
This is a repository copy of ML-based Detection of Rank and Blackhole Attacks in RPL 

Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188368/

Version: Accepted Version

Proceedings Paper:
Ioulianou, Philokypros P., Vassilakis, Vassilios G. orcid.org/0000-0003-4902-8226 and 
Shahandashti, Siamak F. orcid.org/0000-0002-5284-6847 (2022) ML-based Detection of 
Rank and Blackhole Attacks in RPL Networks. In: 13th International Symposium on 
Communication Systems, Networks and Digital Signal Processing, CSNDSP 
2022:Proceedings. 13th International Symposium on Communication Systems, Networks 
and Digital Signal Processing, CSNDSP 2022, 20-22 Jul 2022 2022 13th International 
Symposium on Communication Systems, Networks and Digital Signal Processing, 
CSNDSP 2022 . IEEE , PRT , pp. 338-343. 

https://doi.org/10.1109/CSNDSP54353.2022.9908049

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ML-based Detection of Rank and Blackhole

Attacks in RPL Networks

Philokypros P. Ioulianou, Vassilios G. Vassilakis, Siamak F. Shahandashti

Department of Computer Science, University of York,

York, United Kingdom

Abstract—Although IoT security is a field studied extensively,
recent attacks such as BotenaGo show that current security
solutions cannot effectively stop the spread of IoT attacks. Machine
Learning (ML) techniques are promising in improving protection
against such attacks. In this work, three supervised ML algorithms
are trained and evaluated for detecting rank and blackhole attacks
in RPL-based IoT networks. Extensive simulations of the attacks
are implemented to create a dataset and appropriate fields are
identified for training the ML model. We use Google AutoML and
Microsoft Azure ML platforms to train our model. Our evaluation
results show that ML techniques can be effective in detecting rank
and blackhole attacks, achieving a precision of 93.3%.

I. INTRODUCTION

In our previous work [1] we proposed a signature-based

Intrusion Detection System (IDS) for IoT networks. In this

work, the IDS has been enhanced with the addition of a Machine

Learning (ML) module that aims at detecting unknown attacks.

ML algorithms can be used to train a model for predicting

and classifying network traffic. Our ML model is trained using

datasets created from network simulations. This is done in order

to perform the training using realistic data. Our main goal of

creating an ML-based detection module for the IDS is to detect

known complex attacks such as a combination of rank and

blackhole attacks as well as unknown attacks. In particular, the

focus is on networks that rely on the Routing Protocol for Low-

Power and Lossy Networks (RPL) [2].

In our previous works [3], [4] we have studied the behaviour

and effects of routing and Denial-of-Service (DoS) attacks such

as Hello flooding in RPL-based IoT networks. Other important

attacks in RPL networks are wormhole and grayhole attacks.

They can be detected using methods that rely on packet counts

and round-trip times [5] as well as by implementing heartbeat-

based protocols [6]. We have also designed and implemented an

IDS prototype for protecting RPL networks and devices from

battery-drain DoS attacks using rate thresholds [7]. Another

recent work has developed a trust-based mechanism that detects

and isolates complex routing attacks such as combined rank

and blackhole attacks [8]. However, combinations of routing,

flooding, and other types of attacks may bypass the threshold-

based and trust-based detection and cause serious damage to the

network. Therefore, the incorporation of an ML-based module,

that has been trained to detect complex or unknown attacks, is

expected enhance the detection accuracy.

Many ML algorithms exist for training a model from existing

datasets. In this work, Google AutoML [9] and Microsoft Azure

ML [10] are used to train the ML model. AutoML is an

automated and simple to use tool that provides researchers the

opportunity to study and deploy different ML approaches. It

has the possibility to scale up an ML model based on the

needs of the user. Moreover, it automatically chooses the most

appropriate algorithm based on the dataset available. A similar

ML-as-a-Service provider is Azure ML. This service allows

users to generate and handle custom ML solutions. In addition,

it assists users with extending and deploying their workloads to

the cloud. An advantage of the Azure ML is that it gives the

flexibility to the user to choose a specific ML algorithm from a

list of well-known supervised, unsupervised, or semi-supervised

algorithms.

The rest of this paper is organised as follows. Section II

provides the required background information on the RPL

protocol and its related rank and blackhole attacks as well as the

basics of the supervised ML algorithms. Section III explains the

design of our proposed ML-based detection module. Section IV

explains our adopted methodology. In particular, we provide the

required details on the dataset creation, pre-processing, packet

labelling as well as the specifics of the learning and testing

phases. SectionV provides the implementation details. Section

VI explains the system configuration and the metrics used for

evaluating the ML model. Section VII provides our evaluation

results of three ML algorithms. In particular, we calculate the

Accuracy, Precision, Recall, F1 Score, and the Area under

the Receiver Operating Characteristic Curve (AUC). Finally,

Section VIII concludes the paper and discusses possible future

directions.

II. BACKGROUND

A. RPL Protocol

RPL is a standardized routing protocol commonly used in

6LoWPAN [2], [11]. The RPL topology has one central node,

the root node, which receives packets from other sensor nodes

in the network. RPL is a tree-based proactive routing protocol

in which the root node creates a Destination Oriented Directed

Acyclic Graph (DODAG) for routing packets [12]. Each node in

the DODAG has a unique node ID and a rank which represents

the distance of the node from the root. Thus, the rank increases

as the packets move downwards from the root node to the

peripheral leaf nodes. RPL uses an Objective Function (OF) to

derive optimal routes. This could be based on rank, link quality,

cost, distance, and other measures.

The DODAG construction begins when the root starts broad-

casting DODAG Information Object (DIO) packets to its neigh-

bouring nodes. DIO packets contain relevant information like

the OF, sender’s rank and IP address, link quality, and other

routing metrics [11]. DIO packets are sent periodically to

maintain the DODAG stability. Each node broadcasts a DIO

packet to neighbouring nodes to construct the upward routes. If

any new node wants to join the network, it broadcasts a DODAG



Information Solicitation (DIS) packet. By sending this packet

the node is asking if there is any DODAG available, thereby

essentially requesting DIO packets from nodes that are already

part of the DODAG. RPL can work in the two following modes.

In the non-storing mode, all the downward routes are stored in

a routing table only by the root node. In the storing mode,

each sensor node maintains and stores the downward routes

individually. In our work, the non-storing RPL mode is used

for routing packets downwards.

B. Rank and Blackhole Attacks in RPL Networks

An important attack that has been studied in this work is the

rank attack [13]. In a rank attack a malicious node may inten-

tionally advertise lower rank in order to attract neighbouring

devices to select it as preferred parent. A parent node is needed

in order to form the DODAG network and allow the creation of

routes reaching a Border Router (BR). In cases where networks

are small, the best parent is the BR itself. In other cases, metrics

such as rank and Expected Transmission Count (ETX) are used

to select the best parent. If a malicious node manages to be

chosen as the best parent of several nodes, it can attack the

network affecting its topology, availability and integrity. As a

result, the malicious node can become a single point of failure

of the network. In this work, rank attackers advertise fake ranks

with a value of 129. This is because the minimum default rank

in RPL is 128 and it is assigned to the root. Therefore, nodes

will consider a malicious node with a rank of 129 as a good

parent for forwarding their packets.

Another important routing attack is the blackhole attack,

where the malicious node drops all incoming traffic. Therefore,

no packets are forwarded from this node and, as a result,

network disruption is achieved. By dropping data packets,

the retransmission rate of child nodes is increased and an

internal DoS attack occurs. This attack could isolate child nodes

from the rest of the nodes, thus degrading the performance of

the network. In our implementation, all incoming packets are

dropped only if they need to be forwarded, and after 2 minutes

of simulation are passed.

C. Supervised Machine Learning

In supervised ML the model learns to map input variables

X to an output Y using a function Y = f(X). Both input

and output datasets are labelled so that the model can learn the

relation between the two. During training, input data is provided

along with their correct output so that the algorithm learns the

patterns. Learning procedure continues until a satisfactory level

of performance is reached. After training, the supervised learn-

ing algorithm is tested to evaluate its performance. Specifically,

unknown data is given as input to the model, and it tries to

predict the output value based on the relationships learned from

the training procedure.

An example of a classification algorithm that is also used

in this work is the 2-class Decision Forest (DF) [14]. The

specific algorithm is a fast supervised ensemble learning model

that is often used for predicting two outcomes. The ensemble

approach is the one where numerous related models are created

and merged in some way together to create a more generalised

model instead of depending on a single model only. In this

way, better results can be obtained. Creating individual models

and combining them together in an ensemble can be achieved in

multiple ways. The DF implementation used in this work builds

multiple decision trees and merges them together using voting

to produce more accurate and stable results.

Another classification algorithm that is used in this work

is the 2-class Support Vector Machine (SVM) [15]. SVM is

considered as one of the best classification algorithms as it

is a reliable algorithm which can achieve high accuracy on

predicting the class of unseen data [16]. The SVM algorithm

is based on the principle of structural risk minimisation. This

principle aims in finding a hypothesis h for which one can be

sure that the lowest error is observed, whereas other algorithms

are using the empirical risk principle which tries to improve the

performance of the training dataset.

III. DESIGN

The IDS components designed and implemented in previous

works [1], [3], [8] may not be effective in detecting unknown

attacks. They have been designed by relying on threshold-

based and trust-based mechanisms to detect flooding, rank,

and blackhole attacks. For this reason, an ML-based module

would be a great feature to add and improve the IDS detection

accuracy [17]. Learning from the current behaviour of the nodes

will allow the IDS to later identify both known and unknown

attacks, achieving higher detection rates. In this work, the focus

is to implement an ML-based detection module for detecting a

combination of rank and blackhole attacks.

For the generation of training and test datasets, several net-

work simulations have been executed. These are based on two

main scenarios, normal and malicious, both using the default

Minimum Rank with Hysteresis Objective Function (MRHOF).

Specifically, the first scenario is an environment without any

attackers. Nodes are operating in a benign fashion and are using

MRHOF to choose a parent. In the malicious scenario, one

or more rank/blackhole attackers exist. IDS detectors are also

deployed in the network to sniff traffic and later help us calculate

the metrics. In both scenarios, one BR node, one root node,

30 benign nodes, and a varying number of IDS detectors are

deployed. In the malicious scenario, 6 rank/blackhole attackers

are deployed in the network.

The packets exchanged in both normal and malicious scenar-

ios have been used during the learning procedure of the ML-

based module. Specifically, packet capture (pcap) files generated

by the Whitefield framework [18] for each scenario were used.

A pcap file contains all network packets exchanged by a

specific node. Creating a realistic dataset would need realistic

packet captures. Thus, only the pcap files of IDS detectors

were collected and analysed during the learning procedure. Any

packet sniffed by an IDS detector is recorded into its pcap file.

Through the learning procedure, it was discovered that con-

figuration used for each simulated scenario included specific

IDs for each deployed node. For example, if node with ID 3 is

an attacker, the ML model will learn that the attacker is always

the node with ID 3. In order to avoid this problem and allow the

ML model to intelligently detect malicious nodes based on their

behaviour and not based on their IDs, a different ID should be

assigned to each malicious node in the training and test datasets.

If we had the same node ID in both training and test datasets,

the ML model would give wrong prediction results. For this



reason, a new simulation configuration was created to assign

node IDs randomly to attackers so that nodes have different

IDs from the initial configuration. The resulting pcap files from

this experiment are used to create the test dataset.

IV. METHODOLOGY

The approach followed for building the ML model is de-

scribed in this section. Each step of our approach is described in

the subsections below and a high-level depiction of our adopted

methodology is given in Figure 1.

A. Dataset Creation

The first step before training and deploying an ML model, is

to produce a dataset for training the model. In order to create

a dataset, we have used the network traffic produced during

the simulations as described in Section III. The Whitefield

framework has the option to export pcap files for each node

of a simulation execution. Regarding IDS detectors, they had

promiscuous mode enabled in all the experiments so that every

packet received in their receiver (RX) range was recorded in the

pcap file. A large number of pcap files were generated during

each simulation. The next step is to collect only the pcap files

generated by IDS detectors for each simulated scenario. This

was done because the general concept is to create an ML-

based module for IDS using a realistic approach. Achieving that,

required us to collect data from devices that actually sniff traffic,

and avoid using the simulator’s functionalities. Therefore, the

ML model is trained and evaluated using the packets received

by IDS detectors.

B. Pre-processing

After collecting pcap files from IDS detectors, all files had

to be merged into one. For each repetition of each simulated

scenario, a pcap file per IDS detector is generated. Therefore, all

those files from different simulations were combined together

so that a large pcap file per scenario is created.

C. Packet Labelling

Once the dataset is formed, packet labelling is the next

step. Each packet is labelled as malicious or benign. Packet

labelling is done based on conditions that are explained in the

next sections. Packets contain several fields such as source IP

address, destination IP address, protocol, etc. An analysis was

carried out on network packets to understand and choose the

packet fields that contain useful information. For example, the

rank field of DIO packets was selected to identify rank attacks.

Packets with rank 129, the rank value of malicious nodes,

were labelled as malicious. Regarding blackhole attackers, RPL

packets with destination a malicious node are labelled also as

malicious. As for other attacks such as DIS flooding, several

simulations indicated that IDS was able to detect them with

high detection rate. Therefore, the ML model is designed to

focus on complex attacks such as the combination of rank and

blackhole attacks. As a last step of this task, processed packets

have to be merged together so that one pcap file is created for

all the simulated scenarios. The outcome of this process are two

files only, the training and test datasets.

The next task is the file conversion from pcap format into

Comma-Separated Values (CSV) format. This was necessary as

the ML tools allow only CSV files extensions as datasets. Thus,

the merged pcap files had to be converted into CSV files. At

the end, we have a training and a test datasets in CSV format.

D. Learning and Testing Phases

Training procedure starts right after the datasets are created.

Google’s Cloud Datastore and Microsoft’s Azure Datastore are

used to store the training and test datasets in each platform in

the cloud. They allow the user to manage, edit, and analyse

datasets before proceeding to any training task. Once data pre-

processing is finished, the learning procedure starts. AutoML

does not indicate which supervised ML algorithms are used to

train the ML model. For this reason, the user has to choose

only the type of data, which is tabular format in our case, and

the target variable for the model, which the algorithm that will

try to make predictions. Any other configuration is handled

by AutoML and it is automatically adjusted to achieve the

highest possible detection performance. The testing procedure

begins once the model finishes its training. The test dataset is

used during the evaluation process. In particular, the AutoML

platform uses the test dataset to evaluate the accuracy of the

new model. Moreover, evaluation metrics are generated and

analysed, showing the performance of the model on the specified

test dataset.

The same process is repeated in the Azure ML platform.

The difference, compared to AutoML, is that in Azure ML

the user has to design the experiment which includes defining

the flow to be followed from feature selection to evaluation

model as well as configuring the actual parameters of the

deployed ML algorithms. The default parameters provided by

the platform have been used in the deployed algorithms of Azure

ML. After the evaluation phase, Azure ML allows the user to

visualise results, and compare the performance of the deployed

algorithms.

V. IMPLEMENTATION

A. Dataset Creation Process

Both training and test datasets are created by executing

simulations. In these simulation scenarios, 30 benign nodes, 6

rank/blackhole attackers, and a varying number of 5 to 15 IDS

detectors are deployed. Scenarios with 5 and up to 15 detectors

are deployed aiming to find an optimal number of detectors.

Moreover, in each simulation execution, the deployment of

the nodes is random. This means that malicious nodes can be

deployed anywhere near benign nodes which makes it a more

realistic approach. In particular, 110 simulations are executed

(that is, simulations of 11 scenarios are repeated 10 times each)

and are analysed for creating the training dataset. Similarly,

110 simulations (11 scenarios repeated 10 times each), are

executed and analysed for generating the test dataset. Repeating

each scenario 10 times allowed us to collect a large sample

for analysis. The seed number plays a significant role in

simulations. It affects the behaviour of the nodes in terms of

packet processing and packet transmission times. Therefore, we

use random seeds in each simulation execution so that random

results are produced in each case. We divided the training and

test datasets in such as way that the ML model is trained using

the former, and tested using the latter. The first 5 repetitions are

used for the training dataset, whereas the remaining 5 are used

for the test dataset.



Fig. 1. A high-level description of the methodology followed in this work.

Only pcap files generated by IDS detectors are used to train

and evaluate the ML model. This is to ensure that the ML model

is as realistic as possible by using the packets captured from

the IDS detectors during the simulations.

After the dataset analysis, the number of benign packets is

higher than the number of malicious packets. This is expected

because the number of attackers deployed in the network is

less than benign nodes. Therefore, there is an imbalance in the

created datasets which the selected classification algorithms in

the training phase will need to handle.

In order to create both training and test datasets, a script was

written in Python language so that pcap files are parsed and

analysed. A prerequisite for generating the datasets is to export

and parse pcap files created by the simulations explained in

previous section.

Algorithm 1 presents the steps involved in order to cre-

ate the training and test datasets. As both datasets follow

the same procedure, the following describes the creation of

the training dataset only. Assuming pcap files are available,

the first step, as shown in Algorithm 1, is to merge all

pcap files of the training dataset into one file by calling the

merge training data into pcap() function. Inside this function,

the script iterates over each scenario to combine and merge

pcap files from the first 5 repetitions created by the simulated

scenario. As mentioned earlier, only pcap files generated by IDS

detectors were used during the dataset creation procedure.

The output of this function is a pcap file per scenario that

contains all packets captured from IDS detectors. The next step

is to call the create training csv() for each scenario to rename

packet fields, classify packets, filter packet types, and finally

create a CSV file. Specifically, this function renames packet

headers for better understanding. Then, it classifies packets into

malicious or benign. This is significant as it will allow the ML

algorithm to learn when a packet belongs to each category.

Algorithm 1 Dataset creation process

1: Input: Pcap files exported from simulations

2: Output: Training and test datasets as CSV files

3: merge training data into pcap();
4: merge test data into pcap();
5: for each sim in SCENARIOS do

6: create training csv(sim);
7: create test csv(sim);
8: end for

9: for each file in SCENARIOS CSV do

10: merge and filter training csv(file);
11: merge and filter test csv(file);
12: end for

We created a new field in the CSV file called Category. This

field indicates that a packet is malicious if any of the following

conditions occurs:

• The rank field has a value equal to 129.

• The next-hop destination IP address belongs to a

rank/blackhole attacker.

The first condition means that a rank attacker advertises

false rank while second condition means that the next-hop

node is an attacker. Packets that do not fulfil any of the

above conditions are treated as benign. The last task of the

function is to filter packets so that only ICMPv6 and UDP

packets are contained in the CSV file. This aims to remove

any irrelevant packets captured by nodes. The resulting file is a

CSV file that contains many useful information such as source

and destination IP addresses, protocol, timestamp, and other

fields. As each scenario generated a different CSV file, we had

to merge all CSV files into one large file. This process is done

by merge and filter training csv() function. The output of this

function is a CSV file with many fields available for training



TABLE I
PACKET FIELDS IN TRAINING AND TEST DATASETS

Field name Description

Rank DODAG rank value of the node sending the DIO packet

wpanDst MAC layer destination address in hexademical

wpanDst16Int MAC layer destination address in decimal

Src Source IP address of the sending node

Dst Destination IP address of the sending node

Parent Parent IP of the sending node

Code RPL message type

Flag Packet flags

wsInfo Additional information about the packet

ipv6Plen IPv6 packet payload length

Length Frame length

ipv6Nxt IPv6 packet next header

Time Absolute time when this frame was captured

DAOSequence
A sequence number incremented at each unique DAO
message from a node and echoed in the DAO-ACK packet

Reserved Reserved flag, must be zero

rplInstance Shows which RPL Instance the DODAG is part of

the ML model. As indicated in Algorithm 1, the procedure

described for creating the training dataset is also repeated for

creating the testing dataset.

B. Packet Processing

Each network packet sent by a node contains a large number

of fields from PHY, MAC, 6LoWPAN, network, transport, and

application layers. However, for our experiments a total of 16

fields were chosen to be included in the datasets. The packet

fields contained in both training and test datasets are shown

in Table I. It can be observed that some fields contain basic

network information, whereas other fields contain RPL-specific

information. The selection of these fields was based on detailed

packet analysis. Several pcap files were analysed to decide

which fields contain critical information. Apart from that, the

way of how routing attacks work was considered to create the

list of 16 packet fields. For example, the Rank and ipv6Nxt fields

are useful to attackers as they are often modified during routing

attacks to advertise fake ranks or to route packets to blackhole

nodes.

VI. CONFIGURATIONS AND METRICS

The configurations and metrics used for evaluating ML mod-

els are discussed in this section. Transformation of data was

performed in both platforms to normalise data and make them

appropriate for the ML algorithms. Moreover, the threshold for

the learning rate was configured at 0.5 in both platforms.

As the Azure ML is a platform that implements several well-

known supervised algorithms, the user has to choose a specific

ML algorithm to train and test an ML model. As the current

task was to classify packets into two categories, the decision

for choosing the training algorithms was based on accuracy

and training time [19]. The first chosen algorithm is 2-class

DF which usually shows high accuracy but needs moderate

training time [14]. The second algorithm is 2-class SVM [15]

which is generally considered a good choice for training models

with large feature sets but usually shows less accuracy than DF.

Regarding the AutoML, the user does not select any algorithm

as Google uses its own proprietary ML algorithms. Therefore,

the only available configuration for the user is to choose the

structure of the data and set the input datasets.

Both 2-class SVM and DF algorithms are configured and

executed on the Azure ML platform. The default parameters

provided by the platform have been used. Specifically, in the

SVM algorithm the number of iterations for building the model

was chosen to be 1, the lambda value which is used to tune

the model was set to 0.001, and the features are chosen to

be normalised before training. Regarding the DF algorithm,

the main parameter that user has to select is the resampling

method. This is the method that the algorithm is using to

generate the trees. Bagging or bootstrap aggregating is the

method we selected for our experiments. In this method, each

tree is developed on a new sample, which is formed by randomly

sampling the original dataset with replacement until the dataset

becomes the same size as the original. The outputs of the trees

are aggregated using the voting method. This means that trees

with high predictions will be given more weight in the final

decision. As for the remaining configuration, the maximum

number of decision trees was set to 8, the maximum depth of

any decision tree to 32, and the minimum number of samples

per leaf node to 1. The two algorithms used the system clock

value as a random seed.

The evaluation has been performed among the AutoML, 2-

class SVM and 2-class DF models. In regards to the metrics,

the following were used to evaluate ML models:

• AUC: It is the Area under the Receiver Operating Charac-

teristic (ROC) Curve. AUC value ranges from zero to one

and the higher it is, the better.

• Accuracy: It is the ratio of the number of true predictions

to the total number of cases. It is defined as the probability

that the IDS outputs correctly when the behaviour of the

system is normal and malicious.

• Precision: It is the ability of a model to avoid labelling

negative samples as positive. It is defined as the probability

that there is an attack when the IDS outputs an alert. In

other words, it is the ratio of correctly predicted positive

observations to the total predicted positive observations.

Low precision indicates high False Positive (FP) rate.

• Recall: It is the ratio of correctly classified as positive

samples over by the total number of positive samples. It

is defined as the probability that the IDS outputs an alert

when there is an attack. In other words, Recall is the True

Positive (TP) rate.

• F1 score: It tells how precise and robust the classifier is.

In particular, F1 score is the harmonic mean of precision

and recall metrics. It provides a fair representation of both

false positives and false negatives. However, true negatives

are not taken into account in the calculations.

VII. EVALUATION RESULTS

Results obtained from the ML algorithms are presented in

this section. Table II depicts the three ML algorithms used in

the experiments along with the calculated evaluation metrics.

As mentioned in previous sections, the test dataset is used as

an input data to evaluate the trained models. We observe that the

AutoML algorithm shows superior performance in comparison

with SVM and DF. Evaluation showed a Precision of 93.3%

in AutoML, followed by 76.7% and 3.5% in DF and SVM,

respectively. AutoML does not provide the Accuracy metric,

SVM achieves 76.1%, whereas DF achieves 92.2%. The F1



TABLE II
ML ALGORITHMS EVALUATION RESULTS

Metric
2-class SVM

MS Azure ML
2-class DF

MS Azure ML
Google AutoML

Accuracy 76.1% 92.2% -

Precision 3.5% 76.7% 93.3%

Recall 2.8% 62% 93.3%

F1 Score 3.1% 68.6% 93.3%

AUC 0.49 0.84 0.92

Score is one of the most important metrics to look for when

classification algorithms are evaluated because is the harmonic

mean of Recall and Precision metrics. According to Table II, the

highest F1 Score is 93.3% achieved by AutoML, followed by

68.6% of DF, and the lowest one is 3.1% of SVM. Another

metric is AUC which shows if the model can discriminate

between malicious and benign packets. Based on the results,

AutoML has 0.92 while 0.84 and 0.49 are recorded for DF and

SVM algorithms, respectively.

Another interesting metric generated by AutoML is the fea-

ture importance. AutoML analysed the dataset to find the most

important features after the training phase of the ML model.

Based on the results, only 3 out of 16 features are important

to consider. Specifically, the Rank feature is more than 80%

important, the wpanDst field is less than 20% important, and

the Dst has very low importance. The Rank field is important to

be included as the rank attack modifies this specific field. For the

other two fields, further analysis should be made to determine

if they are really useful for training the ML model. Although

the remaining fields seem to have low importance, some might

be needed to avoid data overfitting. Therefore, careful analysis

of the features should be done before proceeding to feature

selection which will enhance the model’s performance.

Generally speaking, the low performance of SVM and DF

algorithms could be due to the imbalanced datasets created

for training purposes. The default settings of ML algorithms

trained the model in a way that low performance is achieved as

depicted by the metrics. On the other hand, AutoML produced

better results and handled the imbalanced dataset in a way that

it did not affect its performance. For this reason, the ML model

created by AutoML is the preferable candidate to be deployed

as part of the IDS detection module.

VIII. CONCLUSION

We examined the effectiveness of publicly available ML

frameworks in detecting a combination of rank and blackhole

attacks in RPL networks. Specifically, Google AutoML, 2-

class SVM, and 2-class DF algorithms were used to train

and evaluate the ML model. Simulations were implemented

and a dataset was created as the ground truth to train the

models. Evaluation results showed that the models trained

using the AutoML framework achieved a Precision of 93.3%.

Such ML-based detection modules can be integrated in IDS

platforms to augment existing detection capabilities based on

other techniques. Further optimisations and designing dedicated

ML algorithms for the examined as well as other attacks in RPL

networks are promising directions of research in this area.

REFERENCES

[1] P. P. Ioulianou, V. G. Vassilakis, I. D. Moscholios, and M. D. Logothetis,
“A signature-based intrusion detection system for the Internet of things,” in
IEICE Information and Communication Technology Forum (ICTF), Graz,
Austria, July 2018, pp. 1–6.

[2] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, R. K. Alexander et al., “RPL: IPv6 routing
protocol for low-power and lossy networks.” RFC, vol. 6550, pp. 1–157,
March 2012.

[3] P. P. Ioulianou and V. G. Vassilakis, “Denial-of-service attacks and
countermeasures in the RPL-based Internet of Things,” 2nd International

Workshop on Attacks and Defenses for Internet-of-Things (ADIoT) in

conjunction with ESORICS, Luxemburg, Sept. 2019.
[4] P. P. Ioulianou, V. G. Vassilakis, and M. D. Logothetis, “Battery drain

denial-of-service attacks and defenses in the Internet of things,” Journal

of Telecommunications and Information Technology, vol. 2, pp. 37–45,
April 2019.

[5] C. Samuel, B. M. Alvarez, E. G. Ribera, P. P. Ioulianou, and V. G.
Vassilakis, “Performance evaluation of a wormhole detection method using
round-trip times and hop counts in RPL-based 6LoWPAN networks,”
in 12th IEEE/IET International Symposium on Communication Systems,

Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, July
2020, pp. 1–6.

[6] E. G. Ribera, B. M. Alvarez, C. Samuel, P. P. Ioulianou, and V. G.
Vassilakis, “Heartbeat-based detection of blackhole and greyhole attacks
in RPL networks,” in 12th IEEE/IET International Symposium on Com-

munication Systems, Networks and Digital Signal Processing (CSNDSP),
Porto, Portugal, July 2020, pp. 1–6.

[7] R. Smith, D. Palin, P. P. Ioulianou, V. G. Vassilakis, and S. F. Shahandashti,
“Battery draining attacks against edge computing nodes in IoT networks,”
Cyber-Physical Systems, vol. 6, no. 2, pp. 96–116, January 2020.

[8] P. P. Ioulianou, V. G. Vassilakis, and S. F. Shahandashti, “A trust-based
intrusion detection system for RPL networks: Detecting a combination of
rank and blackhole attacks,” Journal of Cybersecurity and Privacy, vol. 2,
no. 1, pp. 124–153, March 2022.

[9] “Google Cloud AutoML Custom Machine Learning Models,” https://
cloud.google.com/automl/, accessed: 30 May 2022.

[10] “Microsoft Azure Machine Learning,” https://azure.microsoft.com/en-us/
services/machine-learning/, accessed: 30 May 2022.

[11] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of
things: A survey,” Journal of Network and Computer Applications, vol. 66,
pp. 198–213, May 2016.

[12] L. Wallgren, S. Raza, and T. Voigt, “Routing attacks and countermeasures
in the RPL-based internet of things,” International Journal of Distributed

Sensor Networks, vol. 9, no. 8, p. 11, August 2013.
[13] M. A. Boudouaia, A. Ali-Pacha, A. Abouaissa, and P. Lorenz, “Security

against rank attack in RPL protocol,” IEEE Network, vol. 34, no. 4, pp.
133–139, July/August 2020.

[14] Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown,
A. Criminisi, A. Criminisi, D. Zikic, and J. Shotton, “Decision forests,
convolutional networks and the models in-between,” in arXiv:1603.01250,
March 2016.

[15] S. Suthaharan, “Support vector machine,” in Machine Learning Models

and Algorithms for Big Data Classification. Integrated Series in Informa-

tion Systems, 2016, vol. 36, pp. 207–235.
[16] Q. Yang and F. Li, “Support vector machine for intrusion detection based

on LSI feature selection,” in 6th IEEE World Congress on Intelligent

Control and Automation, Dalian, China, June 2006, pp. 4113–4117.
[17] A. M. Pasikhani, J. A. Clark, P. Gope, and A. Alshahrani, “Intrusion de-

tection systems in RPL-based 6LoWPAN: A systematic literature review,”
IEEE Sensors Journal, vol. 21, no. 11, pp. 12 940–12 968, March 2021.

[18] R. Jadhav, “Whitefield framework,” https://github.com/
whitefield-framework/whitefield, accessed: 30 May 2022.

[19] Microsoft, “How to select algorithms for Azure Machine
Learning,” https://docs.microsoft.com/en-us/azure/machine-learning/
how-to-select-algorithms, January 2022, accessed: 30 May 2022.


	Introduction
	Background
	RPL Protocol
	Rank and Blackhole Attacks in RPL Networks
	Supervised Machine Learning

	Design
	Methodology
	Dataset Creation
	Pre-processing
	Packet Labelling
	Learning and Testing Phases

	Implementation
	Dataset Creation Process
	Packet Processing

	Configurations and Metrics
	Evaluation Results
	Conclusion
	References

