 in pixels.
Individual segmentations were obtained using watershed-segmentation
with the binary image as mask. The conditions for segmentation, i.e., the
same object as in the ground-truth, were:

Condition1(Required) : Common > 0 (11)

Condition2(Optional) : 1 − Coverage1 ≤ Threshold1 (12)

Condition3(Optional) : 1 − Coverage2 ≤ Threshold2 (13)

where the Threshold is any value between 0 and 1 and denotes the dif-
ference between the common area and the total area of the segmenta-
tion. The shape-analysis in this case used a Threshold value of 0.2 (i.e.,
80% of object area must be common). The first condition was used to
verify that two objects have a common area (Eq. (11)). By using the
second condition only (Eq. (12)), the evaluation considered objects that
were erroneously merged (Fig. 15c), which increased the area-error
significantly. By using the third condition only (Eq. (13)), the evalua-
tion considered segmentations that were erroneously broken into
smaller elements. If multiple objects satisfy the conditions, then they
were all included in the final common area. For this study, both optional
conditions were used. Thus, for an object to be considered, must have a
common area of at least 80% of both segmentations (ground-truth and
output). Fig. 15 shows the undefined objects that did not match both
images (Fig. 15: a–b & Fig. 15: a–c). Furthermore, it demonstrates that
the CNN output has marginally fewer undefined objects, since image-
processing is prone to noise caused by the change in illumination and
colour within the same image. Although watershed-segmentation can

close open-segmentations (Fig. 13: g), it is not always feasible. In Fig. 16,
images were utilised during the validation phase of the model and are
shown to compare the output acquired using image-processing. The
method applied was the same as the one used to acquire the image in
Fig. 13:c. The metrics for the complete evaluation of all images (Fig. 15
& Fig. 16), are shown in Table 7.

Most metrics provide similar values for both test cases of the
damaged wall (Fig. 15). More specifically the accuracy on the CNN
output was slightly higher, which explains the better representation of
the segmentation (95.7% vs 94.8%). Although, the coverage in the CNN
image was slightly lower for the objects that were detected correctly
(94.4% vs 96.7%). Nonetheless, the missing error of the CNN image was
much lower than the thresholding case (5.5% vs 27.5%), which was
caused by the presence of multiple open shapes in the thresholding
image (Fig. 15: c). On the CNN case, the bottom-left block was undefined
due to the damage not separating the blocks completely (Fig. 15: b), as it
is on the ground truth image (Fig. 15: a) and detecting the three broken
elements as a single object. Also, it should be noted that the large value
of the undefined blocks, in the thresholding case, would decrease the
coverage and increase the area error, if they were allowed in the eval-
uation (Fig. 15: c). Thus, a higher coverage does not correspond to an
overall better quality of segmentation, since it relates to fewer elements.
Furthermore, the image was favourable for block detection using
thresholding, due to minimal noise, which explains the better fit of the
validated objects. The results will vary depending on alterations to
illumination and colour (Fig. 16).

The metrics acquired for Fig. 16 demonstrate that the quality of
shapes when using simple thresholding was detrimental for the accuracy
of the model. This can be observed initially from the median accuracy,
which was equal to 94.5% vs 79.3%, for the CNN and thresholding
methods respectively. In general, thresholding provided marginally
fewer validated blocks, as it was observed by the median missing error,
which was equal to 22.9% vs 69.1%, for the CNN and thresholding
methods respectively (Fig. 16: c, d). Furthermore, the overall fitting of
the shapes was higher in the CNN case since the coverage calculated was
96.7% vs 94.6% for the CNN and thresholding methods respectively.

Moreover, simple image-processing methods can not recognise
openings, damage, or background (Fig. 16: d4 & Fig. 16: d8). They are
only able to identify either edges (edge detection) or pixel intensity
(thresholding). Every image that contained locations of background,
required modification before it was used. Thus, the use of CNN for the
object detection was preferred for the current test-case, due to its higher
accuracy and reliability to identify correctly almost every object
(Fig. 15: b), except for highly complex images (Fig. 16: c1, c2, c3).

10. Conclusions

This research is contributing towards automating procedures that
engineers would require considerable amounts of effort, expertise, and
time to perform documentation and structural inspection of masonry
fabric, while at the same time minimises the human error. Also, the

Fig. 15. Comparing segmentation quality of CNN and Thresholding (Red: Unidentified blocks with large change to location/area): a) Ground-truth image (Anno-
tated); b) CNN-Output compared with annotated; c: Thresholding-output compared with annotated. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

13

proposed approach is suitable for cases in which visual inspection is in
locations difficult to reach by humans. The study demonstrates that both
crack and block (i.e. masonry unit) detection can be achieved with
adequately high accuracy by utilising deep learning approaches (i.e.
block-detection model achieved a validation-accuracy of 96.86% and
the crack detection model an F1-Score of 79.6%). The quality of the
binarized output has also been assessed showing that the CNN output
outperforms simple image-processing functions even for clean images.
Especially considering that simple image-processing applications do not
differentiate between detected elements and background/openings.
Additionally, deep learning methods allow for the improvement of the
model by increasing the dataset used for training and validation.
Consequently, the performance of the model can always be enhanced by
acquiring additional samples of the classified elements.

The main limitation of the demonstrated application of deep

learning, for the detection of features in masonry structures, is that a
similar sample should be provided during training of the model to detect
specific features. i.e., to be able to reliably identify irregular masonry
units, images with irregular masonry should be included in the dataset.
Furthermore, features not shown in the image will not be identified by
the model (i.e., cracks of extremely small size). Thus, the engineer must
ensure that the desired features should be visible on the image-slice
passed through the network. Also, the use orthorectified images is
important for the accurate evaluation of detected features (i.e., if used
for numerical modelling, or crack measurements).

Future work includes the implementation of the developed models to
a framework that will automatically generate numerical models and
analyse changes on the structure in real time. This includes a detailed
report of the measurement of detected defects on the structure in a form
of a geometrical digital twin. Moreover, currently only cracks are

Fig. 16. Comparing segmentation quality of the train/validation set (Red: Unidentified blocks with large change to location/area): a) Original image; b) Ground-
truth image (Annotated); c) CNN-Output compared with annotated; d) Thresholding-output compared with annotated. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 7
Metrics to quantify the segmentation quality of the output.

Name Image1 Image2 Acc. Recall Precision F1 Coverage (1) Area Missing

(Gr. Truth) (Output) Score Error Error (1)

– – – % % % % % % %

Fig. 15: b Annotated CNN 95.68 94.63 99.78 97.13 94.4 − 5.39 5.5
Fig. 15: c Annotated Thresh. 94.76 96.68 96.55 96.62 96.7 − 1.64 27.47
Fig. 16: 1c Annotated CNN 83.63 75.24 97.65 84.99 97.31 0.76 44.44
Fig. 16: 1d Annotated Thresh. 66.67 68.08 75.44 71.57 0 n.a. 100
Fig. 16: 2c Annotated CNN 94.65 92.43 94.48 93.44 93.95 − 2.11 50
Fig. 16: 2d Annotated Thresh. 83.24 87.17 75.82 81.1 92.03 − 4.8 75
Fig. 16:3c Annotated CNN 89.35 93.5 91.47 92.47 96.2 3.63 50
Fig. 16: 3d Annotated Thresh. 70.97 76.69 80.83 78.71 94.27 3.58 87.5
Fig. 16: 4c Annotated CNN 98.25 98.56 96.93 97.74 98.42 1.76 9.09
Fig. 16: 4d Annotated Thresh. 70.7 95.07 57.08 71.33 95.46 12.58 72.73
Fig. 16:5c Annotated CNN 96.69 97.12 98.13 97.62 96.24 − 1.66 16.67
Fig. 16: 5d Annotated Thresh. 78.28 91.85 80.03 85.53 96.99 0.81 77.78
Fig. 16: 6c Annotated CNN 96.29 97.63 97.77 97.7 97.91 0.28 10
Fig. 16: 6d Annotated Thresh. 87.8 92.68 92.21 92.45 90.35 − 7.01 70
Fig. 16: 7c Annotated CNN 97.59 98.35 97.63 97.99 98.53 0.92 7.69
Fig. 16: 7d Annotated Thresh. 69.58 92.77 67.98 78.47 95.14 − 2.07 61.54
Fig. 16: 8c Annotated CNN 98.22 98.17 97.99 98.08 97.21 − 0.97 12.5
Fig. 16: 8d Annotated Thresh. 92.14 98.58 86.42 92.1 95.68 8.01 50

Median CNN: 94.48 93.96 96.87 95.24 96.69 − 0.31 22.88
Median Thresh: 79.35 88.84 79.15 83.1 94.58 0.29 69.11

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

14

detected but additional classifications of defects are considered, such as
spalling, vegetation, and discolouration. Additionally, the results ob-
tained from the block/crack-detection can be coupled directly with al-
gorithms for numerical modelling to automatically evaluate the crack
patterns on the structure by performing numerical analysis or compare
the results from inverse analysis by matching the outputs (from the
block/crack detection models and evaluation method used, i.e.,
[1,3,22,35,45]). In all cases, the capture procedure can be replaced by
remote sensing applications such as drones to remotely capture image/
video data paired with semantic segmentation for the identification of
structural elements; hence, providing a digital twin of the structure
considered for real time monitoring.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Several photos obtained by engineers from Network Rail and Helifix,
UK, and were kindly offered to expand our masonry dataset. Therefore,
their support in this study is highly recognised and appreciated. Ihsan
Bal, Eleni Smyrou and Dimitris Dais are acknowledged for their
insightful comments on the implementation of the deep learning
network for the crack detection algorithm (github.com/dimitrisdai
s/crack_detection_CNN_masonry). This work was funded by the EPSRC
project “Exploiting the resilience of masonry arch bridge infrastructure:
a 3D multi-level modelling framework” (ref. EP/T001348/1). The
financial contribution is very much appreciated.

References

[1] C. Alessandri, M. Garutti, V. Mallardo, G. Milani, Crack patterns induced by
foundation settlements: integrated analysis on a renaissance masonry palace in
Italy, Int. J. Architectural Heritage 9 (2015) 111–129, https://doi.org/10.1080/
15583058.2014.951795.

[2] L. Ali, Damage detection and localization in masonry structure using faster region
convolutional networks, Int. J. GEOMATE 17 (2019) 98–105, https://doi.org/
10.21660/2019.59.8272.

[3] M. Angelillo, The model of Heyman and the statical and kinematical problems for
masonry structures, Int. J. Masonry Res. Innovation 4 (2019) 14–21, https://doi.
org/10.1504/IJMRI.2019.096820.

[4] P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical
image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 898–916,
https://doi.org/10.1109/TPAMI.2010.161.

[5] İ.E. Bal, D. Dais, E. Smyrou, V. Sarhosis, Novel invisible markers for monitoring
cracks on masonry structures, Constr. Build. Mater. 300 (2021), https://doi.org/
10.1016/j.conbuildmat.2021.124013.

[6] S. Beucher, F. Meyer, Advances of mathematical morphology in image processing,
in: Mathematical Morphology in Image Processing, Marcel Dekker Inc, New York,
1993, pp. 433–481, https://doi.org/10.1201/9781482277234-12.

[7] D.J. Bora, A novel approach for color image edge detection using multidirectional
Sobel international journal of computer sciences and engineering open access a
novel approach for color image edge detection using multidirectional Sobel filter
on HSV color space, Int. J. Comput. Sci. Eng. 5 (2017) 154–159, https://doi.org/
10.6084/m9.figshare.4732951.

[8] D. Brackenbury, M. Dejong, Mapping Mortar Joints in Image Textured 3D Models
to Enable Automatic Damage Detection of Masonry Arch Bridges, Tampere,
Finland, 2018.

[9] D. Brackenbury, I. Brilakis, M. Dejong, Automated defect detection for masonry
arch bridges, in: International Conference on Smart Infrastructure and
Construction 2019, ICSIC 2019: Driving Data-Informed Decision-Making 2019,
2019, pp. 3–10, https://doi.org/10.1680/icsic.64669.003.

[10] J. Canny, A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8, 1986, pp. 679–698, https://doi.
org/10.1109/TPAMI.1986.4767851.

[11] K. Chaiyasarn, M. Sharma, L. Ali, W. Khan, N. Poovarodom, Crack detection in
historical structures based on convolutional neural network, Int. J. GEOMATE 15
(2018) 240–251, https://doi.org/10.21660/2018.51.35376.

[12] A. Chaurasia, E. Culurciello, LinkNet: Exploiting encoder representations for
efficient semantic segmentation, in: 2017 IEEE Visual Communications and Image
Processing, VCIP 2017 2018-Janua, 2018, pp. 1–4, https://doi.org/10.1109/
VCIP.2017.8305148.

[13] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Deeplab: Semantic
image segmentation with deep convolutional nets and fully connected CRFs, in: 3rd
International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings 40, 2015, pp. 834–848.

[14] L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, DeepLabv3+: Encoder-
decoder with atrous separable convolution for semantic image segmentation, in:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 11211 LNCS, 2018, pp. 833–851,
https://doi.org/10.1007/978-3-030-01234-2_49.

[15] F. Cluni, D. Costarelli, A.M. Minotti, G. Vinti, Enhancement of thermographic
images as tool for structural analysis in earthquake engineering, NDT E Int. 70
(2015) 60–72, https://doi.org/10.1016/j.ndteint.2014.10.001.

[16] D. Dais, İ.E. Bal, E. Smyrou, V. Sarhosis, Automatic crack classification and
segmentation on masonry surfaces using convolutional neural networks and
transfer learning, Autom. Constr. 125 (2021), https://doi.org/10.1016/j.
autcon.2021.103606.

[17] A.M. D’Altri, V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco,
A. Tralli, G. Castellazzi, S. de Miranda, Modeling Strategies for the Computational
Analysis of Unreinforced Masonry Structures: Review and Classification, Archives
of Computational Methods in Engineering, Springer, Netherlands, 2020, https://
doi.org/10.1007/s11831-019-09351-x.

[18] J. Eaton, M. Edwards, M. Crapper, Heritage Railway Association: The Inspection
and Maintenance of Civil Engineering Assets, 2014.

[19] M. Ergün Hatir, İ. İnce, Lithology mapping of stone heritage via state-of-the-art
computer vision, J. Build. Eng. 34 (2021), https://doi.org/10.1016/j.
jobe.2020.101921.

[20] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-
Rodriguez, A Review on Deep Learning Techniques Applied to Semantic
Segmentation, 2017, pp. 1–23.

[21] M. Hussain, J.J. Bird, D.R. Faria, A study on CNN transfer learning for image
classification, Advan. Intelligent Sys. Computing 840 (2019) 191–202, https://doi.
org/10.1007/978-3-319-97982-3_16.

[22] A. Iannuzzo, F. de Serio, A. Gesualdo, G. Zuccaro, A. Fortunato, M. Angelillo, Crack
patterns identification in masonry structures with a C◦ displacement energy
method, Int. J. Masonry Res. Innovation 3 (2018) 295–323, https://doi.org/
10.1504/IJMRI.2018.093490.

[23] Y. Ibrahim, B. Nagy, C. Benedek, Cnn-based watershed marker extraction for brick
segmentation in masonry walls, in: F. Karray, A. Campilho, A. Yu (Eds.), Image
Analysis and Recognition, ICIAR, vol. 2019, Lecture Notes in Computer Science.
Springer, Cham, Waterloo, ON, Canada, 2019, pp. 332–344, https://doi.org/
10.1007/978-3-030-27202-9_30.

[24] R. Kalfarisi, Z.Y. Wu, K. Soh, Crack detection and segmentation using deep learning
with 3D reality mesh model for quantitative assessment and integrated
visualization, J. Comput. Civ. Eng. 34 (2020) 04020010, https://doi.org/10.1061/
(asce)cp.1943-5487.0000890.

[25] N. Kassotakis, V. Sarhosis, Employing non-contact sensing techniques for
improving efficiency and automation in numerical modelling of existing masonry
structures: a critical literature review, Structures. (2021), https://doi.org/
10.1016/j.istruc.2021.03.111.

[26] N. Kassotakis, V. Sarhosis, M.V. Peppa, J. Mills, Quantifying the effect of geometric
uncertainty on the structural behaviour of arches developed from direct
measurement and Structure-from-Motion (SfM) photogrammetry, Eng. Struct. 230
(2021), 111710, https://doi.org/10.1016/j.engstruct.2020.111710.

[27] A.S. Kornilov, I.V. Safonov, An overview of watershed algorithm implementations
in open source libraries, J. Imaging 4 (2018) 123, https://doi.org/10.3390/
jimaging4100123.

[28] T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid
networks for object detection, in: Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017 2017-Janua, 2017, pp. 936–944,
https://doi.org/10.1109/CVPR.2017.106.

[29] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 07-12-June, 2015, pp. 431–440, https://doi.org/
10.1109/CVPR.2015.7298965.

[30] P.B. Lourenço, Computational Strategies for Masonry Structures, PhD Thesis, Delft
University Press, 1996.

[31] P.B. Lourenço, Computational strategies for masonry structures: multi-scale
modeling, dynamics, engineering applications and other challenges, in: Congreso
de Métodos Numéricos En Ingeniería, 2013, pp. 451–472.

[32] D. Loverdos, V. Sarhosis, E. Adamopoulos, A. Drougkas, An innovative image
processing-based framework for the numerical modelling of cracked masonry
structures, Autom. Constr. 125 (2021), 103633, https://doi.org/10.1016/j.
autcon.2021.103633.

[33] D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image boundaries
using brightness and texture, Adv. Neural Inf. Proces. Syst. 26 (2003) 530–549,
https://doi.org/10.1109/TPAMI.2004.1273918.

[34] L. McKibbins, C. Melbourne, C. Gaillard, Masonry Arch Bridges: Condition
Appraisal and Remedial Treatment (C656), 2006.

[35] R. Napolitano, B. Glisic, Methodology for diagnosing crack patterns in masonry
structures using photogrammetry and distinct element modeling, Eng. Struct. 181
(2019) 519–528, https://doi.org/10.1016/j.engstruct.2018.12.036.

[36] N. Oses, F. Dornaika, A. Moujahid, Image-based delineation and classification of
built heritage masonry, Remote Sens. 6 (2014) 1863–1889, https://doi.org/
10.3390/rs6031863.

[37] B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, M. Moore, Routine
highway bridge inspection condition documentation accuracy and reliability,

D. Loverdos and V. Sarhosis

Automation in Construction 140 (2022) 104389

15

J. Bridg. Eng. 9 (2004) 403–413, https://doi.org/10.1061/(asce)1084-0702(2004)
9:4(403).

[38] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical
image segmentation, arXiv (2015) 1–8.

[39] G. Sithole, Detection of Bricks in a Masonry Wall, in: International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008,
pp. 567–572.

[40] A.M. Sowden, The Maintenance of Brick and Stone Masonry Structures, 1st ed.,
CRC Press, London, 1990 https://doi.org/10.1201/9781003062066.

[41] B.F. Spencer, V. Hoskere, Y. Narazaki, Advances in computer vision-based civil
infrastructure inspection and monitoring, Engineering 5 (2019) 199–222, https://
doi.org/10.1016/j.eng.2018.11.030.

[42] G. Stockdale, Y. Yuan, G. Milani, The behavior mapping of masonry arches
subjected to lumped deformations, Constr. Build. Mater. 319 (2022), https://doi.
org/10.1016/j.conbuildmat.2021.126069.

[43] S. Tiberti, G. Milani, 2D pixel homogenized limit analysis of non-periodic masonry
walls, Comput. Struct. 219 (2019) 16–57, https://doi.org/10.1016/j.
compstruc.2019.04.002.

[44] S. Tiberti, G. Milani, 3D homogenized limit analysis of non-periodic multi-leaf
masonry walls, Comput. Struct. 234 (2020), 106253, https://doi.org/10.1016/j.
compstruc.2020.106253.

[45] S. Tiberti, N. Grillanda, V. Mallardo, G. Milani, A Genetic Algorithm adaptive
homogeneous approach for evaluating settlement-induced cracks in masonry walls,
Eng. Struct. 221 (2020), 111073, https://doi.org/10.1016/j.
engstruct.2020.111073.

[46] E. Valero, F. Bosché, A. Forster, Automatic segmentation of 3D point clouds of
rubble masonry walls, and its application to building surveying, repair and
maintenance, Autom. Constr. 96 (2018) 29–39, https://doi.org/10.1016/j.
autcon.2018.08.018.

[47] E. Valero, A. Forster, F. Bosché, E. Hyslop, L. Wilson, A. Turmel, Automated defect
detection and classification in ashlar masonry walls using machine learning,
Autom. Constr. 106 (2019), 102846, https://doi.org/10.1016/j.
autcon.2019.102846.

[48] N. Wang, X. Zhao, P. Zhao, Y. Zhang, Z. Zou, J. Ou, Automatic damage detection of
historic masonry buildings based on mobile deep learning, Autom. Constr. 103
(2019) 53–66, https://doi.org/10.1016/j.autcon.2019.03.003.

D. Loverdos and V. Sarhosis

