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operator on differential forms on a Riemannian manifold that 
is Euclidean near infinity. Allowing for compact boundaries of 
low regularity we prove a Birman-Krein formula on the space 
of co-closed differential forms. In the case of dimension three 
this reduces to a Birman-Krein formula in Maxwell scattering.
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1. Introduction and main theorems

Let (X, g) be an oriented complete connected Riemannian manifold of dimension d ≥ 2
which is Euclidean near infinity. This means that there exists a compact subset K ⊂ X

and R > 0 such that X \ K is isometric to Rd \ BR(0). Let Ω be an open subset in K
with compact closure and define M = X \ Ω. We will assume throughout that M is 
connected. The interior of M is then X \ Ω and will be denoted by M◦. The subset Ω
will be thought of as an (or many) obstacle(s) in X.
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In this paper we will be discussing the scattering of differential forms in X relative 
to Euclidean space. Scattering takes place because of the possibly non-trivial geometry 
or topology in K and the possible presence of the obstacles. One of the important 
theorems in scattering theory is the Birman-Krein formula relating the spectral shift to 
the scattering matrix. We refer to the standard textbook [13] and also [3] for background 
on scattering theory. Scattering theory of differential forms has been discussed in detail 
in our paper [11], and a Birman-Krein formula has been proved for the Laplace-Beltrami 
operator on differential forms in this setting with the additional assumption that all the 
obstacles Ω have smooth boundary. We extend the class of Ω for which these results 
are valid to a much more general class. This includes examples of Lipschitz domains in 
Rd. The main purpose of this paper however is to give a different trace formula that 
formally corresponds to taking the trace on the sub-space of co-closed forms. One can 
view this as related to the Birman-Krein formula, but it does not directly reduce to 
the formula in [11]. This is an important general setting for differential forms that will 
include Maxwell’s equations as a special case. Maxwell’s equations are vector valued and 
developing a trace formula for the corresponding time-harmonic evolution operator in 
the presence of obstacles is more difficult than for the standard Helmholtz equation.

Let as usual d : C∞
0 (X; Λ•T ∗X) → C∞

0 (X; Λ•T ∗X) be the differential on smooth 
forms. To cover very general situations will also choose a Hermitian bundle metric on 
the vector-bundle of differential forms Λ•T ∗X, but require that

(1) on X \K the Hermitian metric coincides with the usual Euclidean-induced bundle,
(2) ΛpT ∗

xX is orthogonal to ΛqT ∗
xX if p �= q,

(3) if e(ξ) : Λ•T ∗
xX → Λ•T ∗

xX is the operator of exterior multiplication by ξ ∈ T ∗
xX

then ker e(ξ)∩ ker e(ξ)∗ = {0} whenever ξ �= 0. Here e(ξ)∗ is the adjoint of e(ξ) with 
respect to the bundle metric.

These conditions are obviously satisfied for the bundle metric induced by the metric 
g. The space L2(X, Λ•T ∗X) will be equipped with the inner product constructed from 
the bundle metric and the metric volume form. Formal adjoints will be taken with 
respect to this inner product throughout. Let δ : C∞

0 (X; Λ•T ∗X) → C∞
0 (X; Λ•T ∗X)

be the formal adjoint of d with respect to this bundle metric. The generalised Laplace-
Beltrami operator Δ on differential forms is defined as Δ = dδ + δd. Note that outside 
K this operator agrees with the usual Laplace operator. Since we allow general bundle 
metrics to form δ the operator Δ does in general not have scalar principal symbol. The 
conditions guarantee that the operator Δ has principal symbol that is symmetric and 
positive definite. In particular, condition (3) implies that Δ is elliptic and the weak 
unique continuation property holds, as will be explained below.

The case of forms of degree one is of particular interest in scattering theory of 
the electromagnetic field in dimension d = 3. For an electric field given by D, E ∈
C∞(Rt×M◦, T ∗M) and a magnetic field given by H, B ∈ C∞(Rt×M◦, T ∗M). Maxwell’s 
equations in linear matter are
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curlE = −Ḃ, divD = 0,

divB = 0, curlH = Ḋ,

D = εE, B = μH,

where we use the dot for the t-derivative, i.e. Ė = ∂tE. Here ε and μ incorporate the 
effect of matter and are positive-definite matrix-valued functions which we assume to be 
smooth. Metallic boundary conditions in the case of smooth obstacles correspond to the 
tangential component of E and the normal component of B vanishing at the boundary. 
To connect this to the language of differential forms one considers instead of the co-
vector field B the two-form B defined by B = ∗B, where ∗ is the Hodge-star operator 
on M . We then think of ε as a smooth End(Λ1T ∗M)-valued function on M which is 
pointwise positive definite. Similarly, μ will be thought of as a smooth End(Λ2T ∗M)-
valued function on M . One can now define a metric on ΛpT ∗

xM by

(v, w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vw, p = 0,
(v, ε w)g, p = 1,
(v, μ−1w)g, p = 2,
(v, w)g, p = 3,

where v, w ∈ ΛpT ∗
xM and (·, ·)g is the metric induced inner product on ΛpT ∗

xM . This 
defines a bundle metric on the direct sum Λ•T ∗

xM and one computes

div(εE) = −δE, ∗dE = curlE, δ(μH) = ε−1curlH.

Here the operator curl acts on one forms and is defined as ∗d. This agrees with the 
usual curl operator on vector fields if they are identified using the musical isomorphism 
induced by the metric g. We therefore obtain for Maxwell’s equations the differential 
form version

dE = −Ḃ, dB = 0,

δE = 0, δH = Ė.

This completely absorbs the effect of matter into the bundle metric. As before E and B
are time-dependent differential forms. Metallic boundary conditions now mean that E
and B have vanishing tangential components, so that B has vanishing normal component. 
In particular for E one obtains the equation

εË + curl(μ−1curlE) = 0, div(εE) = 0,

or equivalently

Ë + ΔE = 0, δE = 0.
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One is therefore lead to the spectral theory of the operator Δ on divergence-free covector 
fields satisfying appropriate boundary conditions, where the effect of matter is hidden 
in the operator δ. In case ε = μ = 1 one has as usual Δ = curl curl − grad div.

For general dimension and arbitrary form-degree the generalisation of this is the 
spectral theory of the generalised Hodge Laplacian Δ on co-closed p-forms with rela-
tive boundary conditions. The construction of a self-adjoint extension of this generalised 
Hodge-Laplacian is easier to state if one considers the operator as acting on the bundle of 
all forms, keeping in mind that Δ preserves the form degree. First define the (unbounded) 
operator dc : C∞

0 (M◦, Λ•T ∗M) → L2(M◦, Λ•T ∗M). Its adjoint d∗
c has domain

dom(d∗
c) = {f ∈ L2(M◦,Λ•T ∗M) | δf ∈ L2(M◦,Λ•T ∗M)},

where the derivatives and co-derivatives are in the sense of distributions on M◦. In 
particular, d∗

c is densely defined and therefore the adjoint (d∗
c)∗ coincides with the closure 

of dc.
We will now denote by d the closure of dc. As a consequence of d2 = 0 it follows from 

abstract theory that D = d + d∗, with implied domain dom(D) = dom(d) ∩ dom(d∗), is 
automatically a self-adjoint operator, and so is its square

Δrel = D2 = dd∗ + d∗ d.

This operator is called the Laplace operator with relative boundary conditions. We refer 
to Appendix A for details.

Another relevant operator is the absolute Laplacian Δabs which can be defined by 
Δabs = ∗̃−1Δrel∗̃, where ∗̃ is the generalised Hodge star satisfying 〈v, w〉dVolg = v ∧ ∗̃w. 
The operator Δabs can also be constructed in the above manner by interchanging the roles 
of d and δ. Since these operators are related immediately by the generalised Hodge star 
operator we will discuss only relative boundary conditions in this paper and remark that 
results for the absolute Laplacian are obtained easily by conjugating with the generalised 
Hodge star operator.
Note that the above definition of the Hodge Laplace operator makes sense for any smooth 
manifold. In particular it also makes sense for any open subset O ⊂ X. We denote the 
corresponding operator by ΔO,rel. Define ΩR as K◦ \ Ω. Throughout we will make the 
following assumption.

Assumption 1.1. There exists a k > 0 such that (ΔΩR,rel + 1)−1 and (ΔΩ,rel + 1)−1 are 
in the k-th Schatten ideal in L2(ΩR, Λ•T ∗X) and L2(Ω, Λ•T ∗X), respectively.

This is not a severe restriction. It is implied, for example, by any Weyl-type asymptotic 
for compact domains with the assumed regularity class of Ω. Weyl asymptotics have been 
established for Lipschitz domains in Rd [4]. The condition above is however not empty. 
Indeed, in form degree d the operator Δrel is equivalent to the Neumann Laplacian. 
Examples in dimension two show that this operator can have essential spectrum [7].
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We describe now the spectral theory of Δrel under the above assumption. The spec-
trum of Δrel consists of the point 0, which is an eigenvalue of finite multiplicity, and the 
absolutely continuous part [0, ∞). This is a consequence of the meromorphic continua-
tion of the resolvent, general stationary scattering theory, and unique continuation. We 
summarise the relevant construction in Section 2 and now describe the spectral resolu-
tion.

Choose an orthonormal basis (uj)j=1,...,N in ker(Δrel) consisting of eigensections with 
eigenvalue zero. Then (uj) gives the discrete part of the spectrum. The continuous part of 
the spectrum is described by the generalised eigenfunction Eλ(Φ) ∈ C∞(M◦; Λ•T ∗M)
that are indexed by Φ ∈ C∞(Sd−1; Λ•Cd) and λ > 0. We refer to Section 2 for the 
construction of Eλ. However, in order to define the main notions we record here its 
defining properties.

Proposition 1.2. For fixed λ > 0 the generalised eigenfunctions Eλ(Φ) are completely 
determined by the following

(1) (Δ − λ2)Eλ(Φ) = 0,
(2) χEλ ∈ dom(Δrel) for any χ ∈ C∞

0 (M) with dχ = 0 near ∂Ω,
(3) The asymptotic expansion

Eλ(Φ) = e−iλre
iπ(d−1)

4

r
d−1
2

Φ + eiλre−
iπ(d−1)

4

r
d−1
2

Ψλ + O

(
1

r
d+1
2

)
, for r → ∞,

for some Ψλ ∈ C∞(Sd−1; Λ•Cd).

As a result Ψλ is uniquely determined and implicitly defines a linear mapping

Sλ : C∞(Sd−1; Λ•Cd) → C∞(Sd−1; Λ•Cd), Φ 
→ τΨλ,

where τ : C∞(Sd−1; Λ•Cd) → C∞(Sd−1; Λ•Cd) is the pull-back of the antipodal map. 
The map Sλ : C∞(Sd−1, Λ•Cd) → C∞(Sd−1, Λ•Cd) is called the scattering matrix, and 
Aλ = Sλ − id is called the scattering amplitude. Reminiscent of the Hodge-Helmholtz 
decomposition the scattering matrix admits a decomposition

Sλ =
(
Sn,λ 0

0 St,λ

)
,

if C∞(Sd−1, Λ•Cd) is decomposed as C∞
n (Sd−1, Λ•Cd) ⊕ C∞

t (Sd−1, Λ•Cd) into normal 
and tangential parts. Here C∞

n (Sd−1, Λ•Cd) is the kernel of the map dr∧, where dr
is the unit conormal on the sphere, and C∞

t (Sd−1, Λ•Cd) is the image of ιdr, inner 
multiplication by dr.

The spectral shift function usually describes the trace of the difference of functions of 
perturbed and unperturbed operators in scattering theory. In our setting these operators 
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act on different Hilbert spaces so a suitable domain decomposition is needed. Let P be 
the orthogonal projection L2(M◦) → L2(M \K), and let P0 be the orthogonal projection 
L2(Rd) → L2(Rd \ BR(0)). Note that on L2(Rd, Λ•Cd) we have the free Laplacian Δ0
with domain H2(Rd, Λ•Cd). Our main result is the following.

Theorem 1.3. Let f ∈ C∞
0 (R) be an even compactly supported smooth function and let 

0 ≤ p ≤ d. Let Q be either δd or dδ regarded as a differential operator. Then the operators

(1 − P )Qf(Δ1/2
rel )(1 − P ), (1 − P0)Qf(Δ1/2

0 )(1 − P0), PQf(Δ1/2
rel )P − P0Qf(Δ1/2

0 )P0

are trace-class and

Trp
(
(1 − P )Qf(Δ1/2

rel )(1 − P )
)
− Trp

(
(1 − P0)Qf(Δ1/2

0 )(1 − P0)
)

+Trp
(
PQf(Δ1/2

rel )P − P0Qf(Δ1/2
0 )P0

)

= 1
2πi

∞∫
0

λ2f(λ)TrL2(Sd−1,ΛpCd)
(
S∗
Q(λ)S ′

Q(λ)
)
dλ,

where we set SQ(λ) := St,λ if Q = δd, and SQ(λ) := Sn,λ in case Q = dδ. Here Trp
denotes the trace of the operators on the subspace of p-forms.

Remark 1.4. It is tempting to try to reduce this statement to the Birman-Krein formula 
for forms, we do not however see an easy way to achieve that directly. The Helmholtz-
Hodge-Kodaira decomposition depends heavily on the operator and the boundary con-
ditions. Indeed, if Π denotes the orthogonal projection onto rg(δ) and Π0 the orthogonal 
projection onto rg(δ0) then the operator Π − Π0 is in general not trace-class if the 
boundary is smooth and non-empty. This can be seen by analysing the singular be-
haviour of the diagonal of its integral kernel near the boundary. It also follows that 
(δd + 1)−N − (δ0d0 + 1)−N is not in general a trace-class operator for N > d

2 .

In case X = R3 this becomes a statement about Maxwell obstacle scattering. 
We were not able to locate such a statement in the literature even in that spe-
cial case. To formulate this it is convenient to define the operator Δrel,R3 on one 
forms as an operator on L2(R3, C3) = L2(M◦, C3) ⊕ L2(Ω, C3) ⊕ L2(∂Ω, C3) as the 
direct sum Δrel,M ⊕ Δrel,Ω ⊕ 0, where Δrel,Ω is the relative Laplacian on the in-
terior domain Ω. The spectrum of Δrel,Ω then consists of the Dirichlet eigenvalues 
(λ2

j ), λj ≥ 0 of the scalar Laplacian on Ω and the Maxwell eigenvalues (μ2
j), μj ≥ 0. 

The Maxwell eigenvalues are the eigenvalues of curl curl on the space of divergence 
free one-forms. We did not assume that the boundary ∂Ω of Ω has vanishing Lebesgue 
measure. We therefore define curl curl to be zero on L2(∂Ω, C3) so that the operator 
curl curlf(Δ1/2

3) on L2(R3, C3) = L2(M◦, C3) ⊕ L2(Ω, C3) ⊕ L2(∂Ω, C3) is a direct 
rel,R
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sum curl curlf(Δ
1
2
rel,M ) ⊕curl curlf(Δ

1
2
rel,Ω) ⊕0. Here, potentially confusingly, L2(∂Ω, C3)

is defined with respect to the Lebesgue measure on R3. In particular L2(∂Ω, C3) = 0 if 
Ω has Lipschitz boundary.

Theorem 1.5. Let f ∈ C∞
0 (R) be an even compactly supported smooth function. Then,

curl curlf(Δ1/2
rel,R3) − curl curlf(Δ1/2

0 )

is trace-class as an operator on L2(R3, C3) and its trace equals

Tr(curl curlf(Δ1/2
rel,R3) − curl curlf(Δ1/2

0 ))

= 1
2πi

∞∫
0

λ2f(λ)TrL2(S2,C3) (S∗
t (λ)S ′

t (λ)) dλ +
∞∑
j=0

μ2
jf(μj).

Remark 1.6. The function class of compactly supported smooth even functions in Theo-
rems 1.3 and 1.5 can be extended by continuity if both sides of the equality are continuous 
on a larger space of functions. For example, the known Weyl laws for the scattering 
phase in case of smooth boundary imply immediately that the formulae also hold for 
even Schwartz functions (see Remark 6.3 in [11]) or symbols f ∈ S−k(R) of sufficiently 
negative order −k that are even, as an immediate consequence.

The paper is organised as follows. In Section 2 we collect the elements of stationary 
scattering theory needed that are needed for the proof of the main result. The main 
theorem is proved in Section 3. In Appendix A we recall the definition and very general 
basic properties of the relative Laplace operator. Appendix B summarises some simple 
but important properties of vector-spherical harmonics in arbitrary dimension.

1.1. Notational convention

All functions in this paper are complex-valued, unless stated otherwise. This means 
Lp(X) means L2(X, C) and C∞(X) means C∞(X, C). We will also assume that p-forms 
are complex-valued, but we will be writing C∞(X; Λ•T ∗X) for Λ•T ∗X = Λ•

CT
∗X =

Λ•T ∗
CX, mildly abusing notations. Similar conventions will be used for L2 and Sobolev 

spaces. Inner products are assumed to be conjugate linear in the second argument. The 
open unit ball in Rd centered at zero of radius ρ > 0 will be denoted by Bρ.

2. Stationary scattering theory and the spectral resolution

In this section we collect the basic facts about the spectral theory of Δrel as it follows 
from stationary scattering theory. For general background on the theory of black-box 
scattering for functions and current developments we refer to [12] and the recent mono-
graph [3].
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Since M \ K is isometric to Rd \ BR(0) we have a natural coordinate system on 
M \K. We will use both Cartesian coordinates x ∈ Rd and spherical coordinates (r, θ) ∈
(R, ∞) × Sd−1, where r = |x| and θ = x

|x| , where it is understood. We choose a smooth 
function χ ∈ C∞(M) supported in M \ K such that 1 − χ is compactly supported. 
Using the Cartesian coordinates and the orthonormal frame (dx1, . . . , dxd) we trivialise 
the bundle T ∗(M \K) and thereby identify forms in C∞(M \K; ΛpT ∗M) with vector-
valued functions in C∞(M \K; ΛpCd). We will now assume for notational convenience 
that K̃ is a large ball of radius R > 0 so that M \K is identified with Rd \BR(0). This 
way M is decomposed into Rd \BR(0) and K◦ \ Ω.

Let us make same remarks about the domain of Δrel. First the definition of a Sobolev 
space makes sense on X. Namely, f ∈ Hs(X, Λ•T ∗X) if and only if χf ∈ Hs(Rd, Λ•Cd)
and (1 −χ)f ∈ Hs

loc(X) if χ is a smooth cut-off function supported in X \K that equals 
one outside a compact set. Then the space C∞

0 (X, Λ•T ∗X) is dense in Hs(X, Λ•T ∗X). 
Using the explicit description of the domain of d∗ and the domain of d as the closure of 
C∞

0 (M◦, Λ•T ∗M) in the graph norm of dc it is not hard to show the following proposition.

Proposition 2.1. Suppose that η ∈ C∞(M) vanishes near ∂Ω and 1 − η ∈ C∞
0 (M). Then 

the following statements hold.

• If φ ∈ L2(M, Λ•T ∗M) and Δφ ∈ L2(M, Λ•T ∗X) imply that ηφ ∈ dom(Δrel).
• If φ ∈ dom(Δrel) then ηφ ∈ H2(X, Λ•T ∗X).

Proof. For the first statement note that φ ∈ L2(M, Λ•T ∗X), Δφ ∈ L2(M, Λ•T ∗X)
implies in particular that ηφ ∈ H2(X, Λ•T ∗X). Now C∞

0 (X, Λ•T ∗X) is dense in 
H2(X, Λ•T ∗X), but since the support of ηφ has positive distance from Ω an approx-
imating sequence can be chosen to be in C∞

0 (M◦, Λ•T ∗X). Thus the approximating 
sequence is in the domain of the operator Δrel, and convergence for this sequence in 
H2(X, Λ•T ∗X) implies convergence in the graph norm for Δrel. Since Δrel is closed we 
have that ηφ must be in its domain.
For the second statement we use elliptic regularity. Since φ in dom(Δrel) implies in par-
ticular that Δφ ∈ L2 in the sense of distributions we obtain φ ∈ H2

loc(M◦, Λ•T ∗X) and 
then, using the product rule, Δ(ηφ) ∈ L2(M◦, Λ•T ∗X). Again, by elliptic regularity, we 
obtain ηφ ∈ H2(X, Λ•T ∗X). �

This statement encodes that the boundary conditions implicitly defined by the domain 
of the operator Δrel are local near the boundary Ω and implies that integration by parts 
is possible and results in no boundary terms from ∂Ω in case the functions are locally in 
the domain of Δrel.

Proposition 2.2. Let U be a compact submanifold of X with smooth boundary ∂U such 
that Ω ⊂ U and ∂U ⊂ X \ K. Let V = U \ Ω. Suppose that u, v ∈ C∞(M◦, Λ•T ∗M)
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such that for any cut-off function χ ∈ C∞
0 (M) that equals one near ∂Ω the form χu and 

χv are in dom(Δrel). Then

∫
V

〈Δu, v〉xdVolg(x) −
∫
V

〈u,Δv〉xdVolg(x) =
∫
∂U

〈u,∇nv〉x − 〈∇nu, v〉xdσ∂U (x),

where ∇n is the covariant derivative with respect to the outward pointing normal vector 
field on ∂U , and dσ∂U is the surface measure on ∂U .

Proof. This is proved directly by decomposing the functions u, v into functions supported 
near ∂U and functions in the domain of the operator, using integration by parts and self-
adjointness of Δrel. Note that the inner product on Λ•T ∗M equals the Euclidean (metric) 
inner product near ∂U . �
Proposition 2.3. Let L : C∞(M◦, Λ•T ∗M) → C∞(M◦, Λ•T ∗M) be a first order differ-
ential operator and u ∈ D′(M◦, Λ•T ∗M) satisfies (Δ + L)u = 0. If u vanishes on a 
non-empty open subset of M◦, then u = 0 on M◦.

Proof. By elliptic regularity u is smooth. Let x be in the boundary of the interior of 
the zero set of u. Then u vanishes of infinite order at x. Now choose Riemann normal 
coordinates at x and a bundle-frame that is orthonormal with respect to the bundle 
metric, so that the principal symbol of Δrel in that frame is diagonal. Then strong 
unique continuation at that point follows from [10]. Strong unique continuation at every 
point then implies the weak unique continuation property. �

Since ΔK,rel is an elliptic differential operator with compact resolvent the gluing 
method of black-box scattering (see e.g. [12]) can be applied. This means that the resol-
vent (Δrel − λ2)−1 can be written as

(Δrel − λ2)−1 =
(
χ1(Δ0 − λ2)−1η1 + χ2(ΔΩR

− λ2)−1η2
)
(1 + Kλ).

Here χ1, η1, χ2, η2 are suitably defined smooth gluing functions with χ1, η1 vanishing 
near Ω and 1 − χ1, 1 − η1, χ2, η2 compactly supported. The family Kλ is a meromorphic 
family of compact operators on a logarithmic cover of the complex plane mapping into 
functions supported in the gluing region. The negative Laurent coefficients of K are finite 
rank. The function j̃λ(Φ) is defined in spherical coordinates on X \K by

j̃λ(Φ)(rθ) = 2λ
d−1
2 jd,�(λr)(−i)�Φ(θ), jd,�(x) =

√
π

2x
2−d
2 J�+ d−2

2
(x),

if Φ is a spherical harmonic of degree � and extends linearly and continuously for general 
Φ ∈ C∞(Sd−1, Λ•Cd).
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Definition 2.4. We define h̃(1)
λ (Φ), and h̃(2)

λ (Φ) by

h̃
(1)
λ (Φ)(rθ) = λ

d−1
2

∑
ν

〈Φ,Φν〉L2(Sd−1)Φν(θ)h(1)
�ν

(λr)(−i)�ν ,

h̃
(2)
λ (Φ)(rθ) = λ

d−1
2

∑
ν

〈Φ,Φν〉L2(Sd−1)Φν(θ)h(2)
�ν

(λr)(−i)�ν ,

whenever the sums converge in C∞(Rd\{0}). Here h(1)
� , and h(2)

� are the spherical Hankel 
functions in dimension d defined as

h
(1)
d,�(x) =

√
π

2x
2−d
2 H

(1)
�+ d−2

2
(x), h

(2)
d,�(x) =

√
π

2x
2−d
2 H

(2)
�+ d−2

2
(x).

Throughout the paper, if z �= 0 is an element of the logarithmic cover of the complex 
plane, we will define −z = eiπz which corresponds to a counterclockwise rotation by 
π. Some care is needed with this notation, however, since then −(−z) is on a different 
sheet than z. The complex conjugate of z = reiφ in the logarithmic cover is defined by 
z = re−iφ. For z > 0 the complex conjugate −z of −z is then also on another branch 
than −z, namely −z = e−iπz. The properties of the Hankel functions imply that

h
(1)
d,�(xe

iπ) = −(−1)�+dh
(2)
d,�(x), (1)

h
(2)
d,�(xe

iπ) = (−1)�
(
h

(1)
d,�(x) + (1 + (−1)d)h(2)

d,�(x)
)
. (2)

Using a smooth cut-off function χ that vanishes near K and equals one outside a compact 
set one constructs the generalised eigenforms as

Eλ(Φ) = χj̃λ(Φ) − (Δrel − λ2)−1[Δ, χ]j̃λ(Φ) (3)

This formula, (3) and the above definition gives the following proposition:

Proposition 2.5. For every λ ∈ R \ {0} and Φ ∈ L2(Sd−1, ΛpRd) there exists a unique 
Aλ(Φ) ∈ C∞(Sd−1, ΛpRd) such that

Eλ(Φ)|M\K = j̃λ(Φ) + h̃
(1)
λ (AλΦ).

Cf. Proposition 2.2 Eq. 4 in [11] which has now been generalized. Rellich’s uniqueness 
and the unique continuation property of Δ imply that there are no eigenvalues other 
than zero for Δrel, and (Δrel − λ2)−1 has no poles in R \ {0}. The multiplicity of the 
zero eigenspace is finite. In case of odd dimension this follows from the fact that the 
resolvent is meromorphic near zero with finite rank negative Laurent coefficients. In case 
of even dimensions there is a convergent Hahn-expansion, again with finite rank negative 
expansion coefficients. We refer to [11] for the proofs carried out for the case when Ω is 
smooth.



A. Strohmaier, A. Waters / Bull. Sci. math. 179 (2022) 103166 11
As a consequence of the above Propositions the spectral results of [11] carry over to 
the setting described in this paper. More precisely, Th. 1.5, 1.6, 1.7, 1.9, 1.10, 1.11 hold 
in this context. The expansion of Th 1.4, 1.8 also holds with the modification that the 
OC∞(M) terms need to be replaced by OC∞(M◦). This modification is necessary only 
because elliptic regularity was used in the proofs, in our general context this does not 
hold any more up to the boundary. The Birman-Krein formula Theorem 6.1 of [11] also 
holds with the same proof, with the only modification that Theorem 2.13 needs to be 
replaced by the theorem below. We only re-state here the results necessary to prove our 
main result. Let {u1, . . . , uN} be an orthonormal basis in ker(Δrel). We let (Φμ)μ be an
orthonormal basis in L2(Sd−1, ΛpCd) of spherical harmonics Φμ of degree �μ. Then, each 
eigenfunction uj admits a multipole expansion

uj =
∑
ν

aν,j
1

r�ν+d−2 Φν .

For Φ ∈ L2(Sd−1; ΛpCd) define

aj(Φ) :=
∑
ν

aν,j〈Φ,Φν〉,

whenever the sum converges absolutely. In particular the sum is finite when Φ is a finite 
linear combination of spherical harmonics. We then have bounds and expansions for the 
scattering amplitude from [11] that are summarised in the proposition below.

Proposition 2.6. There exists an open neighborhood U0 of R \ {0} in C such that the 
following holds. Let U ⊂ C be the union of U0 and the upper half space {λ | Im(λ) > 0}. 
Then the scattering matrix Sλ extends to a holomorphic function on U with values in 
the bounded operators L2(Sd−1, Λ•Cd) → L2(Sd−1, Λ•Cd). Recall that Aλ = Sλ − id is 
the scattering amplitude. We then have the following.

(i) If d ≥ 3 is odd, then for any s ∈ R the family Aλ is a holomorphic family of 
bounded operators on U with values in B(L2(Sd−1), Hs(Sd−1)) and as such extends 
holomorphically to an open neighborhood of 0 in C.

(ii) If d ≥ 2 is even the family Aλ is a holomorphic family of operators on U with values 
in B(L2(Sd−1), Hs(Sd−1)) for any s ∈ R. We have for any s ∈ R the inequality 
‖Aλ‖L2→Hs = O(|λ|d−2) as |λ| → 0 in U .

(iii) If d = 2 then ‖Aλ‖L2→Hs = O( 1
| log(λ)| ) as |λ| → 0 in U .

(iv) If Φ is a spherical harmonic of degree �, then

〈AλΦ,Φν〉 =

⎛
⎝− i

2 (d− 2 + 2�)(d− 2 + 2�ν)Cd,�Cd,�ν

N∑
j=1

aj(Φ)aj(Φν)

⎞
⎠λ�+�ν+d−4

+r(λ),
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where r(λ) = O(λ�+�ν+d−4) for |λ| < 1 and Cd,� is defined by

Cd,� = (−i)�
√

2π 1
2�+ d

2−1
1

Γ(� + d
2 )

.

(v) There exists a constant R1 > 0 such that for λ in the rectangle 0 < Im(λ) < 1, −1 <
Re(λ) < 1 we have the bound

|〈AλΦν ,Φμ〉| = O

(
R

�μ+�ν
1

λ�ν+�μ+d−4

Γ(�ν + d
2 )Γ(�μ + d−2

2 )

)
.

(vi) We have the following functional relationship for the scattering matrix

A∗
λ

= (−1)d−1τ A−λ τ

where τ : C∞(Sd−1, ΛpRd) → C∞(Sd−1, ΛpRd), f(θ) 
→ f(−θ) is the pull-back of 
the antipodal map.

We add here some guidance as to where in [11] these results can be found. In the even 
dimensional case the neighborhood of R \ {0} can normally not be chosen to include 
zero. In [11] the corresponding expansions are proved in sectors of the complex plane 
and the theory of Hahn-holomorphic functions was used to give precise statements about 
convergence in fixed sectors of the logarithmic cover of the complex plane. We have 
decided here to not use this language and therefore these neighborhoods will typically 
exclude the negative imaginary axis. Parts (i) and the first part of (ii) are a consequence 
of Corollary 2.8 in [11]. The second part of (ii) follows from Theorem 4.2, first case, and 
by extension (iv) follows from Theorem 1.10 which is proved using Theorem 4.2 and 1.4. 
The expansions in Theorem 4.2 and Theorem 1.4 in [11] still hold locally uniformly as 
a result of Propositions in Section 4. Part (iii) follows from Theorem 4.2 applied with 
d = 2. Each of the expansions in the proof is holomorphic in U , and can be differentiated. 
Part (v) follows from Lemma 2.10 in [11] again since each of the expansions still holds 
locally uniformly. Part (vi) is a consequence of the definition of Aλ and Proposition 2.7
below.

We are going to use only certain components of the spherical harmonics in our rel-
ative trace formulae. Therefore we also recall the following result of Proposition 2.6 
and equations (7) and (8) from [11] which still hold in our more general setting. The 
proof relies on the uniqueness of the generalised eigenforms. If Φ ∈ C∞(Sd−1, ΛpCd)
then dr ∧ Φ ∈ C∞(Sd−1, Λp+1Cd) and ιdrΦ ∈ C∞(Sd−1, Λp+1Cd), where ιdr is interior 
multiplication of differential forms by dr.

Proposition 2.7. In case d is odd we have

E−λ(Φ) = (i)d−1Eλ(τ S−λΦ), Sλ τ S−λ = τ,
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and in case d is even we have

E−λ(Φ) = (i)d−1Eλ(τ(2 id − S−λ)Φ), Sλ τ (2 id − S−λ) = τ.

Moreover, the following equalities hold,

dEλ(Φ) = −iλEλ(dr ∧ Φ), δEλ(Φ) = iλEλ(ιdrΦ),

dr ∧ SλΦ = Sλdr ∧ Φ, ιdrSλΦ = SλιdrΦ.

Since Φ 
→ dr ∧ ιdrΦ is the orthonormal projection onto L2
n(Sd−1, ΛpCd) and Φ 
→

ιdrdr ∧ Φ is the orthonormal projection onto L2
t (Sd−1, ΛpCd) this proposition implies 

the claimed splitting of the scattering matrix. We will also need the following bound on 
the matrix elements of the scattering amplitude, which we recall is a result of Lemma 
2.10 in [11].

Finally, the basis of eigenfunctions {u1, . . . , uN} in ker(Δrel) together with the gener-
alised eigenfunctions Eλ(Φ) provides a complete spectral resolution of Δrel.

The following gives the spectral decomposition in appropriate functions spaces. This 
was stated in [11], (Theorem 2.11) for the case of smooth boundary and the same theorem 
holds here with the modification that convergence in C∞(M ×M) needs to be replaced 
by convergence in C∞(M◦ ×M◦). The reason is that we do not have elliptic boundary 
regularity in our setting.

Proposition 2.8. If h is a Borel function with h = O((1 + λ2)−q) for all q ∈ N we have 
that h(Δp,rel) has smooth integral kernel kh ∈ C∞(M◦ ×M◦; Λ•T ∗M � (Λ•T ∗M)∗) and

kh(x, y) = h(0)
N∑
j=1

uj(x) ⊗ (uj(y))∗

+ 1
2π

∑
ν

∞∫
0

h(λ2)Eλ(Φν)(x) ⊗ Eλ(Φν)∗(y) dλ, (4)

where the sum converges in C∞(M◦ ×M◦; Λ•T ∗M � (Λ•T ∗M)∗).

We briefly outline the adaption of the argument to our setting. If f ∈C∞
0 (M◦, Λ•T ∗M)

and λ > 0 we have

(Rλ −R−λ)f = i
2λ

∑
ν

Eλ(Φν)〈f,Eλ(Φν)〉, (5)

where convergence is in C∞(M◦, Λ•T ∗M). This follows as usual from the characterisation 
of outgoing and incoming solutions, Rellich’s uniqueness theorem, and integration by 
parts. Since the resolvent is meromorphic, with a possible pole of order at most two 
only at zero, one can directly compare with Stone’s formula to express the spectral 
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measure 〈fdEλ, f〉 in terms of 〈f, (Rλ −R−λ)f〉 and 
∑

j |〈uj , f〉|2δ0(λ). Hence, formula 
(4) holds in the sense of distributions for any bounded Borel function h. This can then 
be improved to convergence in C∞(M◦ ×M◦; Λ•T ∗M � (Λ•T ∗M)∗) using the fact that 
(1 + Δrel)sh(Δrel)(1 + Δrel)s is L2-bounded for any s ≥ 0. This uses only the inclusions 
Hs

0(M◦) ⊂ dom(Δs/2
rel ) ⊂ Hs

loc(M◦) for s ≥ 0, which follow from Proposition 2.1 and 
elliptic regularity in case s2 ∈ N0.

3. Proof of the main theorems

We first need to show that the corresponding operators are trace-class. This is true for 
(1 −P0)Qf(Δ0)(1 −P0) since this operator has a smooth integral kernel on the compact 
manifold BR(0) with smooth boundary. To show the trace-class property for the two 
other operators we will use a modification of the gluing method used in [11] (see [12] for 
this method in the context of black-box scattering). We will consider the operator ΔΩR

. 
Recall that our assumption implies that (ΔΩR

+ 1)−k+1 is trace-class for some k > 0. 
We assume here w.l.o.g. that 2k > d + 1. Using

(ΔΩR
− λ2)−1 = (1 + λ2)(ΔΩR

− λ2)−1(ΔΩR
+ 1)−1 + (ΔΩR

+ 1)−1

we conclude that (ΔΩR
− λ2)−1 is in the k-th Schatten class for Im(λ) > 0 and the 

Schatten norm satisfies the uniform bound

‖(ΔΩR
− λ2)−1‖k ≤ C(1 + |λ|2) 1

Im(λ2) .

Since (ΔΩR
+1)−1Q is bounded by 1 in the operator norm as a consequence of Lemma A.1

we then see that

(ΔΩR
+ 1)−kQ(ΔΩR

− λ2)−1

is trace-class and its trace norm is bounded by

‖(ΔΩR
+ 1)−kQ(ΔΩR

− λ2)−1‖1 ≤ C(1 + |λ|2) 1
Im(λ2) .

Next we consider a set of smooth cut-off functions χ1, η1, χ2, η2 ∈ C∞(M) suitably 
chosen such that

η1χ1 = η1, η2χ2 = η2, η1 + η2 = 1,

suppχ1 ⊂ X \ Ω, suppχ2 ⊂ K, dist(suppχ′
1, η1) > 0, dist(suppχ′

2, η2) > 0.

The functions are chosen so that η1, χ1 vanish near Ω and are equal to one in a neigh-
borhood of X \K◦. The functions η2, χ2 are chosen to be one in a neighborhood of Ω. 
Now consider the operator
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Tλ = (Δrel + 1)−k(Δrel − λ2)−1Q.

Similarly, let

T0,λ = (Δ0 + 1)−kQ(Δ0 − λ2)−1,

TΩR,λ = (ΔΩR
+ 1)−kQ(ΔΩR

− λ2)−1,

and define

T̃λ = χ1T0,λη1 + χ2TΩR,λη2.

By the support properties of the cut-off functions the operator T̃λ maps the domain of 
Q into the domain of (−Δrel + 1)k(−Δrel − λ2). One then computes

(Δrel + 1)k(Δrel − λ2)T̃λ = Q + R1 + (Δrel + 1)kR2(λ),

where

R1 = [(Δ + 1)k, χ1](ΔΩR
+ 1)−kQη1 + [(Δ + 1)k, χ2](Δ0 + 1)−kQη2,

R2(λ) = [Δ, χ1]TΩR,λη1 + [Δ, χ2]T0,λη2.

Therefore, one has

T̃λ = Tλ + (Δrel + 1)−k(Δrel − λ2)−1R1 + (Δrel − λ2)−1R2(λ).

By elliptic regularity the resolvent kernels are smooth away from the diagonal. Hence, 
the support properties of the cutoff functions imply that R1 is a smoothing operator 
mapping to a space of functions with support in a fixed compact set. Hence, R1 is a 
trace-class operator. For R2(λ) we have

R2(λ) = R3(λ) + R4(λ),

R3(λ) = [Δ, χ1](ΔΩR
+ 1)−k(ΔΩR

− λ2)−1Qη1,

R4(λ) = [Δ, χ2](Δ0 + 1)−k(Δ0 − λ2)−1Qη2.

The operators [Δ, χ1](ΔΩR
+ 1)−k and [Δ, χ2](Δ0 + 1)−k continuously map L2 into the 

space H2k−1
comp (U) since 2k > d + 1, where U is a bounded subset of X. It follows that 

these operators are trace-class. The operators (Δ0 − λ2)−1Q and (ΔΩR
− λ2)−1Q are 

both bounded by uniformly by |λ|2 Im(λ2)−1, which is a consequence of spectral calculus 
and the general inequality | x2

x2+z | ≤
|z|

Im(z) for real x ∈ R. We conclude that R3 and R4
are trace class for any λ in the upper half plane and that

‖R3(λ)‖1 ≤ C3|λ|2 Im(λ2)−1, ‖R4(λ)‖1 ≤ C4|λ|2 Im(λ2)−1.
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Thus, we obtain

‖(Δrel + 1)−k(Δrel − λ2)−1R1 + (Δrel − λ2)−1R2(λ)‖1 ≤ C
|λ|2

| Im(λ2)|2

for some constant C > 0. We have proved:

Lemma 3.1. The operator Tλ − T̃λ is trace-class and there exists C > 0 such that for the 
trace norm we have

‖Tλ − T̃λ‖1 ≤ C
|λ|2

|Im(λ2)|2 .

Lemma 3.2. For any compactly supported functions χ0 ∈ L∞
comp(Rd) and χ ∈ L∞

comp(M)
the operators χ0T0,λ and χTλ are trace-class and there exists C > 0 such that

‖χ0T0,λ‖1 + ‖χTλ‖1 ≤ C
1 + |λ|2
|Im(λ2)|2 .

Proof. To show this choose R > 0 sufficiently large and cut-off functions χ1, η1, χ2, η2

as above such that χ2 and η2 are equal one near the support of χ. Then χχ2 = χ and 
χχ1 = 0. Thus,

χ · (Tλ) = χ · (Tλ − T̃λ) + χTΩR,λη2.

Since TΩR,λ is trace-class and ‖TΩR,λ‖1 ≤ C1
1+|λ|2

|Im(λ2)|2 we obtain

‖χTλ‖1 ≤ C2
1 + |λ|2
|Im(λ2)|2 .

The bound on ‖χ0 · T0,λ‖1 is immediately implied by this too since this equals ‖χ · Tλ‖1

in the special case Ω = ∅. �
Proposition 3.3. The operator

P
(
(Δrel + 1)−kcurlcurl(Δrel − λ2)−1 − (Δ0 + 1)−kcurlcurl(Δ0 − λ2)−1)P

is trace-class and we have the bound

‖P
(
(Δrel + 1)−kcurlcurl(Δrel − λ2)−1 − (Δ0 + 1)−kcurlcurl(Δ0 − λ2)−1)P‖1

≤ C
1 + |λ|2

2 2 .
|Im(λ )|
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Proof. We have that PT̃λP = PT0,λP and thus

P (Tλ − T0,λ)P = P (Tλ − T̃λ)P + PT0,λP.

The bound now follows immediately from Lemma 3.1 and Lemma 3.2. �
Proposition 3.4. For any even function f ∈ S(R) we have that

P
(
Qf(Δ1/2

rel ) −Qf(Δ1/2
0 )

)
P

is trace-class and the mapping f 
→ Tr
(
P
(
Qf(Δ1/2

rel ) −Qf(Δ1/2
0 )

)
P
)

is a tempered 
distribution.

Proof. Define g ∈ S(R) by g(λ) = (1 + λ2)kf(λ). Let g̃ be an almost analytic extension 
of g such that ∂g̃∂z = O(|Im(z)|m) for some fixed m ≥ 5. Such an almost analytic extension 
can always be constructed as

g̃(x + iy) =
m∑

k=0

1
k!g

(k)(x)(iy)kχ(y),

where χ ∈ C∞
0 (R) is chosen such that it equals one near 0. By the Helffer-Sjöstrand 

formula we have

f(Δ1/2
rel )Q = 2

π

∫
Im(z)>0

z
∂g̃

∂z
Tzdm(z),

and the analogous formula holds for f(Δ1/2
0 )Q. Here dm denotes the Lebesgue measure 

on C. Hence,

P
(
Qf(Δ1/2

rel ) −Qf(Δ1/2
0 )

)
P

= 2
π

∫
Im(z)>0

∂g̃

∂z
P
(
(Δrel + 1)−kQ (Δrel − z2)−1 − (Δ0 + 1)−kQ (Δ0 − z2)−1)Pzdm(z),

which implies the statement as the trace norm is finite and can be estimated as

Tr
(
|PQf(Δ1/2

rel ) −Qf(Δ1/2
0 )P |

)
≤ C

2
π

∫
Im(z)>0

|∂g̃
∂z

| 1 + |z|2
|Im(z2)|2 dm(z). �

The same proof applied to Lemma 3.2 also gives
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Proposition 3.5. For any even function f ∈ S(R) we have that

(1 − P )
(
Qf(Δ1/2

rel )
)

is trace-class and the mapping f 
→ Tr
(
(1 − P )

(
Qf(Δ1/2

rel )
))

is a tempered distribution.

We will now conclude with the proof of Theorem 1.3, which will be a modification of 
the proof for p-forms in [11], Theorem 6.1, by carefully inserting suitable projection op-
erators in the right places without destroying crucial positivity properties. The approach 
relies essentially on the Maass-Selberg technique, which requires a subtle analysis near 
λ = 0. We provide here more details than in [11] as we believe this result cannot be 
obtained from the abstract Birman-Krein formula.

Proof of Theorem 1.3. It remains to show the trace-formula. Since both sides are distri-
butions in D′(R) it suffices to check the trace formula for a dense class of functions. We 
will thus assume here that f is real analytic in some neighborhood of zero, depending 
on f . We fix 0 ≤ p ≤ d. By Proposition 2.8, the operators f(Δ1/2

rel ) and f(Δ1/2
0 ) have 

smooth integral kernels k(x, y) and k0(x, y) respectively. We denote the integral kernels 
of Qf(Δ1/2

rel ) and Qf(Δ1/2
0 ) by q(x, y) and q0(x, y). Convergence in 2.8 is in the space 

C∞(M◦×M◦; ΛpT ∗M�(ΛpT ∗M)∗). In case Q = dδ the kernel q is the integral kernel of 
the map df(Δ1/2

rel )δ : C∞
0 (M◦, ΛpT ∗M) → C∞(M◦, ΛpT ∗M), as d and d∗ commute with 

f(Δ
1
2
rel). Similarly, if Q = δd the kernel q is the integral kernel of δf(Δ1/2)d restricted 

to the space of p-forms. By Proposition 2.7 and Proposition 2.8 we therefore obtain

q(x, y) = 1
2π

∑
ν

∞∫
0

λ2f(λ)Eλ(aQΦν)(x) ⊗ Eλ(aQΦν)∗(y) dλ, (6)

where again the sum converges in C∞(M◦ ×M◦; ΛpT ∗M � (ΛpT ∗M)∗). Here aQ is the 
operator of exterior multiplication by dr if Q = dδ, and it is the operator of interior 
multiplication by dr if Q = δd. In particular, PQ = a∗QaQ is the orthogonal projection 
onto L2

t (Sd−1, Λ•Cd) if Q = dδ and it is the orthogonal projection onto L2
n(Sd−1, Λ•Cd)

if Q = δd.
We define the family (qν)ν of smooth kernels qν ∈ C∞(M◦×M◦; ΛpT ∗M�(ΛpT ∗M)∗)

by

qν(x, y) = 1
2π

∞∫
0

λ2f(λ)Eλ(aQΦν)(x) ⊗Eλ(aQΦν)∗(y) dλ.

In the same way we construct q0,ν ∈ C∞(Rd ×Rd; ΛpT ∗Rd � (ΛpT ∗Rd)∗) for Qf(Δ1/2
0 ). 

The operator (1 − P )Qf(Δ1/2
rel )(1 − P ) is trace-class by Proposition 3.5 and has smooth 
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kernel on ΩR. Since the trace of a trace-class operator can be computed as a limit of 
traces on any increasing sequence of subspaces with union L2(ΩR) the trace equals

Tr
(
(1 − P )Qf(Δ1/2

rel )(1 − P )
)

= lim
n→∞

∫
ΩR,n

tr q(x, x)dx,

where ΩR,n is an increasing compact exhaustion of ΩR and tr denotes the pointwise 
trace on the fibre End(ΛpT ∗

xM) of ΛpT ∗M �(ΛpT ∗M)∗ at the point (x, x). Note that for 
positive f the kernels tr q(x, x) and tr qν(x, x) are positive. Since (1 −P )Qf(Δ1/2

0 )(1 −P )
is trace-class it follows that tr q(x, x) and tr qν(x, x) are integrable on Mρ. This also 
implies that tr q(x, x) and tr qν(x, x) are integrable on Mρ for general f , since any 
Schwartz function can be dominated by a positive Schwartz function. We can therefore 
write

Tr
(
(1 − P )Qf(Δ1/2

rel )(1 − P )
)

=
∫

ΩR

tr q(x, x)dx =
∫

ΩR

∑
ν

tr qν(x, x)dx.

Similarly, the operator (1 − P0)Qf(Δ1/2
0 )(1 − P0) has smooth kernel on BR(0) and is 

therefore trace-class with

Tr
(
(1 − P0)Qf(Δ1/2

0 )(1 − P0)
)

=
∫
BR

tr q0(x, x)dx =
∫
BR

∑
ν

tr q0,ν(x, x)dx.

Now let χρ be the indicator function of a large ball Bρ such that ρ > R. Then,

Tr
(
χρ

(
PQf(Δ1/2

rel )P − P0Qf(Δ1/2
0 )P0

)
χρ

)
=

∫
Bρ\BR

tr (q(x, x) − q0(x, x))dx.

By Proposition 3.4 the operator PQf(Δ1/2)P −P0Qf(Δ1/2
0 )P0 is trace-class and we can 

again compute its trace on an increasing sequence of subspaces exhausting the Hilbert 
space. This gives

Tr
(
PQf(Δ1/2

rel )P − P0Qf(Δ1/2
0 )P0

)
= lim

ρ→∞

∫
Bρ\BR

tr (q(x, x) − q0(x, x))dx.

Collecting everything we have

Tr
(
(1 − P )Qf(Δ1/2

rel )(1 − P )
)
− Tr

(
(1 − P0)Qf(Δ1/2

0 )(1 − P0)
)

(7)

+Tr
(
PQf(Δ1/2

rel )P − P0Qf(Δ1/2
0 )P0

)

= lim
ρ→∞

∑
ν

⎛
⎜⎝ ∫

tr qν(x, x)dx−
∫

tr q0,ν(x, x)dx

⎞
⎟⎠ ,
Mρ Bρ
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where Mρ is obtained from M by removing the subset identified with Rd \ Bρ. It is 
common to use the following (Mass-Selberg-) trick to compute these integrals. Since 
(Δrel − λ2)Eλ(Φ) = 0, differentiation in λ yields (Δrel − λ2)E ′

λ(Φ) = 2λEλ(Φ), where 
E ′

λ(Φ) = d
dλEλ(Φ). Note that Eλ is differentiable for λ > 0 since it is analytic in λ

on (0, ∞). Hence, integration by parts, Proposition 2.2, gives for a positive Schwartz 
function f the equality

∫
Mρ

tr qν(x, x)dx = lim
ε→0+

1
2π

∫
Mρ

∞∫
ε

λ2f(λ)〈Eλ(aQΦν), Eλ(aQΦν)〉dλdx

= lim
ε→0+

1
4π

∫
Mρ

∞∫
ε

λf(λ)〈(Δrel − λ2)E ′
λ(aQΦν), Eλ(aQΦν)〉dλdx

= lim
ε→0+

1
4π

∞∫
ε

λf(λ)bρ(E ′
λ(aQΦν), Eλ(aQΦν))dλ.

Here interchanging the order of integration is justified by Fubini’s theorem. Similarly, 
interchanging limit and integration commute by Fatou’s lemma. Here bρ(F, G) is the 
boundary pairing of forms F and G and defined by

bρ(F,G) =
∫

∂Mρ

〈F (x),∇nG(x)〉 − 〈∇nF (x), G(x)〉dσ(x),

where dσ is the surface measure of ∂Mρ. Integration by parts is justified by Propo-
sition 2.2. Indeed, differentiating Equation (3) at λ > 0 implies that for any smooth 
compactly supported cutoff function χ that equals one near ∂Ω the form χE ′

λ(Φ) is in 
the domain of Δrel. As before, by linearity, this implies that the equality holds without 
the assumption of positivity.

We conclude that

∫
Mρ

tr qν(x, x)dx−
∫
Bρ

tr q0,ν(x, x)dx = lim
ε→0+

1
4π

∞∫
ε

λf(λ)ην,ρ(λ)dλ,

ην,ρ(λ) = bρ

(
d

dλ

(
j̃λ(aQΦν) + h̃

(1)
λ (AλaQΦν)

)
, j̃λ(aQΦν) + h̃

(1)
λ

(AλaQΦν)
)

−bρ

(
d

dλ

(
j̃λ(aQΦν)

)
, j̃λ(aQΦν)

)

= bρ

(
d

dλ

(
j̃λ(aQΦν) + h̃

(1)
λ (AλaQΦν)

)
, h̃

(1)
λ

(AλaQΦν)
)

+bρ

(
d

dλ

(
h̃

(1)
λ (AλaQΦν)

)
, j̃λ(aQΦν)

)
.
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We have d
dλ

(
h̃

(1)
λ (AλΦ)

)
= h̃

(1)
λ (A′

λΦ) +h̃
(1)′
λ (AλΦ). Unitarity of S(λ) implies the identity 

A(λ) + A∗(λ) + A∗(λ)A(λ) = 0, and therefore

bρ

(
h̃

(1)′
λ (AλaQΦν), h̃(1)

λ
(AλaQΦν)

)
+ bρ

(
h̃

(1)′
λ (qQΦν), h̃(1)

λ
(AλaQΦν)

)
+bρ

(
h̃

(1)′
λ (AλaQΦν), h̃(1)

λ
(aQΦν)

)
= 0.

By Proposition 2.7 the operators Aλ and A′
λ commute with aQ. Note however that in 

AλaQΦ = aQAλΦ the scattering matrices on the left and right hand side act on forms 
of different degree. Using bρ(h̃(1)

λ (Φν), ̃h(2)
λ

(Φν)) = 0 and j̃λ(Φν) = h̃
(1)
λ (Φν) + h̃

(2)
λ (Φν)

and the fact that integration over the sphere results in only diagonal terms with respect 
to the basis (Φν) one obtains

ην,ρ(λ) = (〈A′
λPQΦν , AλΦν〉 + 〈A′

λPQΦν ,Φν〉) bρ(h̃(1)
λ (Φν), h̃(1)

λ
(Φν)) (8)

+〈PQΦν , AλΦν〉bρ(h̃(2)′
λ (Φν), h̃(1)

λ
(Φν)) + 〈AλPQΦν ,Φν〉bρ(h̃(1)′

λ (Φν), h̃(2)
λ

(Φν)).

The term bρ(h̃(1)
λ (Φν), ̃h(1)

λ
(Φν)) is independent of ρ and is actually given in terms of a 

Wronskian between Hankel functions. One obtains

bρ(h̃(1)
λ (Φν), h̃(1)

λ
(Φν)) = −2iλ.

This first summand in (8) therefore equals −2iλ〈S∗
λS

′
λPQΦν , Φν〉. In case Q = δd we 

need to bear in mind that Φν has form degree p + 1, whereas in case Q = dδ it has form 
degree p − 1. We define SQ(λ) := St,λ if Q = δd, and SQ(λ) := Sn,λ in case Q = dδ. 
Then
∑
ν

〈S∗
λS

′
λPQΦν ,Φν〉 = TrL2(Sd−1,Λp±1Cd)(S∗

λS
′
λPQ) = TrL2(Sd−1,ΛpCd)

(
S∗
Q(λ)S ′

Q(λ)
)
.

Lemma 3.6. The terms

g(λ) := 〈AλPQΦν ,Φν〉bρ(h̃(1)′
λ (Φν), h̃(2)

λ
(Φν))

and

〈PQΦν , AλΦν〉bρ(h̃(2)
λ (Φν), h̃(1)′

λ
(Φν))

are complex conjugates of each other for positive λ. As long as λ > 0 their sum is

2 Re
(
〈AλPQΦν ,Φν〉bρ(h̃(1)

λ (Φν), h̃(2)′
λ

(Φν))
)

= 2 Re(g(λ)).

Moreover Re g(λ) is odd in the sense that Re g(−λ) = − Re g(λ) for λ > 0.
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Proof. First note that τΦν = (−1)�νΦν . Then and Definition (2.4), along with the 
equations (1) and (2) also imply that

h̃
(1)
λ (Φν) = (−1)�ν h̃(2)

λ
(Φν) h̃

(2)
λ (Φν) = (−1)�ν h̃(1)

λ
(Φν)

h̃
(1)
−λ(Φν) = id−1(−1)�ν+d+1h̃

(2)
λ (Φν).

Using the functional equation for Aλ given by Proposition 2.6 (vi), and combining the 
equations mentioned above, we can show that the function g satisfies g(−λ) = −g(λ). 
Thus, Re(g(λ)) is odd. �

Using the Lemma 3.6 one can then change the domain of integration

lim
ε→0+

1
4π

∞∫
ε

λf(λ)2 Re
(
〈PQAλΦν ,Φν〉bρ(h̃(1)′

λ (Φν), h̃(2)
λ

(Φν))
)

dλ

= Re lim
ε→0+

1
4π

∫
Rε

λf(λ)〈PQAλΦν ,Φν〉bρ(h̃(1)′
λ (Φν), h̃(2)

λ
(Φν))dλ.

Summarising, we have

Tr
(
(1 − P )Qf(Δ1/2

rel )(1 − P )
)
− Tr

(
(1 − P0)Qf(Δ1/2

0 )(1 − P0)
)

+ Tr
(
PQf(Δ1/2

rel )P − P0Qf(Δ1/2
0 )P0

)
(9)

= 1
2πi

∞∫
0

λ2f(λ)TrL2(Sd−1,ΛpCd)
(
S∗
Q(λ)S ′

Q(λ)
)
dλ

+ lim
ρ→∞

∑
ν

Re lim
ε→0+

1
4π

∫
Rε

λf(λ)〈PQAλΦν ,Φν〉bρ(h̃(1)′
λ (Φν), h̃(2)

λ
(Φν))dλ.

It now remains to only show that the second term of the right hand side of the equation 
vanishes. Note that the function bρ(h̃(1)′

λ (Φν), ̃h(2)
λ (Φν)) depends only on �ν and λρ. We 

can therefore define H� by H�(λρ) = bρ(h̃(1)′
λ (Φν), ̃h(2)

λ (Φν)). For the sake of completeness, 
we recall Lemma 6.2 in [11]:

Lemma 3.7 (Lemma 6.2 in [11]). Let as before H�(λρ) := bρ(h̃(1)′
λ (Φν), ̃h(2)

λ (Φν)). Suppose 
that f̃ ∈ C∞

0 (R) is supported in (−T, T ) and extends holomorphically near zero to a 
function analytic in a neighborhood of the closed ball Bδ(0). Let Rec := [−T, T ] ×[0, δ1] ⊂
C be any rectangle with δ1 > 0. Then for every k ∈ N there exists a constant Ck > 0, 
independent of ν such that for any ρ > δ−1 and any g that is holomorphic in the interior 
of Rec and continuous on Rec we have the following estimates for ρ > 1;
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• if d = 2 and �ν = 0 then

| lim
ε→0+

∫
Rε

1
λ
f̃(λ)g(λ)H�(λρ)dλ− (−2 i g(0))f̃(0)| ≤ Ck

ρk
sup

x∈Rec
|g(x)|

• if d = 2 and �ν = 1 and g(λ) = a
− logλ + o( 1

− logλ ) for |λ| < 1/2 then

| lim
ε→0+

∫
Rε

1
λ
f̃(λ)g(λ)H�(λρ)dλ− (4 i a)f̃(0)| ≤ Ck

ρk
sup

x∈Rec
|g(x)|

• if d = 3 and �ν = 0 then

| lim
ε→0+

∫
Rε

1
λ
f̃(λ)g(λ)H�(λρ)dλ− (−πg(0))f̃(0)| ≤ Ck

ρk
sup

x∈Rec
|g(x)|.

• if 2� + (d − 4) > 0 and g(λ) = aλ2�+d−4 + o(λ2�+d−4) for |λ| < 1 then

| lim
ε→0+

∫
Rε

1
λ
f̃(λ)g(λ)H�(λρ)dλ− af̃(0)γd,�ρ−2�−d+4|

≤ Ck(1 + �)2

ρk
sup

x∈Rec
|g(x)|e2(1+ d

2 )2ρ−1δ−1(1+�)2 ,

where γd,� = i 22�+d−3Γ(� + d−2
2 )Γ(� + d−5

2 ).

We apply this Lemma with f̃(λ) = λ2f(λ) and 〈AλPQΦν , Φν〉 = gν(λ). By Lemma B.1
the form PQΦν decomposes into a linear combination of spherical harmonics of degrees 
�μ − 2, �μ and �μ + 2. By 2.6 (iv) these functions satisfy the required bounds, and we 
obtain:

| lim
ε→0+

1
4π

∞∫
ε

λf(λ)〈AλPQΦν ,Φν〉bρ(h̃(1)′
λ (Φν), h̃(2)

λ
(Φν))dλ| ≤ C1ρ

−1 sup
x∈Rec

|gν(x)|.

Here we use that f̃(0) = 0. By Proposition 2.6 (v) we have the bound

sup
x∈Rec

|gν(x)| ≤ C2

(
R

�μ+�ν+2
1

λ�ν+�μ+d−4

Γ(�ν + d
2 )Γ(�μ + d−2

2 )

)
.

The decay of the right hand side then gives absolute convergence of the sum and the 
bound

∑
ν

lim
ε→0+

1
4π

∞∫
λf(λ)〈AλPQΦν ,Φν〉bρ(h̃(1)′

λ (Φν), h̃(2)
λ

(Φν))dλ ≤ C3

ρ
.

ε
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Since this converges to zero as ρ → ∞ the second term on the right hand side of Equ. 
(9) vanishes as claimed. The proof is complete. �
Proof of Theorem 1.5. We have already established in Proposition 3.3 that the operator

Tf = curl curlf(Δ1/2
rel,R3) − curl curlf(Δ1/2

0 )

is trace-class. Let pR be the projection onto L2(BR \ Ω). The operator

(1 − pR)curl curlf(Δ1/2
rel,R3)(1 − pR)

is trace-class and its trace equals

∞∑
j=1

μ2
jf(μj).

Then, by Theorem 1.3 we have

pRcurl curlf(Δ1/2
rel,R3)pR − curl curlf(Δ1/2

0 )

is trace-class and its trace equals

1
2πi

∞∫
0

λ2f(λ)TrL2(S2,C3) (S∗
t (λ)S ′

t (λ)) dλ.

Simply adding these two terms gives the theorem. �
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Appendix A. The relative Laplace operator

As explained in the introduction the operator Δrel is defined on a general manifold Z
with Hermitian inner product on Λ•T ∗Z as

Δrel = dd∗ + d∗d,

with its natural domain

dom(D2) = {f ∈ dom(d) ∩ dom(d∗) | df ∈ dom(d∗),d∗
f ∈ dom(d)}.
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The fact that this operator is self-adjoint is a consequence of a more general abstract 
statement about closed operators. Self-adjointness of Laplace-operators defined in a simi-
lar way was shown by Gaffney ([6]). As pointed out by Kohn ([8]) his method also applies 
to the relative Laplacian and has been used in the literature in various forms to prove 
self-adjointness (for example [1,5]). An abstract statement, using Gaffney’s proof, can 
be found in [9]. Similarly, such constructions also appear in [2] in the context of Hilbert 
complexes.

For the convenience of the reader we give here a short and direct proof of self-
adjointness of Δrel with a slightly more refined conclusion. The Lemma below is for-
mulated for generic operators T .

Lemma A.1. Suppose that T0 is a densely defined operator in a Hilbert space H with 
densely defined adjoint T ∗

0 . Let T = T = T ∗∗
0 be its closure and T ∗ = T ∗

0 its adjoint. 
Assume that rg(T0) ⊂ ker(T0) and that dom(T ) ∩ dom(T ∗) is dense. Then the following 
statements hold

(1) The operator TT ∗ + T ∗T is densely defined and self-adjoint.
(2) The closure of the quadratic form q(f, f) = 〈Tf, Tf〉 + 〈T ∗f, T ∗f〉 defined on 

dom(T0) ∩ dom(T ∗) has associated self-adjoint operator T ∗T + TT ∗. In other words 
T ∗T + TT ∗ is the Friedrichs extension of the symmetric operator T0T

∗ + T ∗T0.
(3) The operators T ∗T and T ∗T form a commuting pair of self-adjoint operators in the 

sense that there exists a joint spectral resolution.
(4) The operator T + T ∗ is self-adjoint, its square equals T ∗T + TT ∗ and

‖TT ∗(TT ∗ + T ∗T + 1)−1‖ ≤ 1, ‖T ∗T (TT ∗ + T ∗T + 1)−1‖ ≤ 1.

Proof. Since T is closed and densely defined we have the orthogonal sum decomposition 
H = H1 ⊥ H2, where H1 = ker(T ) and H2 = rg(T ∗). We have of course H1 ⊂ dom(T )
and T |H1 = 0. Moreover, by assumption, rg(T0) ⊂ ker(T0) ⊂ ker(T ), which implies 
rg(T ) = rg(T0) ⊂ ker(T ). Let S be the restriction of T to dom(T ) ∩ H2. The above 
means that rg(S) ⊂ H1. Identifying H with H1 ⊕H2 we have

T =
(

0 S
0 0

)
, and therefore T ∗ =

(
0 0
S∗ 0

)
.

It follows automatically that

T + T ∗ =
(

0 S
S∗ 0

)

is self-adjoint with domain dom(S∗) ⊕ dom(S) = dom(T ) ∩ dom(T ∗). Its square

(T + T ∗)2 =
(
SS∗ 0
0 S∗S

)
= TT ∗ + T ∗T
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is therefore also self-adjoint. Since this represents TT ∗ + T ∗T as a direct sum of the 
self-adjoint operators T ∗T and TT ∗ this shows that T ∗T and TT ∗ are both self-adjoint 
and commute with each other in the sense that their resolvents commute.
It is immediately clear that the space dom(T ) ∩dom(T ∗) is complete with respect to the 
norm v 
→ (‖Tv‖2 + ‖T ∗v‖2 + ‖v‖2) 1

2 therefore the quadratic form q is closed. We have

q(v, w) = 〈TT ∗ + T ∗Tv,w〉 = 〈(T + T ∗)2v, w〉

for all v ∈ dom(TT ∗+T ∗T ) ⊂ dom(T ) ∩dom(T ∗). Uniqueness of the Friedrich’s extension 
shows that it must be equal to TT ∗ + T ∗T . �
Appendix B. Vector-valued spherical harmonics

Let H�(Sd−1, Λ•Cd) = H�(Sd−1) ⊗ Λ•Cd be the space of Λ•Cd-valued spherical har-
monics on Sd−1. By restriction to the sphere this space can be identified with the space 
with the space H�(Sd−1, Λ•Cd) of Λ•Cd-valued harmonic homogeneous polynomials of 
degree �. The algebraic linear hull

E = ⊕∞
�=0H�(Sd−1,Λ•Cd)

is a dense subset of C∞(Sd−1, Λ•Cd) and therefore also of L2(Sd−1, Λ•Cd). Recall that 
L2(Sd−1, Λ•Cd) = L2

t (Sd−1, Λ•Cd) ⊕L2
n(Sd−1, Λ•Cd), where L2

t (Sd−1, Λ•Cd) is the space 
of tangential differential forms and can be identified with the L2(Sd−1, Λ•Sd−1). Define 
θ = dr∧ as the operator of exterior multiplication by dr and θ∗ = ιdr the operator 
of interior multiplication by dr. Let Pθ = θ∗θ, so that 1 − Pθ = θθ∗. Then Pθ is the 
orthogonal projection onto L2

t (Sd−1, Λ•Cd) and (1 − Pθ) is the orthogonal projection 
onto L2

n(Sd−1, Λ•Cd). The following Lemma is certainly well known in dimension three 
and can in general be deduced from the representation theory of SO(d). We will provide 
a very short algebraic proof.

Lemma B.1. The operator Pθ leaves E invariant and maps H�(Sd−1, Λ•Cd) to

H�−2(Sd−1,Λ•Cd) ⊕H�(Sd−1,Λ•Cd) ⊕H�+2(Sd−1,Λ•Cd),

where we define H�(Sd−1, Λ•Cd) = 0 if � < 0.

Proof. We will show that individually both θ, and θ∗ map H�(Sd−1, Λ•Cd) to 
H�−1(Sd−1, Λ•Cd) ⊕ H�+1(Sd−1, Λ•Cd), then the statement follows immediately. Let 
A be the Z-graded algebra of polynomials C[x1, . . . , xd], graded by homogeneity, and 
denote that by A� the degree � subspace. The ring of polynomial functions on the sphere 
can be identified with the quotient A/I, where I is the ideal generated by the polyno-
mial |x|2 − 1 := x2

1 + . . .+ x2
d − 1. Then H� = H�/I. Recall from the theory of harmonic 

polynomials that
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A� =
⊕
2k≤�

|x|2kH�−2k.

This shows that E = A/I. On the sphere r = 1 and therefore dr = rdr =
∑d

k=1 x
kdxk, 

which makes sense on polynomial functions. It is therefore sufficient to show that multi-
plication of xj induces a map from H�(Sd−1) to H�−1(Sd−1) ⊕H�+1(Sd−1). This follows 
from

xjH� ⊂ H�+1 + |x|2H�−1,

which we now show directly. Given p ∈ H� an elementary computation shows that

xjp− 1
d + 2�− 2 |x|

2∂jp

is harmonic, if d + 2� − 2 > 0. In case d + 2� − 2 = 0, the polynomial xjp is harmonic 
without subtraction. Since ∂jp is also harmonic, this completes the proof. �
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